
Proceedings of the

Prague Stringology Conference 2020

Edited by Jan Holub and Jan Žd’́arek

August 2020

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

ISBN 978-80-01-06749-9

Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2020 (PSC 2020) held on August 31–September 2, 2020 at
the Czech Technical University in Prague, which organizes the event. The conference
focused on stringology, i.e., a discipline concerned with algorithmic processing of
strings and sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The fourteen papers in this proceedings made the cut and were
selected for regular presentation at the conference.

The PSC 2020 was quite unique as it was organized in both present and remote
form. Due to COVID-19 pandemic situation there were restrictions for traveling. They
were less and less strict as the date of the conference was approaching. So at the end,
some participants arrived to Prague, some were connected remotely.

The Prague Stringology Conference has a long tradition. PSC 2020 is the twenty-
third PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2019
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on web
pages of the Prague Stringology Club. Selected contributions have been regularity
published in special issues of journals the Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2020 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2020. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2020

Jan Holub and Simone Faro

iii

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro, Co-chair (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Bořivoj Melichar, Honorary chair (Czech Technical University in Prague,

Czech Republic)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada, and Murdoch Univer-

sity, Australia)
Bruce W. Watson (FASTAR Group/Stellenbosch University, South Africa)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Miroslav Baĺık,
Jan Holub, Co-chair

Bořivoj Melichar
Radomı́r Polách

Jan Trávńıček, Co-chair
Jan Žd’́arek

External Referees

Golnaz Badkobeh
Hideo Bannai
Itai Boneh

Diptarama Hendrian
Arnaud Lefebvre
Neerja Mhaskar

Elise Prieur-Gaston
Simon Puglisi
Tatiana Starikovskaya

v

Table of Contents

Contributed Talks

New Compression Schemes for Natural Number Sequences by Sapir Asraf,
Shmuel T. Klein, and Dana Shapira . 1

Conversion of Finite Tree Automata to Regular Tree Expressions By State
Elimination by Tomáš Pecka, Jan Trávńıček, and Jan Janoušek 11

Enumerative Data Compression with Non-Uniquely Decodable Codes by M.
Oğuzhan Külekci, Yasin Öztürk, Elif Altunok, and Can Yılmaz Altıniğne 23

Fast Exact Pattern Matching in a Bitstream and 256-ary Strings by Igor O.
Zavadskyi . 33

Fast Practical Computation of the Longest Common Cartesian Substrings
of Two Strings by Simone Faro, Thierry Lecroq, and Kunsoo Park 48

Forward Linearised Tree Pattern Matching Using Tree Pattern Border Array
by Jan Trávńıček, Robin Ob̊urka, Tomáš Pecka, and Jan Janoušek 61

Greedy versus Optimal Analysis of Bounded Size Dictionary Compression
and On-the-Fly Distributed Computing by Sergio De Agostino 74

Left Lyndon Tree Construction by Golnaz Badkobeh and Maxime Crochemore . 84

On Arithmetically Progressed Suffix Arrays by Jacqueline W. Daykin,
Dominik Köppl, David Kübel, and Florian Stober . 96

Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees
and DAWGs on Multiple Strings by Shunsuke Inenaga . 111

Simple KMP Pattern-Matching on Indeterminate Strings by Neerja Mhaskar
and W. F. Smyth . 125

Re-Pair in Small Space by Dominik Köppl, Tomohiro I, Isamu Furuya,
Yoshimasa Takabatake, Kensuke Sakai, and Keisuke Goto 134

Reducing Time and Space in Indexed String Matching by Characters
Distance Text Sampling by Simone Faro and Francesco Pio Marino 148

Tune-up for the Dead-Zone Algorithm by Jorma Tarhio and Bruce W. Watson 160

Author Index . 169

vii

New Compression Schemes for

Natural Number Sequences

Sapir Asraf1, Shmuel T. Klein2, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
asrafsapir@gmail.com, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. Elias and Fano independently proposed a quasi-succinct representation for
monotonic integer sequences. In case the standard deviation is high, we suggest using
the well known Cγ code instead of the Unary code used by their solution. In case
the integers are similar, not necessarily forming a monotonic sequence, we propose
to apply the Haar transform as a preprocessing stage, to achieve additional savings.
Experimental results support the additional savings carried out by using our method.

Keywords: lossless compression, universal codes, the Haar transform

1 Introduction

Fixed length codes, such as the American Standard Code for Information Interchange
ASCII code, are the most popular method to store data, as they provide simplicity,
direct access and the possibility for fast retrieval. When compression performance
is of interest, variable length codes are usually more effective. Obviously, the codes
should be Uniquely Decipherable (UD), meaning that there is no ambiguous decoding.
In case no codeword is a prefix of any of the other codewords, the code is often called
a Prefix-free Code, and such a code is also UD. The restriction to prefix-free codes
does not hurt the compression performance. Famous prefix-free variable length codes
are, for instance, Huffman [12], Elias [5] and Fibonacci [7] codes.

Elias [5] proposed mainly two fixed , universal, prefix codeword sets, named Cγ

and Cδ, in which any integer x is represented by a binary codeword composed of two
parts. The first part listing the number of bits in the binary representation of x, and
the second storing the standard binary representation itself without its leading 1-bit.
While the first part is encoded by Cγ using the Unary encoding, Cδ uses Cγ. There is
no difference between Cγ and Cδ in the second part. The expected codeword lengths
are within twice the optimal average codeword length for the same underlying source
for Cγ, and only a log log factor away from optimal for Cδ. More precisely, Cγ requires
2⌊log x⌋ + 1 and Cδ necessitates ⌊log x⌋ + 1 + 2⌊log(⌊log x⌋ + 1)⌋ bits to encode the
number x.

A classical way to encode a monotonic set of integers is differential encoding, also
called gap encoding. In this method, instead of encoding the original set 0 ≤ x1 ≤ x2 ≤
· · · ≤ xn ≤ U , the set of differences is encoded. If the sequence of differences is encoded
by Cδ, then the number of bits used is no more than n log U

n
+ 2n log log U

n
+ O(n),

which is close to the zero-order entropy of a bit-vector of size U with n 1-bits [14].
There are quite a few motivations for the interest in monotonic sequence, an

Inverted Index is one of them. This is a powerful data structure commonly used
in Information Retrieval to enhance the processing time of search engines. Given

Sapir Asraf, Shmuel T. Klein, Dana Shapira: New Compression Schemes for Natural Number Sequences, pp. 1–10.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2020

a collection of documents, the inverted index is the list of documents where each
element of the collection occurs in, possibly including the frequency as well as the
exact positions of the element within each document. For a text T , the inverted index
stores for each element w with nw occurrences, the positions x1 < x2 < · · · < xnw

within T where w occurs. As this list is usually given in order, the resulting sequence
of integers is increasing.

Increasing sequences can also be found in Compressed Suffix Arrays. A suffix
array (SA) for T$, where T is a string of length n over Σ and $ /∈ Σ, is an array
SA[0 : n−1] of the indices of the suffixes of T$, stored in lexicographical order. Grossi
and Vitter [10] improve the space requirements of a suffix array by decomposing it
based on the neighbor function Φ. It has been shown that the values of Φ at consecutive
positions referring to suffixes that start with the same symbol must be increasing. The
implementation of CSA used in [1,13] applies differential encoding on the neighbor
function. Improved compression results were proposed by Gog et al. [8] who suggest
using the Elias-Fano encoding for storing the increasing Φ values of the CSA.

Our paper is constructed as follows. Section 2 recalls the details of Elias-Fano
codes, and suggests a variant that uses Cγ rather than the Unary code used by Elias-
Fano. We show that the original Elias-Fano is suitable for homogeneous series, while
the new variant is effective for series with higher standard deviation. Section 3 then
suggests the Haar transform as a preprocessing stage in order to convert homogeneous
numbers to a series which is suitable for the new Cγ variant. Experimental results
presented in Section 4 then support the savings of the proposed method.

2 Quasi-succinct representation for monotone sequences

Gap encoding can be used in order to compress inverted indices. Instead of encoding
the non-decreasing list of integers 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, directly pointing to the
ordered set of documents, the differences d1 = x1, d2 = x2 − x1, . . . , dn = xn − xn−1

are encoded, usually by universal codes such as Elias, Golomb [9] or Rice codes.
Elias [4] and Fano [6] independently proposed an efficient encoding method for

representing a non-decreasing sequence X of positive integers

X = {0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ U},

where U is a given upper bound on xn, possibly equal to xn.
The sequence X is represented by two separate bit-vectors L(ℓ) and U(ℓ), for

storing the ℓ lower bits, and the differences between successive values of the remaining
upper bits of each xi, respectively. More precisely, the ℓ least significant bits of each
xi ∈ X , which are xi mod 2ℓ, are stored sequentially in L(ℓ) in the same order as they
appear in X . The value of the binary representation of the remaining bits of each
xi ∈ X , that is, the values yi = ⌊xi

2ℓ
⌋ are then considered, and the differences between

adjacent values∆(i) = yi−yi−1, 1 ≤ i ≤ n, are computed, setting y0 = 0. U(ℓ)-Unary
stores these differences ∆(i) in the same order as in X in a Unary encoding, that is,
representing the integers 1, 2, 3, . . . , i respectively by 1, 01, 001, . . . , 0i−11. Elias-Fano’s
method defines ℓ to be equal to max{0, ⌊log(U

n
)⌋}. A similar encoding of the indices

of 1-bits in a sparse bit-vector, in which the sequence U(ℓ) is replaced by a bit-vector,
is described in [2].

Table 1 displays the representation of the Elias-Fano code applied on the mono-
tonic sequence example 2, 3, 10, 16, and 52. The first and second lines of Table 1

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 3

give the sequence X and their binary representation B(xi). According to Elias-Fano,
ℓ = max{0, ⌊log(U

n
)⌋} = 3 for our example, and the third line presents the lower

bits vector L for ℓ = 3. The next block of four lines are the stages for constructing
U -Unary for this example, given at the end of this block. The following two lines,
headed by B

(
⌊xi

2ℓ
⌋
)
and ⌊xi

2ℓ
⌋, are the remaining bits in each xi and their correspond-

ing values after their 3 lower bits have been removed. The line headed by ∆(i) is the
differences between adjacent values of the previous line. Elias-Fano uses 26 bits in
total. The last five lines of Table 1 are explained below.

x1 x2 x3 x4 x5

X 2 3 10 16 52

B(xi) 10 11 1010 10000 110100

L(3) 010 011 010 000 100

B
(
⌊xi

2ℓ
⌋
)

0 0 1 10 110

⌊xi

2ℓ
⌋ 0 0 1 2 6

∆(i) 0 0 1 1 4

U(3)-Unary 1 1 01 01 00001

U(3)-Cγ 1 1 010 010 00101

L(2) 10 11 10 00 00

B
(
⌊xi

2ℓ
⌋
)

0 0 10 100 1101

⌊xi

2ℓ
⌋ 0 0 2 4 13

∆(i) 0 0 2 2 9

U(2)-Cγ 1 1 011 011 0001010

Table 1. Quasi Succinct Encoding [4] for the sequence 2, 3, 10, 16 and 52

Exactly ℓ ·n bits are used for storing the lower bits vector L(ℓ). Next, we compute
the number of bits used by the upper bits vector U(ℓ)-Unary. The Unary code
records the values yi − yi−1 = xi

2ℓ
− xi−1

2ℓ
. If this difference is c, then xi is larger than

xi−1 by at least c · 2ℓ. The total differences can obviously not be larger than xn

2ℓ
, the

latter being bounded in case the definition for ℓ is used, explained as follows.

⌊xn
2ℓ

⌋
≤

⌊U
2ℓ

⌋
≤ U

2ℓ
=

U

2max{0,⌊log(U/n)⌋}

If there exists an integer k so that U
n

= 2k then U
2max{0,⌊log(U/n)⌋} = n. Otherwise,

⌊log(U/n)⌋ = ⌈log(U/n)⌉ − 1, and U
2max{0,⌊log(U/n)⌋} ≤ 2n.

Each Unary codeword requires a single 1-bit, and each 0-bit within the Unary
codeword represents an increase by 2ℓ. At most n 1s and 2n 0s are written in the Unary
representation, that is, 3 bits per integer xi. This concludes that the representation of
Elias-Fano uses at most 2+ ⌈log(U

n
)⌉ bits per element. Elias [4] proves that the Elias-

Fano representation is close to optimal as the information theoretical lower bound for

4 Proceedings of the Prague Stringology Conference 2020

a monotonic sequence of n integers is

⌈
log

(
U + n

n

)⌉
≈ n log

(U + n

n

)
.

Although, Elias-Fano’s encoding is considered quasi-succinct, that is, close to the
optimal representation, which is the information theoretical bound [16], there is still
place for improvements by replacing the Unary code by Cγ, as the former code is
costly for large integers. The Unary encoding uses i+ 1 bits to encode the integer i,
i ≥ 0, i.e., the codeword for the integer i is 0i1. The ith codeword for Cγ refers to
the binary representation of i+1, denoted by B(i+1), as the value zero may also be
encoded. The number of bits in B(i + 1) is encoded using its Unary form, followed
by B(i + 1) after the preceding 1-bit has been removed. The first several codewords
of Unary and Cγ are

0 1 2 3 4 5 6 7 8
U 1 01 001 0001 00001 000001 0000001 00000001 000000001

Cγ 1 01 0 01 1 001 00 001 01 001 10 001 11 0001 000 0001 001

where blanks are inserted between the unary and the binary parts for readability. Only
for the codewords corresponding to values 1 and 3 are Elias’ Cγ codewords longer than
those of the Unary code; for all other values, Cγ is preferable to the Unary code. We
therefore propose a different variant of the Elias-Fano encoding, which is especially
useful for non-uniform monotonic sequences having large standard deviation.

The sequence X is still represented by two bit vectors L(i) and U(i) for storing,
respectively, the i lower bits and the differences between successive values of the
remaining upper bits of each xi, but this time we shall not fix the number of bits i
in advance and rather let it vary from 0 to ℓ = max{0, ⌊log(U

n
)⌋}. Using the example

of Table 1, the line headed U(3)-Cγ refers to the case of i = 3 and presents the
corresponding U(3) for Cγ. The lower bits vector L(3) remains the same, for a total
of 28 bits, instead of 26 used by the original Elias-Fano. However, the representation
for i = 2 uses only 25 bits, shown by the bottom block of Table 1. The lower bits
vector L(2) uses 10 bits, and U(2)-Cγ uses additional 15 bits, less than the 26 bits
used by Elias-Fano.

ℓ 0 1 2 3 4 5 6

Elias-Fano-Cγ 35 34 31 36 37 38 41

Table 2. Elias-Fano-Cγ for the sequence 2, 3, 10, 16, 520 where the original Elias-Fano uses 43 bits

The introduction of the Elias-Fano-Cγ variant was, however, not suggested for
the savings of merely a single bit, and is rather suitable for sequences with larger
standard deviation. Consider the same example in which the last element has been
changed to 520. The standard deviation grows from 18.41 for the first one, to 204.96
for this new example. Elias-Fano-Unary requires 43 bits for the updated sequence,
while Elias-Fano-Cγ only needs 31 bits, which is attained for ℓ = 2. Table 2 gives the
total number of bits required for encoding the sequence 2, 3, 10, 16, 520 by the new
version, as a function of ℓ. It is interesting to see that the storage for all values of ℓ
needs less space than the original Elias-Fano coding.

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 5

We thus see that there is an advantage for using Cγ for sequences with high vari-
ability. Obviously, for general data, the logarithmic encoding of Cγ will be preferable
to the linear encoding of Unary, but for very uniform data, the differences encoded
by U in the Elias-Fano scheme will tend to consist mainly of very small integers, for
which the Unary variant is not so bad. In order to improve also the compression of
more homogeneous integer sets, we apply an idea used repeatedly in other data com-
pression applications, namely that of using a reversible transformation of the original
input to produce an equivalent sequence that is more compressible. This has been
used by applying the Burrows-Wheeler transform (BWT) for the compression of tex-
tual and other data [3], or the discrete cosine transform in lossy image compression
by JPEG [15]. In our case, we aim at causing a set of integers to be less homogeneous.
It turns out that the existence of an extreme element in a sequence is typical for the
output of the Haar transform [11], suggested as a preprocessing stage in the next
section.

3 The Haar Transform

The Haar wavelet transform, is a simple discrete transform, used in practical encoding
applications such as the compression of digitized sound and images. Here it is applied
for lossless compression of integer sequences. The Haar transform uses the basic scale
function φ(t), and the basic wavelet function ψ(t) defined as follows.

φ(t) =

{
1, 0 ≤ t < 1
0, otherwise.

ψ(t) =

{
1, 0 ≤ t < 0.5
−1, 0.5 ≤ t < 1.

A target function f(t) is approximated by an infinite linear combination of φ(t− k)
and ψ(2jt − k), where the parameter k assumes all possible, positive, negative and
zero, integer values:

f(t) =
∞∑

k=−∞
ckφ(t− k) +

∞∑

k=−∞

∞∑

j=0

dj,kψ(2
jt− k),

where ck and dj,k are constants. The function is transformed to a low resolution
average φ(t) and the high resolution detail ψ(t). In this research we are interested in
a particular non-normalized Haar transform, and refer to its matrix representation.

The Haar transform is related to a matrix of order 2k × 2k for k ≥ 1. The non-

normalized Haar matrix H2 of order 2× 2 is H2 =
1
2

(
1 1
1 −1

)
. The Haar matrix H2k

of order 2k × 2k is defined recursively by H2k =

(
H2k−1 ⊗ (1, 1)
I2k−1 ⊗ (1,−1)

)
, where ⊗ is the

Kronecker product defined for an n×m matrix A and a t×r matrix B as the nt×mr
matrix A⊗ B obtained by:

if A =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 then A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

6 Proceedings of the Prague Stringology Conference 2020

Given a sequence of 2k values a1, a2, . . . , a2k , the Haar transform computes, for
each pair of values a2i−1 and a2i, i = 1, . . . , 2k−1, the quantities

avg(i) =
a2i−1 + a2i

2
and ∆(i) =

a2i−1 − a2i
2

.

The resulting sequence is composed of the averages avg(1), avg(2), . . . , avg(2k−1), fol-
lowed by the half-differences, ∆(1), ∆(2), . . . , ∆(2k−1), and it is of the same length
as the input sequence. The 2k−1 averages are recursively transformed into 2k−2 new
averages followed by 2k−2 half-differences, and so on until only a single element re-
mains. The produced single value followed by the 2j−1 half-differences obtained from
all stages, j = 2, . . . k, are concatenated to form the final transformed elements. Note
that this single value, together with the sequences of half-differences, is sufficient to
reconstruct the original sequence, so the Haar transform is reversible.

As an example consider the sequence X = {1840, 1680, 1632, 1504, 1536, 1472,
1360, 1328}. The Haar transform applied on X is presented in Figure 1 resulting in
the non-increasing sequence H(X) = {1544, 120, 96, 80, 80, 64, 32, 16}. The original
series is given on the first line. The partition into pairs is depicted by curly braces,
and their average is presented on the following line. The elements contributed to the
resulting Haar vector, are shown in gray. The last line is the Haar transform outcome.

Algorithm 1: Haar-Cγ

Haar-Cγ(x1, . . . , x2k)

1 (h1, . . . , h2k)←Haar(x1, . . . , x2k)
2 U ← h1

3 ℓ← max{0, ⌊log(U
2k
)⌋}

4 Encode (h2k , . . . , h1) using Elias-Fano-Cγ(i) for 0 ≤ i ≤ ℓ
choosing i that results with minimum number of bits

1 2 3 4 5 6 7 8

1840 1680 1632 1504 1536 1472 1360 1328
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1760 1568 1504 1344 80 64 32 16
︸ ︷︷ ︸ ︸ ︷︷ ︸

1664 1424 96 80

︸ ︷︷ ︸
1544 120

Haar 1544 120 96 80 80 64 32 16

Figure 1. The Haar Transform for X = {1840, 1680, 1632, 1504, 1536, 1472, 1360, 1328}

The resulting output of the Haar transform of Figure 1 is quite typical: a dominant
first coefficient followed by others that are smaller by orders of magnitude, and most

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 7

importantly, with higher standard deviation than the original series. When the Haar
transform is applied to an image, the averages of the disjoint successive pairs are
commonly named the coarse resolution of the input image, while the differences of the
pairs are called the detail coefficients. The Haar transform is effective for correlated
pixels, as the coarse representation will resemble the original pixels, while the detail
coefficients will be small. The small values tend to be more compressible than the
original ones, and several compression techniques can be applied such as Run-Length
Encoding, Move-To-Front and Huffman encoding for lossless compression, possibly
adding quantization for lossy compression. For more details on the Haar transform
we refer the reader to the book of Salomon [15].

In this research we suggest to apply Algorithm 1 in case the input integer series
consists of similar numbers. Algorithm 1, which assumes that the input size is a power
of 2, 2k, starts by applying the Haar transform on the input sequence (x1, . . . , x2k) on
line 1 and obtains the output sequence (h1, . . . , h2k) of the same length as a result. It
then computes ℓ on line 3 as defined by Elias-Fano, and encodes the reverse sequence
(h2k , . . . , h1), to get an increasing sequence, with Elias-Fano-Cγ(i), for i ranging from
0 to ℓ, choosing a value of i that results in the minimum number of bits.

Continuing our running example of Figure 1, we applied Algorithm 1 on the given
sequence. The encoding of Haar-Cγ results in 62 bits, which was attained for ℓ = 3.
For comparison, Elias-Fano-Unary and Elias-Fano-Cγ on the sorted sequence of the
original series gave 78 bits for ℓ = 7 and 76 bits for ℓ = 6, respectively. We also applied
Elias-Fano-Unary on the resulting Haar vector, that, as noted above, is sorted for
this example, which attained 76 bits for ℓ = 7.

3.1 Encoding the Haar output using two blocks

In order to apply Algorithm 1, the Haar transform must result in a monotonic decreas-
ing sequence, which is not necessarily the case. Algorithm 2 suggests the encoding by
Elias-Fano-Cγ with only two different values for U(i)-Cγ. That is, the sequence is
partitioned into two buckets: the first containing only the first element, and all the
others belonging to the second one. The corresponding values of U(i)-Cγ are therefore
all 0, so they can be omitted.

Interestingly, this encoding does not require a monotonic series as all coordinates,
except the first, are written explicitly in the lower bits L array.

Algorithm 2: Bi-Haar-Cγ

Bi-Haar-Cγ(x1, . . . , x2k)

1 (h1, h2, . . . , h2k)←Haar(x1, . . . , x2k)
2 m← h2

3 ℓ← ⌊logm⌋+ 1
4 Encode (h2k , . . . , h1) using Elias-Fano-Cγ(ℓ), without encoding zeros in U

Applying Algorithm 2 on our running example, m = 120, and the coefficients are
encoded by ⌊logm⌋ + 1 = 7 bits, for a total of 56 for L(7). The upper bits vector
U(7)-Cγ needs only to express the coarse coefficient, as the seven detail coefficients
are with upper bit 0, which can be omitted for this method. In our example, the
coefficient ⌊1544

27
⌋ = 12, which is encoded by 13 bits in a Unary code, and by only 7

bits in Cγ, for a total of 69 and 63 bits, respectively.

8 Proceedings of the Prague Stringology Conference 2020

3.2 Ensuring that the Haar transform results in integers

The Haar transform repeatedly computes the averages of number pairs in the input
series, which may, obviously, produce non-integer numbers. Since Elias-Fano methods
are restricted to integers, Algorithm 3 presents a variant of the Haar transform that
makes sure the outcome consists only of integers. This is done by prepending a bit bi,
1 ≤ i ≤ 2k to each of the differences, indicating whether the corresponding average
is exact or has been rounded. In fact, bi is a parity bit as used in error correcting
codes: in case the corresponding sum is even, bi is set to 0, and if it is odd, bi = 1.
Concatenation is denoted by ·. The additional bits enables the reversibility of the
Haar transform. The algorithm gets as input a sequence of n = 2k integers for some
k ≥ 1, and returns another sequence of n integers, the first being the (rounded)
overall average, followed by n− 1 differences.

Algorithm 3: Integer-Haar-Cγ

Integer-Haar-Cγ(x1, . . . , x2k)

1 for i← 1 to 2k−1 do
2 b2k−1+i ← (x2i − x2i−1) mod 2

3 h2k−1+i ←
⌊
1
2 (x2i − x2i−1)

⌋

4 zi ←
⌊
1
2 (x2i + x2i−1)

⌋

5 if k = 1 then
6 return (z1, b2 · h2)

else
7 (y1, . . . , y2k−1)←Haar(z1, . . . , z2k−1)
8 return (y1, . . . , y2k−1 , b2k−1+1 · h2k−1+1, . . . , b2k · h2k)

1 2 3 4 5 6 7 8

115 106 102 94 96 92 85 84
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
110 98 94 84 (1)4 (0)4 (0)2 (1)0

︸ ︷︷ ︸ ︸ ︷︷ ︸
104 89 (0)6 (0)5

︸ ︷︷ ︸
96 (1)7

Haar 96 (1)7 (0)6 (0)5 (1)4 (0)4 (0)2 (1)0

Figure 2. Haar Transform with two buckets

As example, consider the following sequence of integers X = 115, 106, 102, 94,
96, 92, 85, 84, depicted in Figure 2. Each difference d on the right hand side is
now preceded by a parity bit b in parentheses, which is set to 1 if and only if the
corresponding average value a on the left hand side has been rounded, that is, the

S.Asraf, S. T.Klein, D. Shapira: New Compression Schemes for Natural Number Sequences 9

sum of the two integers a′ and a′′ of the previous iteration, was odd, see the example
in red in Figure 2. The reversibility means that we can recover a′ and a′′ from a, d
and b. Indeed:

a′ = a+ d+ b and a′′ = a− d.

4 Experimental Results

In order to evaluate our proposed method, we considered randomly generated se-
quences of 256 elements. We defined U to be the largest element in the sequence
and generated the Elias-Fano-Cγ encoding for varying values of ℓ from 1 to 30. All
sequences presented a similar behavior, Figure 3 and Figure 4 depict the compression
results of a typical representative.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

ℓ

T
o
ta
l
B
it
s

Cγ

Unary

Figure 3. Elias-Fano-Unary vs. Elias-Fano-Cγ encoding for uniform random generated monotonic
sequence of 256 elements

The general case is shown in Figure 3. Elias-Fano-Unary gives the best result,
4104 bits. The best encoding for Elias-Fano-Cγ is only slightly larger, 4238 bits, for
ℓ = 14, and it deteriorates for other values of ℓ. To get examples of more biased input
sequences, the test was repeated again with randomly generated sequences, but to
each of which one extreme element has been adjoined, thereby simulating the series
handled by JPEG or after having applied the Haar transform. The corresponding
graph of a typical example appears in Figure 4. Elias-Fano-Unary stores the input
sequence using 6,144 bits with ℓ = 22, while many Elias-Fano-Cγ values were lower,
with a minimum achieved of 1,698 bits, for ℓ = 3.

References

1. E. Benza, S. T. Klein, and D. Shapira: Smaller compressed suffix arrays. The Computer
Journal, 2020.

2. A. Bookstein and S. T. Klein: Compression of correlated bit-vectors. Inf. Syst., 16(4) 1991,
pp. 387–400.

10 Proceedings of the Prague Stringology Conference 2020

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

ℓ

T
o
ta
l
B
it
s

Cγ

Unary

Figure 4. Elias-Fano-Unary vs. Elias-Fano-Cγ encoding for a random generated monotonic se-
quence of 256 elements, with an extreme element

3. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, in
SRC Technical Report 124, Digital Equipment Corporation, Palo Alto, CA, 1994.

4. P. Elias: Efficient storage and retrieval by content and address of static files. J. ACM, 21(2)
1974, pp. 246–260.

5. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194–203.

6. R. Fano: On the Number of Bits Required to Implement an Associative Memory, Computation
Structures Group Memo, MIT Project MAC Computer Structures Group, 1971.

7. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64 1996, pp. 31–55.

8. S. Gog, A. Moffat, and M. Petri: CSA++: fast pattern search for large alphabets, in Proc.
19th Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona, Spain,
January 17-18, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2017,
pp. 73–82.

9. S. W. Golomb: Run-length encodings (corresp.). IEEE Trans. Inf. Theory, 12(3) 1966, pp. 399–
401.

10. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.

11. A. Haar: Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69(3)
1910, pp. 331–371.

12. D. A. Huffman: A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9) 1952, pp. 1098–1101.

13. H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich: A practical implementation of compressed
suffix arrays with applications to self-indexing, in Proceeding of the Data Compression Confer-
ence, DCC 2014, Snowbird, UT, USA, 26–28 March, IEEE Computer Society, Los Alamitos,
CA, 2014, pp. 292–301.

14. G. Navarro: Compact Data Structures - A Practical Approach, Cambridge University Press,
Cambridge UK, 2016.

15. D. Salomon, G. Motta, and D. Bryant: Data Compression: The Complete Reference,
Molecular biology intelligence unit, Springer London, 2007.

16. S. Vigna: Quasi-succinct indices, in Sixth ACM International Conference on Web Search
and Data Mining, WSDM 2013, Rome, Italy, February 4-8, 2013, S. Leonardi, A. Panconesi,
P. Ferragina, and A. Gionis, eds., ACM, 2013, pp. 83–92.

Conversion of Finite Tree Automata to Regular

Tree Expressions By State Elimination

Tomáš Pecka⋆, Jan Trávńıček, and Jan Janoušek⋆⋆

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University in Prague
{tomas.pecka,jan.travnicek,jan.janousek}@fit.cvut.cz

Abstract. Regular tree languages can be accepted and described by finite tree au-
tomata and regular tree expressions, respectively. We describe a new algorithm that
converts a finite tree automaton to an equivalent regular tree expression. Our algo-
rithm is analogous to the well-known state elimination method of the conversion of a
string finite automaton to an equivalent string regular expression. We define a gener-
alised finite tree automaton, the transitions of which read the sets of trees described
by regular tree expressions. Our algorithm eliminates states of the generalised finite
tree automaton, which is analogous to the elimination of states in converting the string
finite automaton.

Keywords: regular tree languages, finite tree automata, regular tree expressions, state
elimination method

1 Introduction

The theory of formal tree languages is an important part of computer science and
has been extensively studied and developed since 1960s [5,6]. Trees are natural data
structures for storing hierarchical data. Their applications range from areas such
as natural language processing, interpretation of nonprocedural languages and code
generation to processing markup languages such as XML.

Regular expressions are well-studied structures representing regular (string) lan-
guages in finite space [8,2]. The concept of expressions can be extended to regular tree
languages as well. Regular tree expressions (RTEs) denote regular tree languages [5].

Standard computation models for problems on trees are various kinds of tree
automata. An finite tree automaton (FTA) is an acceptor for the class of regular tree
languages. The Kleene’s theorem for tree languages states that the class of regular
tree languages is equal to the class of languages that can be described by the RTEs [5].
Both formalisms are therefore equally powerful, but sometimes one of them is more
convenient than the other one. For instance, language membership problem is easily
solvable using the automaton. The expressions might be better in describing the
language. Therefore it is suitable to find a way of converting one to another as we do
in the area of strings.

The conversion of an RTE into an FTA was studied by several works. Algorithms
presented in these papers are adaptations of well-known algorithms for the conversion
of regular (string) expressions into finite (string) automata [9,10,3]. Note that there

⋆ This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/208/OHK3/3T/18.

⋆⋆ The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research Center for Informatics”.

Tomáš Pecka, Jan Trávnı́ček, Jan Janoušek: Conversion of Finite Tree Automata to Regular Tree Expressions By State Elimination, pp. 11–22.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

12 Proceedings of the Prague Stringology Conference 2020

also exist conversion algorithms for the problem of converting RTEs into pushdown
(string) automata that accept trees in their linearised form [13,12].

The possibility of conversion in the other way, i.e. the conversion of an FTA
to an RTE was introduced in the proof of the Kleene’s theorem in [5]. The proof
proposes a State elimination-like of conversion but it was not put into the algorithm
and it was not discussed much. Recently, Guellouma and Cherroun studied regular
tree equations [7] which they used to construct a regular tree equation system from
an FTA. Solving this equation system yields an RTE describing the same language
that was accepted by the original FTA. Unfortunately, the time complexity of the
algorithm is not stated in the article.

In this paper, we build upon the idea of eliminating states from an FTA presented
in the proof of Kleene’s Theorem [5]. We present a practical algorithm for the prob-
lem of converting FTAs to RTEs that is inspired by the classical State elimination
algorithm for finite (string) automata [8]. We define the notion of generalized finite
tree automaton (GFTA) which differs from the FTA mainly in the transition func-
tion. Instead of the input alphabet symbols, the transitions now involve sets of trees
described by the RTE. We use this model for the process of eliminating states. States
of the GFTA are then eliminated one-by-one and the transitions of the automaton
are modified in such way that the language the automaton accepts does not change.
The transitions to the last remaining final state then define the equivalent RTE to
the original automaton. Such approach can convert an FTA to an equivalent RTE in
O(|Q|2 · (|∆|+ |QF |) time where Q and QF are the sets of all states and final states of
the FTA, respectively, and ∆ is the set of transitions of the FTA. Furthermore, the
implementation of the algorithm is really simple and straightforward.

The following parts of this paper are organised as follows: Section 2 recalls basic
definitions and notations. The new conversion algorithm yielding the RTE is presented
in Section 3. Finally, the achieved results and ideas for future work are presented in
the concluding section.

2 Background

A ranked alphabet Σ is a finite nonempty set of symbols, each of which is assigned
with non-negative integer arity denoted by arity(a). The set Σn denotes the set of
symbols from Σ with arity n. Elements of arity 0, 1, 2, . . . , n are called nullary (also
constants), unary, binary, . . ., n-ary symbols, respectively. We assume that Σ contains
at least one constant. We use numbers at the end of symbols for a short declaration
of arity. For instance, a2 is a short declaration of a binary symbol a.

A labelled, ordered and ranked tree over a ranked alphabet Σ is defined on the
concepts from graph theory [2]. A directed ordered graph G is a pair (N,R) where
N is a set of nodes and R is a list of ordered pairs of edges. Elements of R are in
the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N, n ≥ 0. Such element
denotes n edges leaving f with the first edge entering node g1, the second entering
g2, and so forth. A sequence of nodes (f0, f1, . . . , fn), n ≥ 1 is a path of length n from
node f0 to fn if there is an edge from fi to fi+1 for each 0 ≤ i < n. A cycle is a path
where f0 = fn. An in-degree of a node is a number of incoming edges. An out-degree
is a number of outgoing edges. A node with out-degree 0 is called a leaf.

An ordered directed acyclic graph (DAG) is an ordered directed graph with no
cycle. A rooted DAG is a DAG with a special node r ∈ N called the root. The in-
degree of r is 0, in-degree of every other node is 1 and there is just one path from the

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 13

cons21

int02 cons23

int04 nil05

Figure 1. A directed, rooted, labelled, ranked, and ordered tree over Σ = {nil0, int0, cons2}.

root r to every f ∈ N, f 6= r. A labelled ranked DAG is a DAG where every node is
labelled by a symbol a ∈ Σ and the out-degree of a node a ∈ Σ equals to arity(a).
A directed, ordered, rooted, labelled, and ranked tree is rooted, labelled, and ranked
DAG. All trees in this paper are considered to be directed, ordered, rooted, labelled,
and ranked.

Due to simplicity we often represent trees in the well-known prefix notation (see
Example 1).

Example 1. Let t from Figure 1 be a directed, rooted, labelled, ranked, and ordered
tree with labels from ranked alphabet Σ = {nil0, int0, cons2}. Formally the tree
is a graph t = ({cons21, int02, cons23, int04, nil05}, {(cons21, int02), (cons21, cons23),
(cons23, int04), (cons23, nil05)}). The root of t is a cons21 node with an ordered pair
of children (int02, cons23). The prefix notation of t is cons2(int0, cons2(int0, nil0)).
We omit the subscripted indexes and show the labels from Σ only.

A nondeterministic bottom-up finite tree automaton (FTA) over a ranked alphabet
Σ is a 4−tuple A = (Q,Σ,QF , ∆), where Q is a finite set of states, QF ⊆ Q is a set
of final states, and ∆ is a mapping Σn×Qn 7→ P(Q) (where P denotes the powerset
function), i.e., the transitions are in the form f(q1, q2, . . . , qn) → q where f ∈ Σn,
n ≥ 0, and q, q1, q2, . . . , qn ∈ Q. An FTA is a deterministic FTA if for every left hand
side of the transition there is at most one target state.

The computation of the FTA starts at leaves and moves towards the root. Each
subtree is mapped to a state. A run of an automaton is defined inductively: The
leaves are mapped to states q by the transitions of the form a→ q ∈ ∆, a ∈ Σ0. If a
root of a subtree is labelled with f ∈ Σn, n ≥ 1, and its children are mapped to states
q1, . . . , qn, this subtree is mapped to q, where f(q1, q2, . . . , qn) → q ∈ ∆. Language
of a state q (denoted by L(q)) is a set of subtrees mapped to state q. Obviously,
an FTA accepts such trees that have their roots mapped to any final state, i.e.,
L(A) = ⋃

q∈QF
L(q).

The tree language L(A) recognised by an FTA A is the set of trees accepted by the
FTA A. A tree language is recognisable if it is recognised by some FTA. It is recog-
nisable if and only if it is a regular tree language (see [4,5] for the definition). Every
nondeterministic FTA can be transformed to an equivalent deterministic FTA [5].

The transition function of FTA can be depicted using a diagram in a similar way
as the diagram of a finite automaton. However, transitions of an FTA can have an
arbitrary amount of source states. Therefore a join node of source states is added
into the diagram. The order of source states is specified by a number on edges from
states to join nodes.

Example 2. An example of an FTA is A = ({I, L}, {int0, nil0, cons2}, {L}, ∆), where
∆ consists of the following transitions: int0→ I, nil0→ L, and cons2(I, L)→ L. A

14 Proceedings of the Prague Stringology Conference 2020

accepts the language L(A) = {nil, cons(int, nil), cons(int, cons(int, nil)), . . .}. The
automaton is depicted in Figure 2.

I L
int0 nil01

2

cons2

Figure 2. Visualisation of the FTA A from Example 2.

Regular tree expressions (RTEs) are defined (as in [5]) over two alphabets, F and
K. F is a ranked alphabet of symbols. K is a set of constants (special symbols with
arity 0), K = {�1,�2, . . . ,�n}, n ≥ 0, F ∩ K = ∅. This alphabet is used to indicate
the position where substitution operations take place.

Firstly, the substitution, i.e. replacing occurrences of �i by trees from a tree lan-
guage Lj, is defined. Let K = {�1, . . . ,�n} and t be a tree over F ∪K, and L1, . . . , Ln

be tree languages. Then the tree substitution of �1, . . . ,�n by L1, . . . , Ln in t denoted
by t{�1 ← L1, . . . ,�n ← Ln} is the tree language defined by the following identities:

– �i{�1 ← L1, . . . ,�n ← Ln} = Li, for i = 1, . . . , n,
– a{�1 ← L1, . . . ,�n ← Ln} = {a}, ∀a ∈ F0 ∪ K and a 6= �1, . . . , a 6= �n,
– f(s1, . . . , sn){�1 ← L1, . . . ,�n ← Ln} = {f(t1, . . . , tn) | ti ∈ si{�1 ← L1, . . . ,

�n ← Ln}}.
The tree substitution can be generalized to languages: L{�1 ← L1, . . . ,�n ←

Ln} =
⋃

t∈L t{�1 ← L1, . . . ,�n ← Ln}. The operation alternation of L1 and L2 is
denoted by L1+L2. It results in a set of trees obtained from the union of regular tree
languages L1 and L2, i.e. L1 ∪ L2. The operation concatenation of L2 to L1 through
�, denoted by ·� (L1, L2), is the set of trees obtained by substituting the occurrence
of � in trees of L1 by trees of L2, i.e.

⋃
t∈L1

t{�← L2}. Given a tree language L over

F ∪ K and � ∈ K, the sequence Ln,� is defined by the equalities L0,� = {�} and

Ln+1,� = ·� (L,Ln,�). The operation closure is defined as L∗,� =
⋃

n≥0 L
n,�.

Finally, an RTE over alphabets F and K is defined inductively:

– the empty set (∅) and a constant (a ∈ F0 ∪ K) are RTEs,
– if E1, E2, . . . , En are RTEs, n > 0, f ∈ Fn and � ∈ K, then: E1 +E2, ·� (E1, E2),

E1
∗,�, and f(E1, . . . , En) are RTEs.

RTE E represents a language denoted by L(E) and defined by the following
equalities:

– L(∅) = ∅,
– L(a) = {a} for a ∈ F0 ∪K,
– L(f(E1, . . . , En)) = {f(s1, . . . , sn) | s1 ∈ L(E1), s2 ∈ L(E2), . . . , sn ∈ L(En)},
– L(E1 + E2) = L(E1) ∪ L(E2),
– L(·� (E1, E2)) = L(E1){�← L(E2)},
– L(E∗,�) = L(E)∗,�.

We define the set RTE(F ,K) to be a set of all RTEs over F and K alphabets.
A regular tree language is recognisable if and only if it can be denoted by an RTE [5].
For the sake of simplicity we allow the alternation to act as an n-ary operator (n ≥ 2),
e.g., the RTE (((E1+E2)+E3)+ · · ·+En) can be written as E1+E2+E3+ · · ·+En.

Example 3. Let F = {nil0, int0, cons2} and let K = {�1,�2}. Then the RTE E
from Figure3 denotes the language of lists of integers in LISP. L(E) = {nil0,
cons2(int0, nil0), cons2(int0, cons2(int0, nil0)), . . .}.

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 15

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure 3. An RTE from Example 3 denoting the language of integer lists in LISP.

3 State elimination algorithm

The proof of Kleene’s Theorem in Comon et al. [5] hinted that the conversion of FTAs
to RTEs can be done by elimination of states. However, the algorithm itself is not
presented in the book.

The following approach is inspired by the well-known state elimination algorithm
for finite automata [8]. We eliminate states one by one and all paths that went through
the eliminated state will be replaced by new transitions. Also, the transitions will
now involve sets of trees described by an RTE (in the places where the classical
string version would involve regular expressions) rather than individual symbols of
the alphabet.

3.1 Generalized finite tree automaton

In order to represent a tree automaton whose transitions involve trees rather than
symbols of the input alphabet we define an extension of the FTA called generalized
finite tree automaton (GFTA). The GFTA differs from FTA mainly in the transition
function which is defined over RTEs rather than over the individual symbols of a
ranked alphabet.

Definition 4. Let A′ = (Q,Σ,QF , Γ) be a generalized finite tree automaton (GFTA).
The meaning of Q,Σ and QF sets is the same as in an FTA and Γ is a mapping
RTE(Σ,Q)× P(Q) 7→ Q. The QF set is a singleton.

Transition function Γ of a GFTA is in the form E{q1, . . . , qn} → q where E is an
RTE(Σ,Q) and q, q1, . . . , qn ∈ Q. The substitution symbols of RTEs act as references
to the languages of the corresponding states and the constant alphabet of RTEs is
therefore equal to the set of states, i.e., Q.

The order of transition’s source states is no longer important as it is defined in
the RTE because the children in RTEs are ordered. For this reason, it is no longer
necessary to maintain the vector of source states of a transition ordered, and it can
be converted to a set.

The run of GFTA is defined similarly to the run of FTA. A subtree t is labelled
with the state q only if there exists a transition E{q1 . . . qn} → q and t ∈ L(E). Recall
that the symbols from Q set in the RTE act as the references to the states of the
automaton. A tree t is accepted by GFTA if t is labelled with the final state of the
automaton. Language of a GFTA is the set of trees accepted by the automaton.

16 Proceedings of the Prague Stringology Conference 2020

We use almost the same rules for depicting GFTAs as for FTAs. Only the edges
leading to join nodes are no longer labelled with their position because they are no
longer ordered.

Q
c0

+

a2

b0 Q

a2

Q b0

(a) Example GFTA.

a21

b02 a23

c04 b05

(b) Example
tree.

Figure 4. Example GFTA and a sample tree it accepts.

Example 5. Consider the simple GFTA depicted in Figure 4a and the input tree t from
Figure 4b. Subtree c04 of t is trivially labelled with state Q. Subtrees a23 and a21 are
also labelled with Q state because both subtrees correspond to the RTE leading to
the state Q. Note that the Q symbol in the RTE corresponds to the subtree labelled
with state Q. Subtrees b02 and b05 are not labelled with a state.

Lemma 6. An FTA A = (Q,Σ,QF , ∆) can be converted to an equivalent GFTA
A′ = (Q ∪ qf , Σ, {qf}, Γ), qf /∈ Q.

Proof. Every transition fn(q1, . . . , qn) → q ∈ ∆ is transformed to E{q1, . . . , qn} →
q ∈ Γ where E is an RTE fn(q1, . . . , qn). In order to have only one final state we also
add a new state qf and we create a transition E{q} → qf where E = q from every old
final state q ∈ QF to qf . This is similar to adding ε-transitions in the string variant.
It is easy to see that the languages accepted by A and A′ are equal. ⊓⊔

The transformation of an FTA to a GFTA is obvious from the proof of Lemma 6,
but we still formalise it in Algorithm 1. We also formulate Lemma 8, which states
that every single-state GFTA can be converted to an RTE.

Algorithm 1: FTA to GFTA
input : FTA A = (Q,Σ,QF , ∆)
output : GFTA A′ = (Q′, Σ,Q′

F , Γ) corresponding to A
1 function ExtendFTA(A = (Q,Σ,QF , ∆)):
2 Q′ = Q ∪ {qf} (qf /∈ Q) // new final state

3 Q′
F = {qf}

4 Γ = {E{q1, . . . , qn} → q where E = fn(q1, . . . , qn) | ∀fn(q1, . . . , qn)→ q ∈ ∆}
5 Γ = Γ ∪ {E′{q} → qf where E′ = q | ∀q ∈ QF }
6 return A′ = (Q′, Σ,Q′

F , Γ)

Example 7. Figure 5 shows the tree automaton from Example 2 converted to GFTA
by Algorithm 1.

Lemma 8. Let A = (Q,Σ,QF , Γ) be a GFTA with only 1 state (|Q| = 1) that is
also the final state (Q = QF) and transitions in the form Ei → q. One can generate
an RTE E such that L(E) = L(A).

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 17

I L

qf

int0 nil0

cons2

I L

L

Figure 5. Visualisation of the GFTA created from the FTA from Example 2.

Proof. Multiple transitions of the form E ′
i → q can be transformed into a single

transition in the form E → q where E = E ′
1 + · · · + E ′

n and E ′
i corresponds to the

RTE of the i-th original transition.
Now it is clear that any tree accepted by the automaton must also be in the

language denoted by the RTE corresponding to the only transition of the automaton
and vice versa. Therefore the language denoted by the RTE E is equivalent to the
language of the GFTA. ⊓⊔

3.2 Elimination of a single state

Before we state the full algorithm, we must define the process of eliminating a single
non-final state from a GFTA. The elimination of a single state q, q ∈ Q \QF from a
GFTA modifies the GFTA in such a way that the state q is no longer present. There-
fore the transitions involving the state q are removed as well. However, the language
of the automaton must remain unchanged. To compensate, some new transitions
between the remaining states are added.

With respect to the state q we classify the transitions of the automaton into the
following four groups: A transition is incoming if q is only a target state but not a
source. If q is among the source states of a transition and also a target state, then
the transition is classified as looping. If q is only a source state but not a target,
it is called an outgoing transition. If q has no part in the transition, it is classified
as an other transition. It is obvious that other transitions are left intact when q is
eliminated. Definition 9 formalises the classification.

Definition 9. Function trtype classifies the transition of a GFTA w.r.t. the state
q ∈ Q.

trtype(E{p1, . . . , pn} → p, q) =

incoming if q /∈ {p1, . . . , pn} ∧ q = p

outgoing if q ∈ {p1, . . . , pn} ∧ q 6= p

looping if q ∈ {p1, . . . , pn} ∧ q = p

other if q /∈ {p1, . . . , pn} ∧ q 6= p

Example 10. Let A = (Q,Σ,QF , Γ) be the GFTA from Figure 5. According to the
Definition 9 the transitions from Γ with respect to state L are classified as follows:
trtype(int0→ I, L) = other, trtype(nil0→ L,L) = incoming, trtype(cons2{I, L} →
L,L) = looping, trtype(L→ qf , L) = looping.

Now consider the fragment of GFTA visualised in Figure 6a. Arbitrary non-final
state q of the GFTA may have incoming transitions (such transitions are labelled in
the picture by the RTEs Einci), looping transitions (Eloopi) and outgoing transitions
(Eouti). The other transitions are obviously left intact by the process of eliminating q

18 Proceedings of the Prague Stringology Conference 2020

q

r1

rn

...

...

...

...

. . .

. . .

. . .

.

...

Einc1

Eincn

Eloop1 Eloopn

Eout1

Eoutn

(a) Before the elimination of state q.

r1

rn

...

...

...

. . .

. . .

.

...

Enew1

Enewn

(b) After the elimination of state q by
Lemma 12.

Figure 6. Fragment of a GFTA before and after the elimination of state q.

·q

∗,q

+

Eloop1
. . . Eloopn

+

Einc1 . . . Eincn

Figure 7. RTE equivalent to the language of a state of GFTA.

because q is not involved in those transitions. Let us state the following lemmas that
will define the elimination process.

Lemma 11. The concatenation operation in RTEs is associative, i.e., for RTEs
x, y, z the following holds: ·� (·� (x, y), z) = ·� (x, ·� (y, z)).

Proof. No mater the order of application of the concatenation operation in either
RTEs ·� (·� (x, y), z) and ·� (x, ·� (y, z)), the occurrences of � in the RTE x are the
place of substitution of a language given by RTE y and the occurrences of � in the
RTE y are the place of substitution of a language given by RTE z. ⊓⊔
Lemma 12. Let A = (Q,Σ,QF , Γ) be a GFTA and q ∈ Q\QF . Let Eloop1 , . . . , Eloopn

be RTEs collected from looping transitions w.r.t. the state q, let Einc1 , . . . , Eincn be
RTEs from incoming transitions w.r.t. the state q and let Eout1 , . . . , Eoutn be RTEs
collected from outgoing transitions w.r.t. the state q. Then the language of state q
can be represented as an RTE Eq = ·q ((Eloop1 + · · ·+ Eloopn)

∗,q, (Einc1 + · · ·+Eincn))
(for clarity, the RTE fragment is visualised in Figure 7). Then the references to q in
Eouti can be replaced (using the concatenation operation) with an RTE denoting the
language of state q. The Eouti transition then becomes Enewi

= ·q (Eouti , Eq). Note
that empty alternation equals to ∅.
Proof. The proof is essentially the same as the proof of Kleene’s Theorem in [5, Prop.
2.2.7]. We only use different RTE fragment for the Enewi

because we find it more intu-
itive. The fragment proposed in [5], i.e., Enewi

= ·q (·q (Eouti , (Eloop1 + · · ·+ Eloopn)
∗,q),

(Einc1 + · · ·+ Eincn)), is equivalent as follows from Lemma 11. ⊓⊔

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 19

Lemma 13. After eliminating state q ∈ Q, all occurrences of symbol q in the au-
tomaton’s transition function are bounded by some concatenations over q.

Proof. References to state q can appear either at outgoing and looping transitions
of state q or at incoming and looping transitions of a state p ∈ Q, p 6= q of the
automaton. Firstly, by eliminating the state q the references at outgoing and looping
transitions are surely bounded under concatenation nodes (by Lemma 12). Now for
the state p. If q appears at a incoming or a looping transition of the state p then (by
Definition 9) the transition is also an outgoing transition of state q. Therefore the
reference is properly bounded by eliminating state q. ⊓⊔

The state elimination algorithm is intentionally designed not to replace the ref-
erences inside the RTE but rather to utilize the concatenation operation. Using this
approach, there is no need to traverse the RTEs to replace all the occurrences. Fur-
thermore, when multiple references are present, the replacement is not copied to
multiple places. This approach is formalised in Algorithm 2. Function Alternate is
used in Algorithm 2. For a set of transitions of labelled with RTEs Ei the function
returns an alternation of those, i.e., an RTE E1 + · · ·+ En.

Algorithm 2: Elimination of a single state in a GFTA
input : GFTA A = (Q,Σ,QF , Γ), q ∈ Q
output : GFTA A′ = (Q \ {q}, Σ,QF , Γ

′), i.e., A without state q and L(A) = L(A′)
1 function EliminateState(A = (Q,Σ,QF , Γ), q):
2 incoming, looping, sources, Γ ′ = ∅, ∅, ∅, ∅
3 foreach E{q1, . . . , qn} → r ∈ Γ do
4 if trtype(E{q1, . . . , qn} → r, q) = incoming then
5 incoming = incoming ∪ {E{q1, . . . , qn} → r}
6 sources = sources ∪ {q1, . . . , qn}
7 else if trtype(E{q1, . . . , qn} → r, q) = looping then
8 looping = looping ∪ {E{q1, . . . , qn} → r}
9 sources = sources ∪ {q1, . . . , qn}

10 else if trtype(E{q1, . . . , qn} → r, q) = other then
11 Γ ′ = Γ ′ ∪ {E{q1, . . . , qn} → r} // not involved

12 foreach E{q1, . . . , qn} → r ∈ outgoing do
13 Enew = ·q (E, (·q (Alternate(looping)

∗,q
,Alternate(incoming)))) // Lemma 12

14 Γ ′ = Γ ′ ∪ {Enew{sources \ {q} ∪ {q1, . . . , qn}} → r}
15 return A′ = (Q \ {q}, Σ,QF , Γ

′)

Lemma 14. Applying Algorithm 2 to a GFTA A = (Q,Σ,QF , Γ) does not increase
the cardinality of Γ .

Proof. The claim follows directly from Algorithm 2. For every other and outgoing
transition one transition is added to Γ ′. For every incoming and looping transition
no new transitions are added. Therefore it always holds that |Γ ′| ≤ |Γ |. ⊓⊔

Lemma 15. Algorithm 2 runs in O(|Q|·|Γ |) time for input GFTA A = (Q,Σ,QF , Γ).

Proof. Both for loops obviously iterates over at most |Γ | elements and also require
some work for merging two sets of size at most Q. Therefore, the upper bound of
running time is O(|Q| · |Γ |). ⊓⊔

20 Proceedings of the Prague Stringology Conference 2020

3.3 State elimination algorithm

The previous subsection stated an algorithm for the elimination of a single non-final
state from a GFTA. This process can be repeated (in arbitrary order of states) until
we obtain a single-state automaton with such transitions that allow us to directly
apply Lemma 8. Algorithm 3 formalises this simple process.

Algorithm 3: State elimination of a GFTA
input : FTA A = (Q,Σ,QF , ∆)
output : RTE E such that L(A) = L(E)

1 function StateElimination(A = (Q,Σ,QF , ∆)):
2 GFTA A′ = (Q′, Σ′, {qf}, Γ) = ExtendFTA(A) // Algorithm 1

3 foreach q ∈ Q′ \ {qf} do
4 A′ = EliminateState(A′, q) // Algorithm 2

5 return Alternate({Ei | ∀Ei{q1, . . . , qn} → qf} ∈ Γ) // remaining transitions

Theorem 16. Algorithm 3 converts an FTA A = (Q,Σ,QF , ∆) to an RTE E such
that L(A) = L(E).

Proof. The algorithm creates a single-state GFTA. Therefore the claim immediately
follows from Lemmas 8, 12 and 13.

Theorem 17. The total running time of Algorithm 3 is O(|Q|2 · (|∆|+ |QF |)) time.

Proof. The running time consists of converting the original FTA to GFTA and |Q|
invocations of Algorithm 2. The largest value for |Γ | parameter of Algorithm 2 is in
the first iteration where |Γ | = |∆|+ |QF | (Lemma 6). After the elimination of a single
state, the number of transitions can only decrease or remain the same (Lemmas 12
and 14). Using time complexity of Algorithm 2 stated in Lemma 15, the total upper
bound on the complexity of Algorithm 3 is O(|Q| · |Q| · (|∆|+ |QF |)). ⊓⊔
Example 18. Let A be the GFTA from Figure 2. The trace run of the algorithm is
shown in Figure 8. The states of A are eliminated in lexicographical order, i.e., I, L.

4 Conclusion

We presented a simple full algorithm for the construction of a regular tree expression
(RTE) equivalent to given finite tree automaton (FTA) by eliminating states. Both
the idea and implementation are also very similar to the original State elimination for
finite (string) automata and regular expressions [8]. This construction was originally
hinted in [5] to prove the Kleene Theorem, i.e., the equivalence between languages of
RTEs and FTAs. We showed that the idea of eliminating states one by one from an
FTA forms an easy and intuitive algorithm that can be easily implemented.

The presented algorithm runs in O(|Q|2 · (|∆|+ |QF |)) time, i.e., it is proportional
to the number of states and the size of the transition function of the converted
automaton. Also, different order of elimination may create different RTE but all
of them denote the same language. However, this also holds for the original string
algorithm [8,11].

Future work may focus on the Algorithm 2. Better data structures may help in
improving the time complexity upper bound. Another interesting problem is finding

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 21

I L

F

int0 nil0

cons2

I L

L

(a) Generalized FTA with new final state

F

·L

L ·L

∗L

·I

cons2

I L

·I

∗I

∅

int0

nil0

(c) After elimination of
state L

L

F

nil0

·I

cons2

I L

·I

∗I

∅

int0

L

(b) After elimination of state I

Figure 8. Example run of the algorithm on the FTA from Figure 2.

the best elimination order. Different orderings give different resulting RTEs and some
of them are smaller than others. Similar experimental research was done in the string
elimination method [11].

You can find the C++ implementation of the presented algorithm in the latest
versions of Algorithms Library Toolkit project [1]. We also tested the implementation
by converting various random FTAs to RTEs using this algorithm and then back using
the algorithm from [12] adapted to FTAs.

References

1. Algorithms Library Toolkit: https://alt.fit.cvut.cz.
2. A. V. Aho and J. D. Ullman: The theory of parsing, translation, and compiling. 1: Parsing,

Prentice-Hall, 1972.
3. A. Belabbaci, H. Cherroun, L. Cleophas, and D. Ziadi: Tree pattern matching from

regular tree expressions. Kybernetika, 54(2) 2018, pp. 221–242.
4. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Department of

Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Apr. 2008.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi: Tree automata techniques and applications, 2007, Release October 2007.
6. F. Gécseg and M. Steinby: Tree Languages, vol. 3 of Handbook of Formal Languages,

Springer, 1997, pp. 1–68.
7. Y. Guellouma and H. Cherroun: From tree automata to rational tree expressions. Int. J.

Found. Comput. Sci., 29(6) 2018, pp. 1045–1062.
8. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to automata theory, lan-

guages, and computation (2. ed), Addison-Wesley, 2003.
9. D. Kuske and I. Meinecke: Construction of tree automata from regular expressions, in

Developments in Language Theory, 12th International Conference, DLT 2008, Kyoto, Japan,
September 16-19, 2008. Proceedings, 2008, pp. 491–503.

10. É. Laugerotte, N. O. Sebti, and D. Ziadi: From regular tree expression to position tree
automaton, in Language and Automata Theory and Applications - 7th International Conference,
LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceedings, 2013, pp. 395–406.

11. N. Moreira, D. Nabais, and R. Reis: State elimination ordering strategies: Some experi-
mental results, vol. 31, 08 2010, pp. 139–148.

22 Proceedings of the Prague Stringology Conference 2020

12. T. Pecka, J. Trávńıček, R. Polách, and J. Janoušek: Construction of a pushdown
automaton accepting a postfix notation of a tree language given by a regular tree expression.
2018, pp. 6:1–6:12.

13. R. Polách, J. Janoušek, and B. Melichar: Regular tree expressions and deterministic
pushdown automata, in Proceedings of the 7th Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science, 2011, pp. 70–77.

Enumerative Data Compression with

Non-Uniquely Decodable Codes⋆

M. Oğuzhan Külekci1, Yasin Öztürk1, Elif Altunok1, and Can Yılmaz Altıniğne2

1 Informatics Institute
Istanbul Technical University, Istanbul, Turkey
{kulekci,ozturky17,altunok}@itu.edu.tr

2 School of Computer and Communication Sciences
EPFL, Zurich, Switzerland
can.altinigne@epfl.ch

Abstract. Non-uniquely decodable codes can be defined as the codes that cannot be
uniquely decoded without additional disambiguation information. These are mainly
the class of non-prefix-free codes, where a codeword can be a prefix of other(s), and
thus, the codeword boundary information is essential for correct decoding. Although
the codeword bit stream consumes significantly less space when compared to prefix–
free codes, the additional disambiguation information makes it difficult to catch the
performance of prefix-free codes in total. Previous studies considered compression with
non-prefix-free codes by integrating rank/select dictionaries or wavelet trees to mark
the code-word boundaries. In this study we focus on another dimension with a block–
wise enumeration scheme that improves the compression ratios of the previous studies
significantly. Experiments conducted on a known corpus showed that the proposed
scheme successfully represents a source within its entropy, even performing better than
the Huffman and arithmetic coding in some cases. The non-uniquely decodable codes
also provides an intrinsic security feature due to lack of unique-decodability. We inves-
tigate this dimension as an opportunity to provide compressed data security without
(or with less) encryption, and discuss various possible practical advantages supported
by such codes.

1 Introduction

A coding scheme basically replaces the symbols of an input sequence with their cor-
responding codewords. Such a scheme can be referred as non-uniquely decodable if it
is not possible to uniquely decode the codewords back into the original data without
using a disambiguation information. We consider non-uniquely decodable non–prefix–
free (NPF) codes in this study as the most simple representative of that family. In
NPF coding, a codeword can be a prefix of other(s), and the ambiguities may arise
since the codeword boundaries cannot be determined without explicit specification of
the individual codeword lengths.

Due to the lack of that unique decodability feature, NPF codes has received very
limited attention [4,12,1] in the data compression area. Although the codewords be-
come smaller when compared to their prefix-free versions, they should be augmented
with the disambiguation information for proper decoding, and the additional space
consumption of that auxiliary data structures unfortunately eliminates the advan-
tage of short codewords. Thus, the challenge here is to devise an efficient way of
representing the codeword boundaries.

⋆ This study has been supported by the TÜBİTAK research fund under the grant number 117E865.

M. Oğuzhan Külekci, Yasin Öztürk, Elif Altunok, Can Yılmaz Altıniğne: Enumerative Data Compression with Non-Uniquely Decodable Codes, pp. 23–32.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

24 Proceedings of the Prague Stringology Conference 2020

The data structures to bring unique decodability for NPF codes was studied in
[12]. More recently, the compression performance of NPF codes, which are augmented
with wavelet trees [17] or rank/select dictionaries [18] to mark the code-word bound-
aries, had been compared with Huffman and arithmetic coding in [1]. It should be
noted that using succinct bit arrays to mark the code-word boundaries had also been
independently mentioned in some previous studies as well [5,6]. Although such NPF
coding schemes are performing a bit worse in terms of compression, they support
random-access on compressed data.

In this work, we study improving the compression performance of non-uniquely
decodable codes with the aim to close the gap with the prefix-free codes in terms
of compression ratio. We propose an enumerative coding [2,10] scheme to mark the
codeword boundaries as an alternative of using wavelet trees or a rank/select dic-
tionaries. Instead of representing the length of every codeword on the encoded bit
stream, the codeword boundaries are specified in blocks of d consecutive symbols for
a predetermined d value. Assume the codeword lengths of the symbols in a block are
shown with a d–dimensional vector. The sum of the d individual codeword lengths is
denoted by p, and the vector can be specified by its rank q among all d–dimensional
vectors having an inner sum of p according to an enumeration scheme. Thus, a tuple
〈p, q〉, can specify the codeword boundaries in a d symbol long block.

The method introduced in this study represents an input data by replacing every
symbol with a NPF codeword and then compressing the corresponding 〈p, q〉 tuples
efficiently. Experiments conducted on a known corpus 1 showed that the compression
ratios achieved with the proposed method reaches the entropy bounds and improve
the arithmetic and Huffman coding ratios. To the best of our knowledge, this is the
first study revealing that non-prefix-free codes can catch compression ratios quite
close to entropy of the data.

In recent years, compressive data processing, which can be defined as operating
directly on compressed data for some purpose, had been mentioned as a primary tool
to keep pace with ever growing size in big data applications [15]. For instance, many
database vendors are focusing on compressed databases [21] to cope with the massive
data management issues. On the other hand, it is becoming a daily practice to benefit
from cloud services both for archival and processing of data. Obviously, the primary
concern in using such a third-party remote service is the privacy and security of the
data, which can be achieved simply by encryption. Encrypted compressed data is both
space efficient and secure. However, the encryption level introduces several barriers
in processing the underlying compressed data. Alternative solutions that investigate
the privacy of the data without incorporating an encryption scheme have also been
considered [11,8,7,16]. Thus, new compression schemes respecting the data privacy
without damaging the operational capabilities on the compressed data may find sound
applications [14] in practice. For instance, similarity detection of documents without
revealing their contents [13] and privacy preserving storage with search capabilities
are some potential applications based on those non-uniquely decodable codes.

The outline of the paper is as follows. We start by defining the non-prefix-free
codes from a compression perspective, and then proceed by introducing our enumer-
ation scheme to represent the disambiguation information. The proposed compression
method as a whole is described next, which is then followed by the experimental re-
sults and discussions addressing the opportunities and future work.

1 Manzini’s corpus available at http://people.unipmn.it/manzini/lightweight/corpus/index.html.

M.O.Külekci et al.: Enumerative Data Compression with Non-Uniquely Decodable Codes 25

2 The Non-Prefix-Free Coding

T = NONPREFIXFREE

Σ = {E,R, F,N, I, O, P,X}
O = {3, 2, 2, 2, 1, 1, 1, 1}

Σ →W

Σ: E R F N I O P X

W : 0 1 00 01 10 11 000 001

T = N O N P R E F I X F R E E

T ′ = 01 11 01 000 1 0 00 10 001 00 1 0 0

L = 2 2 2 3 1 1 2 2 3 2 1 1 1

a) The T ′ = NPF (T) coding of a sample text T .

T′ = 01110100010001000100100

B = 10101010011101010010111

b) Code-word boundaries in T ′ = NPF (T) marked on a bit array B.

0← {2}, {1,3}→ 1
0001110010111

|t′i| = 2 0← {1}, {3}→ 1
1001000

|t′i| = 1 |t′i| = 3

c) Code-word lengths array L in T ′ represented with a wavelet tree.

Figure 1. The NPF coding and code-word boundary representation alternatives with bitmap and
wavelet tree.

T = t1t2 · · · tn is a sequence of symbols, where ti ∈ Σ = {ǫ1, ǫ2, . . . , ǫσ}. Each
symbol ǫi ∈ Σ requires ⌈log σ⌉ bits in fixed-length coding, and the total length of T
then becomes n · ⌈log σ⌉ bits. Without loss of generality, assume the symbols of the
alphabet Σ are ordered according to their number of occurrences on T such that ǫ1
is the most and ǫσ is the least frequent ones.

Let’s assume a code word set W = {w1, w2, . . . , wσ}, where each wi denotes the
minimal binary representation of (i + 1) as wi = MBR(i + 1). The minimal binary
representation of an integer i > 1 is the bit string MBR(i) = b1b2 · · · blog i such that

i = 2log i +
∑log i

a=1 ba · 2log i−a. For example, MBR(13) = 101, which is actually the
binary representation of 13 omitting the leftmost 1 bit.

This definition generates W = {0, 1, 00, 01, 10, 11, 000, 001, . . .}, where the code
words wi ∈ W has varying bit lengths, and W is not prefix free as some code words
appear as the prefixes of others. The Kraft’s inequality [9], which states the necessary
condition that a code-word set W is uniquely decodable if

∑σ
i=1 2

−|wi| ≤ 1, does not
hold on this W . For each code-word length ℓk ∈ {1, 2, 3, . . . , ⌊log(σ + 1)⌋}, there
are 2ℓk code words except the last code-word length by which less symbols might be
represented when σ 6= 2h−2 for some h. Thus, it is clear that 2−1+2−1+2−2+2−2+
2−2 + 2−2 + 2−3 + · · ·+ 2−(⌈log(σ+2)⌉−)1 ≥ 1 when σ > 2.

The non-prefix-free coding of T is the transformation obtained by replacing each
ti = ǫj with t

′
i = wj according to the Σ → W mapping for all 1 ≤ i ≤ n as shown by

NPF (T) = T ′ = t′1t
′
2 · · · t′n, t′i ∈ W . In T ′, the most significant two symbols from Σ

are shown by 1 bit, and the following four symbols are denoted by 2 bits, and so on.

26 Proceedings of the Prague Stringology Conference 2020

The total number of bits in the non-prefix-free coded sequence T is |NPF (T)| =
1 · (o1 + o2) + 2 · (o3 + · · ·+ o6) + · · ·+ (⌈log(σ + 2)⌉ − 1) · (o2⌈log(σ+2)⌉−1−1 + · · ·+ oσ),
where oi is the number of appearances of ǫi in T .

The code word boundaries on T ′ are not self-delimiting and cannot be determined
without additional information. Previous approaches [12,1] used wavelet trees and
rank/select dictionaries to mark the boundaries are shown in Figure 1. Although
these compressed data structures are very useful to support random access on the
compressed sequence, it had been observed in [1] that the compression ratios achieved
by these methods are a bit worse than the Huffman and arithmetic coding. In this
study, we incorporate an enumerative coding to specify the codeword boundaries.

Assume a list of items are ordered according to some definition, and it is possible
to reconstruct any of the items from its rank in the list. In such a case, transmitting
the index instead of the original data makes sense, and provides compression once
representing the rank takes less space than the original data. That is actually the
main idea behind enumerative coding [3]. We apply this scheme to represent the
code-word boundaries in a sequence of NPF codewords. Empirical observations, as
can be followed in the experimental results section, revealed that the usage of the
proposed enumerative scheme can compress data down to its entropy.

3 Enumerative Coding to Mark Codeword Boundaries

One simple thing that can be achieved to mark the codeword boundaries is to store
the codeword lengths of individual symbols on the input text T . These lengths vary
from minimum codeword length 1 to a maximum of ℓmax = ⌊log(σ + 1)⌋ bits. The
sequence of n codeword length information can then be compressed via a Huffman or
arithmetic codec. However, our initial experiments showed that this coding does not
provide a satisfactory compression ratio, where the total compression ratio cannot
reach the entropy of the source sequence. With the motivation of marking the bound-
aries of multiple symbols instead of single individuals may improve the compression
performance, we decided to test whether such a block-wise approach would help.

A block is defined as consecutive d symbols, and thus, there are r = ⌈n
d
⌉ blocks on

T . When n is not divisible by d, we pad the sequence with the most frequent symbol.
We maintain a list of r tuples as R = {〈p1, q1〉, 〈p2, q2〉, . . . 〈pr, qr〉} such that

– pi = |t′(i−1)d+1| + |t′(i−1)d+2| + · · · + |t′i·d| for 1 ≤ i ≤ r, where |t′j| denotes the bit
length of the codeword corresponding to symbol tj, and

– qi represents the rank of the vector 〈|t′(i−1)d+1|, |t′(i−1)d+2|, . . . , |t′i·d|〉 among all pos-
sible d-dimensional vectors whose elements sum up to pi.

For example on the example shown in Figure 1, if we assume a block size of d = 3,
then p1 = 2+2+2 = 6 since the codeword lengths of the first three symbols (NON) are
all 2 bits. All possible 3-dimensional vectors whose elements are in range [1 . . . 3] and
sum up to 6 can be listed in lexicographic order as 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 2, 2〉,
〈2, 3, 1〉, 〈3, 1, 2〉, and 〈3, 2, 1〉. We observe that 〈2, 2, 2〉 is the fourth item in this list,
and thus q1 = 4. Similarly the lengths of the next block 〈3, 1, 1〉 can be shown by
〈5, 6〉 since 3+ 1+ 1 = 5 and 〈3, 1, 1〉 is the sixth item in the lexicographically sorted
possibilities list 〈1, 1, 3〉, 〈1, 2, 2〉, 〈1, 3, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉, and 〈3, 1, 1〉.

In such a block-wise approach we need to devise an enumeration strategy to
convert an input vector to an index and vice versa. We explain the building blocks
in the following subsections.

M.O.Külekci et al.: Enumerative Data Compression with Non-Uniquely Decodable Codes 27

3.1 Number of Distinct Vectors

Let ψ(k, d, v) return the number of distinct d dimensional vectors, in which each
dimension can take values from 1 to k, and they sum up to v in total. The total
sum v should satisfy d ≤ v ≤ (k · d) since each dimension is at least 1 and at
most k. If v = d or d = 1, then there can be only one possible vector in which all
dimensions are set to 1 in the former case and to k in the later case as there is only
one dimension. The ψ(k, d, v) function can be computed with a recursion such that

ψ(k, d, v) =
∑β

i=α ψ(k, d− 1, v− i). This is based on setting one, say first, dimension
to one of the possible value i and then counting the remaining (d − 1) dimensional
vectors whose elements sum up to (v− i). The pseudo code of this calculation is given
in Algorithm 1.

3.2 Vector to Index

Assume we are given a d dimensional vector as 〈v1, v2, . . . , vd〉, where each 1 ≤ vi ≤ k
for a known k. We would like to find the lexicographical rank of this vector among all
possible d–dimensional vectors with an inner sum of v = v1 + v2 + · · ·+ vd. First we
can count how many of the d-dimensional vectors have a smaller number than v1 in
their first dimension. Next step is to count the number of vectors that have the same
v1 in the first dimension, but less than v2 in the second position. We repeat the same
procedure on remaining dimensions, and the sum of the computed vectors return the
rank of our vector. This can be achieved via a recursion, which is shown in Algorithm
2, that uses the ψ() function described above. As an example, for d = 3, and k = 3,
assume we want to find the rank of 2, 2, 2. First we count the number of vectors that
has a 1 in its first position with an inner sum of 6 via the ψ(k = 3, d = 2, v = 5)
function, which returns us 2. Next, we count the vectors that has a 2 in first position
and a value less than 2, which can take value only 1, in its second position. This
can also be computed via ψ(k = 3, d = 1, v = 3) function, which returns 1 since
we have only one dimension to set. Now we know that there are 3 vectors that are
enumerated before our input on the possibilities list. We do not need to search for
the last dimension since it is not free and its value is already determined.

3.3 Index to Vector

In this case we are given a number I representing the rank of a d dimensional vector
in a set of d dimensional vectors with a known inner sum v, and we aim to generate
this vector. We start by setting the first dimension to the minimum value 1, and count
how many possibilities exits by the ψ(k, d−1, s−1). If this number is less than I, we
decrease I by this value, set 2 for the first position and keep counting the possibilities
in the same way until detecting the first value at which I is no longer larger. Thus, we
have found the first dimension of the vector, we repeat the same procedure to detect
the other dimensions. The pseudo code of this calculation is given at Algorithm 3.

28 Proceedings of the Prague Stringology Conference 2020

Algorithm 1: ψ(k, d, v)

Input:
k: Maximum value of a
dimension.
d: The number of
dimensions.
v: The inner sum of the
vectors.
Output:
Number of distinct d
dimensional
vectors with an inner sum of
v .

1 if (v > k · d)||(v < d) then
return 0 ;

2 if (d = 1)||(v = d) then
return 1 ;

3 if (v = d+ 1) then return
d ;

4 if (1 < v + k − k · d) then
5 α = v + k − k · d
6 else
7 α = 1
8 if (k < v − d+ 1) then
9 β = k

10 else
11 β = v − d+ 1
12 sum = 0;
13 for (i = α; i ≤ β; i+ = 1) do
14 sum+ =

ψ(k, d− 1, v − i);
15 end
16 return sum;

Algorithm 2:VectorToIndex(〈v1, v2, . . . , vd〉, d, k)

Input: k: Maximum value of a dimension. d: The number of
dimensions. v1 · · · vd: Input vector.

Output: Rank of the input vector among lexicographically sorted
vectors with the same inner sum of

∑
i vi .

1 v = v1 + v2 + · · ·+ vd ;
2 if (d = 1)||(v = d) then return 0 ;
3 index = 0;
4 for (i = 1; i < v1; i+ = 1) do
5 index+ = ψ(k, d− 1, v − i);
6 end
7 index+ = VectorToIndex(〈v2, v3, . . . , vd〉, d− 1, k);
8 return index;

Algorithm 3: IndexToV ector(k, d, v, index)
Input: k: Maximum value of a dimension d: The number of

dimensions. v: The inner sum of the vectors. index: The
rank of the vector among all possible vectors.

Output: The 〈v1, v2, . . . , vd〉 vector with v1 + v2 + · · ·+ vd = v,
and rank index among all possible vectors with inner
sum v.

1 for (i = 1; i < d; i+ = 1) do
2 vi = 1;
3 while (z = ψ(k, d− i, v − vi) < index) do
4 index− = z;
5 vi = vi + 1;

6 end
7 v = v − vi;
8 end
9 vd = v;

4 The Complete Method

The pseudo-codes of the proposed encoding and decoding with the Non-uniquely
decodable codes are given in Algorithms 4 and 5.

In the encoding phase, the NPF codeword stream B is simply the concatenation of
the NPF codewords. At each d symbols long block, the total length of the codewords
is the corresponding pi value, which can take values from d to k · d. This pi value is
encoded to the Pstream by an adaptive compressor.

The index corresponding to the vector of the latest d codeword lengths is computed
with the V ectorToIndex function as described in the enumeration section by using
the pi value as the inner sum. This qi is then encoded into the Qstream with pi
assumed to be the context in this compression. Notice that according to the pi value,
the number of possible vectors change, where there appears relatively small candidates
for small pi. When all the codewords in the block are 1 bit long, which means pi = d,
then there is no need to encode qi since there is only one possibility. Similarly, pi = k·d
implies all codeword are maximum length k, and again nothing is required to add
into the compressed Qstream.

The decoding phase is performed accordingly, where first the pi value is extracted
from Pstream. If the extracted pi is equal to d or k · d, this implies nothing has been
added to the Qstream in the coding phase since the target vectors are determined
with single options. Otherwise, by using the pi value as the context, the corresponding
qi is extracted from Qstream followed by the IndexToV ector operation.

M.O.Külekci et al.: Enumerative Data Compression with Non-Uniquely Decodable Codes 29

Algorithm 4:
Encode(T, d)

Input: T = t1t2 · · · tn is the input
data, where
ti ∈ Σ = {ǫ1, ǫ2, . . . , ǫσ}. d is
the chosen block length.

Output: The codeword bit-stream and
the compressed 〈pi, qi〉 list.

1 r = ⌈n
d
⌉ ;

2 B = ∅ ;
3 Generate the NPF codeword set

W = {w1, w2, . . . , wσ};
4 k = ⌊log(σ + 1)⌋;
5 for (i = 0; i < r; i+ = 1) do
6 pi = 0;
7 for (j = 0; j < d; j+ = 1) do
8 ǫh = T [i · d+ j + 1];
9 B ← Bwh;

10 vec[j + 1] = |wh|;
11 pi+ = vec[j + 1];

12 end
13 Encode pi into Pstream with an

adaptive coder;
14 if (pi 6= d)&&(pi 6= k · d) then
15 qi =

V ectorToIndex(vec[], d, k) ;
16 Encode qi into Qstream with

an adaptive coder by using
the sum value as the
context;

17 end

Algorithm 5:
Decode(B,Pstream,Qstream, d, n,W)

Input: B is the NPF codeword bit stream.
Pstream is the compressed pi values.
Qstream is the compressed qi values.
W = {w1, w2, . . . , wσ} is the NPF
codeword set.

Output: The original data sequence
T = t1t2 · · · tn

1 r = ⌈n
d
⌉ ;

2 k = ⌊log(σ + 1)⌋;
3 for (i = 0; i < r; i+ = 1) do
4 Decode pi from the Pstream;
5 if pi = d then
6 〈v1, v2, . . . , vd〉 = 〈1, 1, . . . , 1〉;
7 else if pi = k · d then
8 〈v1, v2, . . . , vd〉 = 〈k, k, . . . , k〉;
9 else

10 Decode qi from the Qstream by using
pi as the context ;

11 〈v1, v2, . . . vd〉 ←
IndexToV ector(k, d, pi, qi) ;

12 end
13 for (j = 1; j ≤ d; j+ = 1) do
14 wh ← Read next vj bits from B;
15 ti·d+j = ǫh;

16 end

17 end

5 Implementation and Experimental Results

Being directly proportional to the imbalance of the symbol frequencies in the source,
the codewords with short lengths are expected to appear more, and thus, the d–
dimensional vectors are in general filled with small numbers with small pi values as a
consequence. Figure 2 shows the distribution of block lengths and their corresponding
number of distinct vectors by assuming d = 6 and k = 7. On the same figure also
the observed frequencies of possible block bit lengths on a 100 megabyte English text
are depicted, where the most frequent bit block length seems 15 here. We present the
distribution of qi values in the context of p = 15 on Figure 3 to give an idea about
the imbalance that increases the success of representing codeword boundaries over
the non–prefix–free codeword stream.

We have implemented the proposed scheme and compared compression ratio
against both static and adaptive versions of the Huffman and arithmetic codes (AC)
on the test corpus. While compressing the Pstream and Qstream, we have used the
adaptive arithmetic encoder of [19], and tested our scheme with different block sizes
of d = 2, d = 4, and d = 6. Table 1 shows the compression performance of each
scheme on various files in terms of bits spent per each symbol in total.

The experiments showed that for d = 6, the compression ratio of the Non-uniquely
decodable codes generally improves the others. However, AC seems achieving better
ratios on three files. On howto file the difference in between the AC and Non-uniquely
decodable codes are very small as being in thousands decimal, which is not found to
be meaningful. On howto.bwt, which is the same howto file after Burrows-Wheeler
transform, the difference is sharper. This is mainly due to the fact that the runs in the

30 Proceedings of the Prague Stringology Conference 2020

a) b)

Figure 2. Assuming a block size of d = 6 symbols, and a maximum codeword length k = 7,
a) presents possible bit block lengths and corresponding number of distinct vectors per each, b)
presents the observed bit block lengths and their number of occurrences on 100MB of English text
(etext file from the Manzini’s corpus).

Figure 3. The distribution are 1875 distinct 6–dimensional vectors, where each dimension can take
values from 1 to k = 7 with an inner sum of 15 on 100MB of English text according to our
enumeration scheme.

BWT string may introduce an advantage for the adaptive codes. Notice that both files
are around 40 megabytes and shorter than the other files except the chr22.dna file,
on which our method performs clearly worse. In the current experimental observations
it is thought that the performance of the proposed coding becomes better on large
files with larger alphabets.

It is possible to increase the block size, particularly on larger volumes. However,
when d becomes larger current implementation suffers from the slow down due to
the recursive function implementations to find the enumerative index of a vector,
and vice versa. Considering that our compression scheme is composed of three main
components as the base non-prefix-free code stream, and over that the Pstream
and Qstream, we would like to monitor their respective space occupation on the
final compressed size. Table 2 includes the diffraction of these three components for
different d values tested. There appears a trade off such that the Pstream gets better
compressed with increased block size, where the reverse works for Qstream.

6 Discussions and Conclusions

This study has shown that non-prefix-free codes with an efficient representation of
the codeword boundaries can reach the entropy bounds in compression as is the case

M.O.Külekci et al.: Enumerative Data Compression with Non-Uniquely Decodable Codes 31

Huffman Arithmetic NPF Non-uniquely decodable
File Size Symbols Entropy Stat. Adapt. Stat. Adapt. RS WT d=2 d=4 d=6
sprot34.dat 109MB 66 (k=6) 4.762 4.797 4.785 4.764 4.749 5.434 5.178 4.869 4.790 4.698
chr22.dna 34MB 5 (k=2) 2.137 2.263 2.195 2.137 1.960 2.957 2,616 2.468 2.466 2.462
etext99 105MB 146 (k=7) 4.596 4.645 4.595 4.604 4.558 5.140 4,553 4.632 4.570 4.553
howto 39MB 197 (k=7) 4.834 4.891 4.779 4.845 4.731 5.300 4.215 4.856 4.759 4.736
howto.bwt 39MB 198 (k=7) 4.834 4.891 3.650 4.845 3.471 5.300 4.215 4.143 3.950 3.949
jdk13c 69MB 113 (k=6) 5.531 5.563 5.486 5.535 5.450 6.404 5.658 5.577 5.460 5.275
rctail96 114MB 93 (k=6) 5.154 5.187 5.172 5.156 5.139 5.766 5.408 5.164 5.020 4.818
rfc 116MB 120 (k=6) 4.623 4.656 4.573 4.626 4.529 5.094 4.853 4.685 4.555 4.463
w3c2 104MB 256 (k=8) 5.954 5.984 5.700 5.960 5.659 6.648 5.820 5.826 5.686 5.617

Table 1. Compression ratio comparison between the proposed scheme, NPF rank/select and wavelet
tree [1], arithmetic, and Huffman coding in terms of bits/symbol.

Codeword Pstream Qstream
File Stream d=2 d=4 d=6 d=2 d=4 d=6

sprot34.dat 2.686 1.476 0.909 0.659 0.707 1.196 1.353
chr22.dna 1.494 0.718 0.504 0.399 0.256 0.468 0.568
etext99 2.516 1.316 0.789 0.580 0.800 1.265 1.457
howto 2.618 1.451 0.885 0.655 0.787 1.256 1.464

howto.bwt 2.618 1.183 0.781 0.604 0.342 0.552 0.726
jdk13c 3.263 1.449 0.871 0.642 0.866 1.327 1.370
rctail96 2.878 1.462 0.893 0.659 0.824 1.250 1.281

rfc 2.516 1.472 0.911 0.677 0.697 1.128 1.271
w3c2 3.436 1.548 0.949 0.706 0.841 1.301 1.475

Table 2. The diffraction of the codeword stream, Pstream, and Qstream on the number of bits used
per symbol for different d values.

for prefix–free codes. It is not possible to decode the codeword stream without the
codeword boundary information encoded in Pstream and Qstream. This property
may make sense to achieve a level of data security with less encryption, particularly,
on high-entropy data [14]. There is no need to encrypt the codeword stream when one
would like to secure the data, which can significantly reduce the encryption load. More
than that, it is still possible to make some operations such as search and similarity
computations on the codeword stream. Yet another opportunity might appear in the
distributed storage of the data, where keeping the NPF codewords and codeword
boundary informations in different sites can help in providing the privacy. Same idea
may also apply in content delivery networks.

Besides the compression ratio, where this study mainly concentrated, the mem-
ory usage and the speed of compression are surely important parameters in practice.
Current implementation is slow due to two main facts as NPF codewords are not
byte–aligned, and the vector to/from index enumerations are consuming additional
time. The former problem is common to all variable length codes, which can be over-
come by benefiting from the Huffman coding tables idea [20]. The enumeration time
consumption can also be decreased by using tables which include the precomputed
vector to/from index calculations by sacrificing a bit more memory. The algorithm
engineering of the proposed scheme along with the possible applications in data secu-
rity area are possible venues of research as a next step. Surely, better data structures
to encode the codeword boundaries is open for improvement.

32 Proceedings of the Prague Stringology Conference 2020

References

1. B. Adaş, E. Bayraktar, and M. O. Külekci: Huffman codes versus augmented non-prefix-
free codes, in Experimental Algorithms, Springer, 2015, pp. 315–326.

2. J. Cleary and I. Witten: A comparison of enumerative and adaptive codes. IEEE Transac-
tions on Information Theory, 30(2) 1984, pp. 306–315.

3. T. Cover: Enumerative source encoding. IEEE Transactions on Information Theory, 19(1)
1973, pp. 73–77.

4. M. Dalai and R. Leonardi: Non prefix-free codes for constrained sequences, in Information
Theory, 2005. ISIT 2005. Proceedings. International Symposium on, IEEE, 2005, pp. 1534–1538.

5. P. Ferragina and R. Venturini: A simple storage scheme for strings achieving entropy
bounds, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2007, pp. 690–696.

6. K. Fredriksson and F. Nikitin: Simple compression code supporting random access and fast
string matching, in Experimental Algorithms, Springer, 2007, pp. 203–216.

7. D. W. Gillman, M. Mohtashemi, and R. L. Rivest: On breaking a huffman code. IEEE
Transactions on Information theory, 42(3) 1996, pp. 972–976.

8. J. Kelley and R. Tamassia: Secure compression: Theory\ & practice. IACR Cryptology
ePrint Archive, 2014 2014, p. 113.

9. L. Kraft: A device for quantizing, grouping, and coding amplitude-modulated pulses, Master’s
thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering, 1946.

10. M. O. Kulekci: Enumeration of sequences with large alphabets. arXiv preprint arXiv:1211.2926,
2012.

11. M. O. Külekci: On scrambling the burrows–wheeler transform to provide privacy in lossless
compression. Computers & Security, 31(1) 2012, pp. 26–32.

12. M. O. Külekci: Uniquely decodable and directly accessible non-prefix-free codes via wavelet
trees, in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, IEEE,
2013, pp. 1969–1973.

13. M. O. Külekci, I. Habib, and A. Aghabaiglou: Privacy–preserving text similarity via non-
prefix-free codes, in International Conference on Similarity Search and Applications, Springer,
2019, pp. 94–102.

14. M. O. Külekci and Y. Öztürk: Applications of non-uniquely decodable codes to privacy-
preserving high-entropy data representation. Algorithms, 12(4) 2019, p. 78.

15. P.-R. Loh, M. Baym, and B. Berger: Compressive genomics. Nature biotechnology, 30(7)
2012, pp. 627–630.

16. R. B. Muralidhar: Substitution cipher with non-prefix-free codes, Master’s thesis, San Jose
State University, 2011.

17. G. Navarro: Wavelet trees for all. Journal of Discrete Algorithms, 25 2014, pp. 2–20.
18. D. Okanohara and K. Sadakane: Practical entropy-compressed rank/select dictionary, in

Proceedings of the Meeting on Algorithm Engineering & Expermiments, Society for Industrial
and Applied Mathematics, 2007, pp. 60–70.

19. A. Said: Introduction to arithmetic coding-theory and practice, Tech. Rep. HPL–2004–76,
Hewlett Packard Laboratories, Palo Alto, CA, April 2004.

20. A. Siemiński: Fast decoding of the huffman codes. Information Processing Letters, 26(5) 1988,
pp. 237–241.

21. T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte: The implementation and
performance of compressed databases. ACM Sigmod Record, 29(3) 2000, pp. 55–67.

Fast Exact Pattern Matching in a Bitstream and

256-ary Strings

Igor O. Zavadskyi

Taras Shevchenko National University of Kyiv
Kyiv, Ukraine

2d Glushkova ave.
ihorza@gmail.com

Abstract. A few known techniques of exact pattern matching, such as 2-byte read,
fast loop, and sliding search windows, are improved and applied to two related sub-
problems. At first, we present a new family of pattern matching algorithms, performing
efficiently over 256-ary alphabets. Taking them as an underlying solution, we build the
algorithms for searching a string in a bitstream. It turns out that in both cases our
algorithms outperform all the other tested methods for all tested pattern lengths.

1 Introduction

Finding all occurrences of a given substring in a larger body of text is one of the
most fundamental problems in computer science. In this presentation we consider an
important sub-problem consisting in searching a bitstream pattern in a bitstream text.
It is of interest, since a vast variety of data is presented in a binary form, e.g. images,
videos, archived data etc. The recent invention of data compression codes, which
perform close to entropy and at the same time support data search in a compressed
file [1], also actualizes the demand for bitstream pattern matching.

The first non-trivial bitstream pattern matching algorithm was presented in 2007
by S.T. Klein and M.K. Ben-Nissan [16]. Since then, S. Faro and T. Lecroq devel-
oped a number of improved bitstream pattern matching techniques implemented in
the binary-hash and binary-skip algorithms (both presented in [8]) and the most ad-
vanced Binary-Faro-Lecroq (BFL) algorithm [7]. Also, the adaptation of the FED
algorithm (Fast matching with Encoded DNA sequences) [15] to binary search has to
be mentioned, although it is somewhat inferior to BFL.

The general idea of any non-trivial bitstream pattern matching method consists in
avoiding time consuming bit-level operations as far as possible. A search is performed
on the byte level, and only when a candidate substring is found, the bit-level procedure
checks if a true pattern occurrence takes place. Therefore, any bitstream pattern
matching technique is based on the underlying algorithm of pattern matching on a
256-ary alphabet (assuming a byte is 8 bits). For example, the algorithm [16] is based
on Boyer-Moore search method, while the BFL algorithm combines a multi-pattern
version of the BNDM algorithm [17] with the simplified shift strategy of Commentz-
Walter algorithm [3].

Of course, an underlying byte-level algorithm has to be implemented in a multi-
pattern version, since it searches not a single pattern but 8 patterns corresponding
to 8 possible alignments of a binary substring towards the byte boundaries. However,
the performance of a multi-pattern version of an algorithm strongly depends on the
performance of its single-pattern version, and thereby the development of pattern

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings, pp. 33–47.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

34 Proceedings of the Prague Stringology Conference 2020

matching algorithms that efficiently perform on 256-ary alphabets is a key for solving
the bitstream pattern-matching problem.

According to [9] and our own experiments, the following algorithms are of the most
interest when the alphabet consists of 256 characters, in different testing environments
and for different pattern lengths: comparison-based Fast Search (FS, [2]), Franek-
Jennings-Smyth [10] and variations of algorithms exploiting the bit-parallelism idea:
Simplified BNDM with q-grams (SBNDMq, [4]), hybrid of SBNDM and Boyer-Moore-
Horspool algorithms (SBNDM-BMH, [11]), Forward SBNDM (FSBNDM, [6]), SD-
NDM with a “greedy” fast loop (GSBNDM, [19]) and BNDM for long patterns (LB-
NDM, [18]).

As shown in [19], the performance of BNDM-type algorithms can be improved by
applying the technique of 2-byte read, which is of special interest when |Σ| = 256.
However, the performance of 2-byte reads suffers from the expansion of shift tables.
As experiments show, the running time of an algorithm increases significantly when
its shift tables together with some other preprocessed data cease to fit into processor
L1 cache, which is typically 16 − 64 KB. For a 256-ary alphabet, the size of a shift
table with 2-byte indices is 64 KB, which exceeds the “L1 cache limit” in most cases.

Two other techniques, which can significantly improve the algorithm performance
for different alphabets and pattern lengths, are based on using multiple sliding search
windows [13] and skipping the occurrence check with a help of so called fast loop [14].

For a 256-ary alphabet, featuring a simple comparison-based method with these
techniques can outperform the algorithms based on bit-parallelism. Indeed, the exper-
imental results in Tables 1−2 show that the comparison-based Fast Search algorithm
with 6 or 8 sliding windows performs faster than all other known methods (except
for those hereinafter developed) for almost all tested pattern lengths.

In this presentation we improve all three aforementioned techniques. At first,
we present a “compromise” solution between 2-byte and 1-byte reads, forming the
index of a search table from the values of more than 1 but less than 2 sequential
bytes of a text, typically 13-15 bits. We call this method a 1.5-byte read. It allows
us to increase the average length of a shift comparing to “1-byte read” algorithms,
while spending rather less memory than the 2-byte read approach requires. Similar
ideas were discussed at Stringmasters [21], although not published yet. Then we offer
a few tricks, which improve the performance of the fast loop and sliding windows
techniques. As a result, we construct a family of comparison-based algorithms, which
outperform all other known solutions in discovering patterns of different lengths in
texts with uniformly distributed characters from a byte-based 256-ary alphabet. These
algorithms are called Z-Byte and discussed in Section 2. A family of bitstream search
algorithms, based upon Z-Byte, is constructed in Section 3. We call these algorithms
Z-Bit. Finally, the results of algorithm benchmarking are presented in Section 4.

Let us note that an attempt to combine multiple-character reads and multiple
search windows has been done in our previous work [23]. However, the methods
presented hereinafter are simpler, and when applying to 256-ary alphabet, faster.

Throughout the entire presentation we use the following notations:

– Σ - alphabet of an input text and a pattern

– |Σ| - size of the alphabet

– b - number of bits in a byte, by default b = 8

– k - number of significant bits in a 1.5-byte read, typically b < k < 2b

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 35

2 Pattern matching over an alphabet of 256 characters

In this section we assume that each character of a text occupies one byte of memory,
and all bits of this byte are significant, i.e. |Σ| = 256. By T [0 .. n−1] and P [0 ..m−1]
we denote a text and a pattern respectively.

2.1 1.5-byte read

At first, let us discuss the essence of the “1-byte read”, “2-byte read” approaches and
their “1.5-byte read” modification. Let Z be a one-dimensional shift table for some
pattern matching algorithm and i is the index of some character of a text. The 1-byte
read approach assumes the value Z[T [i]] to be the shift length, as in the Boyer-Moore-
Horspool algorithm (BMH, [12]), or other data the shift depends on. BMH method
is shown schematically in Alg. 1.

Algorithm 1: Boyer-Moore-Horspool algorithm

1 foreach c ∈ Σ do Z[c]← m; // Preprocessing

2 for i← 0 to m− 2 do Z[P [i]]← m− 1− i;
3 pos← 0; // Search

4 while pos ≤ n−m do
5 check the occurrence at pos;
6 pos← pos+ Z[T [pos+m− 1]];

Line 6 corresponds to a “bad character” shift, which maximal possible value is m.
When |Σ| = 256 and the pattern is short, the probability of a maximal BMH shift
is high enough. E.g. it equals (255/256)m for random text and random pattern. But
when the pattern is longer, the “1-byte” bad character shift becomes not sufficient.
For example, if m = 512, (255/256)m ≈ 0.135.

The situation can be amended by using 2 sequential bytes of a text as a basis
of a bad-character shift. E.g. for m = 512, the probability of a maximal shift of a
random pattern over a random text becomes greater than 0.99. The computationally
efficient implementation of this approach is discussed in [19]: the expression Z[T [i]]
is transformed into Z[word(T [i], T [i + 1])], where the function word converts two
sequential bytes of memory into a two-byte word in a processor register. In C pro-
gramming language this function can be implemented by the type-casting mechanism,
i.e. word(T [i], T [i+ 1]) equals to *(unsigned short*)(T+i). In fact, the time com-
plexity of calculating the Z[T [i]] and Z[word(T [i], T [i+1])] values is the same, while
the memory complexity is significantly increased from 256 bytes needed for 1-byte
reads to 64 KB occupying by a shift table with 2-byte indices.

However, for reasonable pattern lengths, e.g. less than 1000 bytes, the memory
complexity can be significantly reduced with a little impact on the shift length. This
can be achieved by using not all bits of a 2-byte word in the index of a shift table.
Some of bits can be suppressed by applying the mask: Z[word(T [i], T [i+1])&mask].
For example, if m = 512 and the mask contains 14 ‘one’ bits, the probability of a
maximal shift for random text and random pattern will be ((214 − 1)/214)511 ≈ 0.97,
which is only 0.022 less than that one for 2-byte read. At the same time, the shift
table will contain 214 vs. 216 elements, i.e. 4 times less. Of course, one extra operation
&mask has to be performed in the search loop, but in most cases this expense will
be more than covered by the fact that the shift table fits into L1 cache.

36 Proceedings of the Prague Stringology Conference 2020

2.2 Double fast loop

The other disadvantage of Algorithm 1 consists in the necessity to check the possible
occurrence of a pattern at each iteration of the search loop. However, the occurrence
check can be avoided by applying the so called “fast loop”, which was first introduced
in [14]. This technique is implemented in a number of algorithms and is particularly
effective when more than one character of a text is processed at each iteration, e.g. in
the EBOM [6] and SBNDM [11] algorithms. In this case the probability of a maximal
shift is high enough, and this implies that the exact length of a shift may not be
stored in a shift table. Instead, we only determine whether a shift of some constant
length, e.g. m or m − 1, is safe, i.e. cannot cause missing the pattern occurrence. If
it is, we make this constant length shift, otherwise the occurrence has to be checked,
and the value of a next shift is calculated by some other algorithm. This approach
allows us to avoid loading the shift length value from memory to a computer register,
which is quite consuming operation.

Featuring the BMH method with the fast loop of aforementioned type and 1.5-
byte reads, we get the Algorithm 2. The shift table Z contains not the shift lengths,
but some “flag” information. That is, if Z[T [i]] = 1, the shift of the search window
m−1 characters right is safe. The fast loop is implemented in lines 7 and 8. Although
two bytes of a text are read in line 7, only k < 2b bits of each two-byte word are
used to form the index of the shift table Z. After exiting the fast loop, we check the
occurrence and get the shift value from the Quick Search shift table (QS, [20]). To
exit the fast and main loops at the end of a text correctly, it should be appended by
a stop-pattern.

Algorithm 2: Search algorithm with the fast loop and 1.5-byte reads

1 mask ← 2k − 1; // Preprocessing

2 foreach i ∈ [0; 2k) do Z[i]← 1;
3 for i← 0 to m− 2 do
4 Z[word(P [i], P [i+ 1])]← 0
5 pos← m− 2; // Search

6 while pos < n do
7 while Z[word(T [pos], T [pos+ 1])&mask] 6= 0 do
8 pos← pos+m− 1;
9 check the occurrence at pos−m+ 2;

10 pos← pos+QS[pos+ 2];

We tested the Alg. 2 performance for |Σ| = 256 and different pattern lengths.
The results show that this algorithm often outperform other known Boyer-Moore-
based algorithms, such as FS or FJS, although the latter ones implement more so-
phisticated techniques to process the situation when the fast loop is terminated.
However, taking into account that the 1.5-byte read implies high probability of a
maximal shift, we developed other simple and efficient method to process the exit
from the fast loop. The main idea is based upon the assumption that the inequality
Z[word(T [i − 1], T [i])&mask] 6= 0 holds with the same probability as the inequality
Z[word(T [i], T [i + 1])]&mask] 6= 0. It implies that even if the fast loop condition
fails, we can make one step back and, very likely, continue the fast loop from that
position. This “double fast loop” is shown in Alg. 3, which preprocessing phase is the
same as in Alg. 2. The double fast loop is especially efficient for long patterns, when
the probability of the fast loop termination is higher, while the relative impact of the

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 37

left shift in line 7 is less. Note that this loop always starts from adding m− 1 to the
current position pos in line 4, and to compensate this addition, we subtract m − 1
from the QS shift length in line 10 and initialize pos with the value −1 in line 1.

Algorithm 3: Search phase of the algorithm with the double fast loop

1 pos← −1;
2 while pos < n do
3 repeat
4 pos← pos+m− 1;
5 while Z[word(T [pos], T [pos+ 1])&mask] 6= 0 do
6 pos← pos+m− 1;
7 pos← pos− 1;
8 until Z[word(T [pos], T [pos+ 1])&mask] 6= 0 ;
9 check the occurrence at pos−m+ 3;

10 pos← pos+QS[pos+ 3]−m+ 2;

We denote the Alg. 3 by Zk-Byte, where k is the number of ‘one’ bits in the mask
(8 < k < 16). If k = 16, lines 5 and 8 contain full 2-byte reads and variable mask is
not needed, while in algorithm Z8 the reference to the shift table looks as Z[T [pos]]
and the variable pos can be incremented by m in lines 4 and 6. In the next subsection
we discuss how to shift the search window m characters right for any value of k.

2.3 Longer shifts

Let T [pos] and T [pos+1] be the two last characters of a search window. If the condition
Z[word(T [pos], T [pos+1])&mask] 6= 0 in lines 5 and 8 of Alg. 3 is satisfied, these two
bytes of a text cannot belong to the pattern together. Still, the character T [pos+ 1]
can coincide with P [0] and that’s why the search window can be shifted safely by
m − 1 characters at most, not by m. If the pattern is short, this decrement of a
maximal safe shift length can have a meaningful effect on algorithm performance.

This situation can be amended by adjusting the array Z: we can assign 0 to all
elements of the form Z[word(c, P [0])&mask], c ∈ Σ. As a result, if the last byte of
a search window coincides with P [0], the shift will be considered as non-maximal,
and m can be assumed to be the value of the maximal shift. It seems that this will
increase the probability of a non-maximal shift in a random text by 1/256 at most,
which is not too much. However, the endianness of a machine, i.e., an order in which
the bytes of a value are loaded from memory into a processor register, has to be
taken into account. Let us examine the function word, used in lines 5 and 8 of Alg.
3. It converts two sequential bytes of memory into a two-byte number in a processor
register. In most programming languages this function can be implemented by the
type-casting mechanism, e.g. (unsigned short*) operator in C language. However,
its result depends on the endianness. On a little endian machine (e.g. x86 processor)
bytes of a value are loaded into a register in the reverse order (Fig. 1). This is an
unwanted situation if we compose a shift table index of the full last byte of a search
window and a part of the second to last, because a resultant value will be shifted in
a register to the left (Fig. 1 (a)), which makes the size of the shift table the same as
for the 2-byte read. However, the situation in Fig. 1 (b) - not full last byte and full
second to last - is also unwanted, because only the part of the last byte of a search
window should coincide with the part of P [0] byte to make the shift non-maximal.
Then, the increase of the non-maximal shift probability for a random text will be up

38 Proceedings of the Prague Stringology Conference 2020

to 1/2k−8, which significantly reduces the probability of a fast loop continuation. For
example, if k = 12, the latter probability will be reduced by up to 1/16.

Figure 1. Loading a 2-byte value from memory on a little endian machine. ‘White’ bits are reset to
zero by mask, ‘grey’ bits remain significant. mask resets the bits of the highest byte (a) or lowest
byte (b).

Nonetheless, on a little endian machine the permutation shown in Fig. 1 (b)
becomes admissible if the text is searched from right to left. Then, extending the
maximal shift from m−1 to m decreases the probability of a fast loop termination by
up to 1/256, and the index of a shift table is composed of the low bits of a two-byte
word. We call right-to-left search algorithms reverse and denote them by the letter
“R”, e.g. RZ12-Byte. The reverse search method RZk-Byte is shown in Alg. 4.

Algorithm 4: The reverse search algorithm RZk-Byte

1 mask ← 2k − 1; // Preprocessing

2 foreach i ∈ [0; 2k) do Z[i]← 1;
3 for i← 0 to m− 2 do
4 Z[word(P [i], P [i+ 1])]← 0

5 for i← 0 to 2k−b do
6 Z[(i << b)|P [m− 1]]← 0
7 foreach c ∈ Σ do RQS[c]← m+ 1;
8 for i← m− 1 downto 0 do RQS[P [i]]← i+ 1;
9 pos← n; // Search

10 repeat
11 repeat
12 pos← pos−m;
13 while Z[word(T [pos], T [pos+ 1]) & mask] 6= 0 do
14 pos← pos−m;
15 pos← pos+ 1;
16 until Z[word(T [pos], T [pos+ 1]) & mask] 6= 0;
17 pos← pos− 1;
18 check the occurrence at pos;
19 pos← pos−RQS[T [pos− 1]] +m;
20 until pos ≥ m;

The text T is assumed to be prepended with a stop pattern (T [−m. . . − 1] =
P [0 . . . m − 1]) to exit the double fast loop, given in lines 11−16, when the search
finishes. The search window starts at the position n−m and moves to the left. The
variable pos always addresses the beginning of a search window in which first two
bytes are used to determine the possibility of a maximal shift by m characters. The
algorithm steps 1 character forward between the internal and external fast loops (line
15) and reverts this step in line 17 if the external fast loop is terminated. After

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 39

checking the occurrence we make the “Reverse Quick Search” shift using the shift
table RQS, which is filled in lines 7−8. Lines 5−6 intended to block the maximal
shift when the first character of a search window coincides with the last character
of the pattern; this code is equivalent to Z[word(c, P [m − 1])&mask] ← 0, c ∈ Σ.
Finally, lines 1−4 of the preprocessing stage are similar to those ones in Alg. 3.

2.4 Sliding windows

The performance of Z-Byte and RZ-Byte algorithms can be improved significantly by
implementing a two sliding windows technique [13]. However, for reverse methods it
should be slightly changed, since we can search a text from right to left only, while in
standard method windows are moving towards each other until they meet. The search
phase of Alg. 4 can be rewritten as shown in Alg. 5. Both sliding windows are moving
towards the beginning of a text. The first window specified by pos1 starts in the
middle of a text, while the second one specified by pos2 starts in the end. The main
loop is finished when the first window reaches the beginning of a text. After that, the
second window may be moved further if it has not reached the middle position yet
(lines 17−22). The preprocessing phase of Alg. 5 is just the same as of Alg. 4.

Algorithm 5: The search phase of the reverse search algorithm with 2 sliding
windows RZk-Byte-w2

1 pos1← ⌊n/2⌋;
2 pos2← n−m;
3 while pos1 ≥ 0 do
4 while Z[word(T [pos1], T [pos1 + 1]) & mask] 6= 0 &

Z[word(T [pos2], T [pos2 + 1]) & mask] 6= 0 do
5 pos1← pos1−m;
6 pos2← pos2−m;
7 if Z[word(T [pos1 + 1], T [pos1 + 2]) & mask] = 0 then
8 check the occurrence at pos1;
9 pos1← pos1−RQS[T [pos1− 1]];

10 else
11 pos1← pos1−m+ 1;
12 if Z[word(T [pos2 + 1], T [pos2 + 2]) & mask] = 0 then
13 check the occurrence at pos2;
14 pos2← pos2−RQS[T [pos2− 1]];
15 else
16 pos2← pos2−m+ 1;
17 while pos2 > ⌊n/2⌋ do
18 while Z[word(T [pos2], T [pos2 + 1]) & mask] 6= 0 do
19 pos2← pos2−m;
20 if pos2 > ⌊n/2⌋ then
21 check the occurrence at pos2;
22 pos2← pos2−RQS[T [pos2− 1]];

Let us note that filling the shift table Z with zeros and ones allows us to join
the 1.5-character checks with the bitwise ’&’ operation (line 4) instead of the slower
logical AND as in “classical” sliding windows approach [13]. Also, the external fast

40 Proceedings of the Prague Stringology Conference 2020

loop is replaced with separate ‘if-else’ blocks for each of two sliding windows (lines
7−11 and 12−16). This is done to take the advantage of the situation when the
maximal shift can be made only in one of two sliding windows.

We denote the Alg. 5 as RZk-Byte-w2 - the reverse search algorithm with a k-bit
read and 2 sliding windows. As opposed to “classical” approach, we can use an odd
number of sliding windows. For example, the parallel searches in the algorithm RZk-
Byte-w3 will start at positions ⌊n/3⌋, ⌊2n/3⌋ and n. Of course, each pair of sliding
windows in non-reverse Z-algorithms can be moved towards each other. However,
for large enough texts the experiments show no significant difference in performance
between “bi-directional” and “uni-directional” sliding windows methods.

3 Pattern matching in a bitstream

In this section we denote the array of full bytes of a pattern by P [0 ..m − 1], and
T [0 .. n− 1] denotes the input text. The last bytes P [m] and T [n− 1] are not full and
padded with zeros if the pattern and/or text bit length is not a factor of 8. Otherwise,
P [m] is assumed to be 0, while T [n − 1] is a full byte. The byte next to the text,
T [n], is always 0 as well as P [m+1]. The bit length of a pattern we denote by l, and
p[0 .. l − 1] is the array of pattern bits. By “search window” we mean a (m− 1)-byte
substring of a text that is supposed to belong to the pattern.

Hereinafter we assume a little endianness and discuss the “right-to-left” bitstream
search by the example of RZk-Bit algorithm. Its general structure is similar to the
structure of the underlying RZk-Byte algorithm. At each iteration of the fast loop we
try to move the search window as far as possible to the left. pos addresses the leftmost
byte of a search window. Thus, the window occupies the bytes T [pos], . . . , T [pos +
m− 2], while bytes T [pos− 1], T [pos+m− 1], and possibly T [pos+m], may contain
the left and right “tails” of the pattern.

The search window can be safely moved m− 1 bytes to the left, if two conditions
are met (taking into account the endianness and applying the mask): (a) the pair
of bytes (T [pos], T [pos + 1]) does not belong to the pattern, and (b) some prefix
of the pair (T [pos], T [pos + 1]) of length greater than 8 does not coincide with the
pattern suffix. The shift table Z is filled in accordance with this conditions at the
preprocessing phase (Alg. 8) and checked during the search phase (lines 5 and 8 of
Alg. 6). The whole block of code in lines 3− 8 of Alg. 6 implements the double fast
loop discussed in Subsection 2.2.

After the exit from the double fast loop, we check if the pattern can be aligned
with the search window shifted q bits to the left, q = 0, . . . , b − 1. This check is
performed by the procedure CheckMatch(q, pos) invoked in line 11 of Alg. 6. It is
not efficient to test all b possible values of q. Instead, we store in the set λ[c] all values
q < b such that the factor p[q] . . . p[q + b− 1] of a pattern coincides with the byte c.
This implies that all possible occurrences such that the byte T [pos] is the leftmost
full byte of a text that belongs to the pattern, are checked in lines 10 and 11 of Alg. 6.

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 41

After the occurrence check, pos is safely moved 1 byte to the left after the addition
in line 12 and subtraction in line 4 on the next iteration of the main loop.

Algorithm 6: The search phase of the RZk-Bit algorithm

1 pos← n− 1;
2 repeat
3 repeat
4 pos← pos−m+ 1;
5 while Z[word(T [pos], T [pos+ 1]) & mask] 6= 0 do
6 pos← pos−m+ 1;
7 pos← pos+ 1;
8 until Z[word(T [pos], T [pos+ 1]) & mask] 6= 0;
9 pos← pos− 1;

10 foreach q ∈ λ[T [pos]] do
11 CheckMatch(q, pos);
12 pos← pos+m− 2;
13 until pos ≥ m− 1;

The body of the procedure CheckMatch(q, pos) is given in Alg. 7. We have to
check if a window, occupying q lowest bits of the byte T [pos− 1] and the next l − q
bits of a text, coincides with the pattern. The function byte in line 2 truncates a 2-
byte value to its lowest byte. It can be be implemented as a type-casting (unsigned

char) in C language. Generally, in line 2 we compose a series of bytes from pairs of
the adjacent bytes of a text taking q lowest bits of the byte T [j] and b−q highest bits
of the byte T [j+1]. The composed bytes are compared with the bytes of the pattern.
If they all match, the last byte is composed and compared with P [m] in line 5. Since
the byte P [m] is not full, the composed byte is truncated by the mask lastMask to
significant bits of P [m] only.

Algorithm 7: Procedure CheckMatch(q, pos)

1 start← j ← pos− 1;
2 while j − start < m AND

byte((T [j] << (b− q))|(T [j + 1] >> q)) = P [j − start] do
3 j ← j + 1
4 if j − start = m then
5 if ((T [j] << (b− q))|(T [j + 1] >> q))&lastMask = P [m] then
6 output(start · k + q)

The value lastMask as well as other values and tables, which remain constant
through the search phase, is calculated at the preprocessing phase, shown in Alg. 8.
Let us explain how the loop in lines 4−11 of Alg. 8 works, in which the shift table Z
is constructed. For each 16-bit substring of a pattern, starting at the bit position i,
the corresponding element of the array Z is specified with the flag 0, which denotes
a non-maximal shift (the short suffixes of the pattern, l − i ≤ b, are not processed,
since their possible alignments with search window prefixes have no impact on a safe
shift of the length m− 1). During the search phase it will be checked if this substring
coincides with some substring of a text. Each of these substrings does not consist
of a continuous sequence of significant bits, but has a “hole” of insignificant ones
shown in the upper part of Fig. 1 (b). However, the function bitWord invoked in
line 5 of Alg. 8 performs the bits permutation shown if Fig. 1 (b) and returns the
mentioned substring in the compact form shown in the lower part of that figure.

42 Proceedings of the Prague Stringology Conference 2020

If such substring is aligned to the boundaries of a two-byte word, this permutation
becomes trivial and can be completed by the type-casting. This is how the function
word is calculated in the search phases of RZ-Byte and RZ-Bit methods. However, in
a bitstream the mentioned substring may intersect with 3 adjacent bytes of a pattern,
and the permutation becomes trickier. It is explained in the comments to Alg. 9.

Algorithm 8: The preprocessing phase of the RZk-Bit algorithm

1 mask ← 2k − 1; m← ⌊l/b⌋; lastMask ← byte((2b − 1) << (b− l mod b));
2 foreach i ∈ [0; b) do c← (P [0] << i)|(P [1] >> (b− i)) λ[c]← λ[c] ∪ {i};
3 foreach i ∈ [0; 2k) do Z[i]← 1;
4 foreach i ∈ [0; l − b) do
5 t← bitWord(i,mask);
6 if l − i ≥ 2b then
7 Z[t]← 0;
8 else
9 if l − i > 3b− k then s← 2b− (l − i); // 2 (a)

10 else s← k − b; // 2 (b)

11 foreach j ∈ [0; 2s) do Z[t|(j << b)]← 0;

The formatted substring is assigned to the variable t in line 5 of Alg. 8. If l−i ≥ 2b,
the whole substring belongs to the pattern, and Z[t] = 0 (line 7). Otherwise, the
substring is truncated at the end of the pattern, and after the bitWord permutation
a “hole” of insignificant bits may appear inside the formatted substring, Fig. 2 (a).
The length s of this “hole” is calculated in lines 9 (Fig. 2 (a)) or 10 (Fig. 2 (b)). In
line 11 the “hole” in the substring t is filled with all possible 2s values. This way, the
set of indices of zero elements of the array Z is constructed.

Figure 2. The bitWord permutation (Alg. 9) of the right tail of a pattern. The bits, remaining
significant after the permutation, highlighted with dark grey. The bits that would have remained
significant if not for the end of a pattern, highlighted with light grey. (a) The pattern ends within
significant bits of the lowest byte; (b) the pattern ends within insignificant bits.

Algorithm 9: Function bitWord(i,mask), little endian machine

1 r ← ⌊i/b⌋; // index of the highest byte

2 s← (P [r] << 2b)|(P [r + 1] << b)|P [r + 2]; // load 3 bytes from memory

3 s← s << (i mod b); // shift to the left edge of a 3-byte word

4 mask1← (2b − 1) << 2b; // mask for the highest byte, 0xff0000

5 mask2← mask&((2b − 1) << b); // mask for the middle byte

6 return ((s&mask1) >> 2b)|(s&mask2); // move highest byte to lowest

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 43

4 Benchmarking experiments

The experimental algorithms execution times are shown in Table 1 (256-ary search)
and Table 2 (bitstream search). The algorithms were implemented in C programming
language and compiled with GNU GCC compiler. The C codes of some Z-algorithms
are published in [22], while most of other algorithms have been taken from [5].

4.1 Remarks on implementation

There are three adjustments in C versions of our algorithms, which are not shown in
Alg. 2−6 for simplicity.

The first adjustment deals with addressing the characters of a text. It is reasonable
to assume that addressing a character via pointer like *ptr will be a bit faster than
addressing the array element like T[pos], because the latter expression in fact means
*(T+pos) and requires one extra addition. Whilst other operations such as additions
and comparisons have the same time complexity either for pointers or indices. Indeed,
for our algorithms, the experiments show that the gain from using pointers instead
of indices is up to 20% for patterns of length 2, up to 6% for patterns of length 4,
0.5−1.5% for patterns of length 8 and insignificant for longer patterns. For other al-
gorithms, the results are rather contradictory. That is why all Z/RZ algorithms were
tested in “pointer” versions, while other algorithms have been run in their original
versions. Thus, to make a comparison more relevant, the timing of R/RZ algorithms
may be increased in above-mentioned proportions. However, even after this adjust-
ment Z/ZR algorithms still remain the fastest ones for all pattern lengths.

The second adjustment has to be made in reverse algorithms in order to correctly
process the algorithm stop condition. In algorithms 4− 6 the text was assumed to be
prepended by a stop pattern. However, it can be problematic due to “left-to-right”
organization of memory structures in programming languages: we can easily allocate
extra memory after the text to append a string to it, but there is no technique to
allocate extra memory just before the address stored in a given pointer T addressing
the beginning of a text, except for shifting the whole text right or taking into account
this specificity before invoking a search function. The other option is to: (1) before the
main search loop, backup the beginning of a text and replace it with a stop pattern;
(2) after the main loop, restore the beginning of a text and search the pattern in
it using some other simple algorithm. This approach has been implemented in the
tested reverse algorithms.

And the last adjustment relates to short patterns, less than 3 bytes in length. In
this case, the length of a maximal shift in Zk-Byte or RZ-Bit algorithms is equal to
m − 1 = 1. And since in the double fast loop we step 1 character back, this loop
may become endless. Therefore, in Zk-Byte (8 < k < 16) and RZ-Bit algorithms, the
short patterns are considered as a special case and processed with a single fast loop.

4.2 Testing environment

The executables have been run on 40 computers with different processors and L1
cache varying from 24KB up to 64KB; all computers were little endian machines.
The experimental 10MB text contains a set of English Wikipedia articles encoded
by the multi-delimiter code D2,4−∞ [1]. Although this code compresses texts not far
from entropy (2−3% away), it makes possible the direct data search in a compressed

44 Proceedings of the Prague Stringology Conference 2020

file without its decompression, just like Fibonacci codes, (s, c)-dense codes and other
codes with delimiters. This assigns a special meaning to a pattern matching problem
in application to delimiter-encoded data. Also, the algorithms have been tested on
a random 10MB text, however, the results are not shown in this presentation, since
they differ from the timing given below insignificantly and do not change the general
picture of algorithms superiority.

The results, given in milliseconds, represent a weighted average time of 500×40
runs of each algorithm searching patterns of length 2− 512 randomly taken from the
text, a new pattern for each run. In a bitstream search the pattern starts from a
random bit. Weight numbers has been taken on pro rata basis of average computer
benchmark. In other words, the below presented time values have been calculated as
follows.

1. Get the average time Ta,m,c of 500 runs of each algorithm a for each pattern length
m on each computer c.

2. Multiply Ta,m,c by total time/40c time, where total time is the sum of all values
Ta,m,c for all computers / algorithms / pattern lengths, c time is the sum of all
values Ta,m,c for a specific computer c, and 40 is the number of computers.

3. For each pair (a,m), get the average value of Ta,m,c with respect to all computers.

This approach allows us to interpret all computers as units of equal importance
independently of their actual benchmarks.

4.3 Experimental results

Generally, 44 different variations of Z-Byte and RZ-Byte algorithms were tested,
with 1− 6 sliding windows and the parameter k varying in the range 12− 15. Also,
the algorithms Z8 and Z16 based on full byte reads have been tested in 1, 2 and 3
sliding windows versions. It appears that when m ≥ 8, the 13-bit or 14-bit reads are
most efficient. That’s why only the results for 13 and 14-bit versions of Z/RZ-Byte
algorithms with 1.5 read are shown in Table 1 and only for those numbers of sliding
windows, which give the optimal result for at least one pattern length. Let us note
that when a pattern becomes longer, the efficiency of 14-bit reads in comparison to
13-bit reads increases. And when the pattern length is very short, m ≤ 4, the 1.5-byte
read appears to be superfluous and the algorithm Z8-w2, supporting 1-byte read and
2 sliding windows, demonstrates the best performance.

A number of known algorithms were tested for comparison, both in original and
“2-byte read” versions, if applicable. As it is seen, a 2-byte read does not improve an
algorithm’s performance for |Σ| = 256. At the same time, different representatives
of Z/RZ-families outperform all other known algorithms on all examined pattern
lengths. This testifies that our “1.5-byte read” approach appears to be more efficient.
Indeed, if the pattern is not extremely long, the probability of a maximal shift based
on analysing 2 byte suffix of a search window is not much higher than if we analyse
13−14 bits. However, in the latter case the shift table fits into L1 cache, which is
rather more important factor. This is also confirmed by the performance of Z16-
Byte-w2, the fastest algorithm among Z-algorithms with 2-byte read, which always
under-performs some 1.5-read algorithms.

Among other algorithms the comparison-based Fast Search algorithms with 6 or
8 sliding windows demonstrate the best results for all pattern lengths. The ratio of
running times of the best algorithm not belonging to Z/RZ-families to the winner is

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 45

shown in the last row of Table 1 for each pattern length. It is significant for short
(m ≤ 8) and long (m ≥ 128) patterns, however, for middle-sized ones the Z/RZ
timing is only slightly less than that of the FS with 6 or 8 sliding windows.

Thus, we can conclude that the bit-parallelism approach to pattern matching is
not too efficient on a 256-ary alphabet. The main reason for that is that comparison-
based algorithms provide quite good average shift length having at the same time less
operational complexity. Instead of implementing the bit-parallelism, the better way
for improvement consists in (a) involving bits of more than one character into bad-
character comparisons; (b) making use of multiple sliding search windows; (c) tuning
the fast loop technique.

This is confirmed by the performance of bitstream pattern matching algorithms,
presented in Table 2. As seen for all investigated pattern lengths, the RZ-Bit algo-
rithms, based on the principles (a)-(c), outperform the BFL method, based upon the
bit-parallel algorithm BNDM. And this outperformance is essential even for no-sliding
windows versions of RZ-Bit. Apart from the above mentioned reasons, the superior-
ity of the RZ-Bit family may be explained by the following factors: (d) although the

Pattern length m 2 4 8 16 32 64 128 256 512
Z8-Byte-w2 40.63 26.22 19.64 16.10 14.58 14.02 12.52 13.16 12.35
RZ13-Byte 67.50 35.70 21.21 14.91 11.80 10.67 8.82 6.42 4.51
RZ14-Byte 67.92 35.80 21.16 14.94 11.85 10.77 8.92 6.40 4.40
RZ13-Byte-w2 49.34 26.29 15.90 12.05 10.36 9.66 8.33 5.85 3.50
RZ14-Byte-w2 49.59 26.48 15.97 12.06 10.47 9.85 8.41 5.88 3.41
RZ13-Byte-w3 49.45 26.42 15.67 11.17 9.59 9.00 7.93 5.65 3.86
RZ14-Byte-w3 49.78 26.70 15.91 11.26 9.74 9.15 8.02 5.65 3.70
RZ13-Byte-w5 50.89 27.18 16.04 11.08 9.50 9.03 8.09 5.80 4.32
RZ14-Byte-w5 51.38 27.50 16.31 11.27 9.70 9.14 8.19 5.73 4.06
Z13-Byte-w3 94.31 30.75 15.95 11.20 9.44 8.92 7.90 5.60 3.83
Z14-Byte-w3 99.79 31.04 16.21 11.28 9.60 9.09 8.03 5.62 3.71
RZ16-Byte-w2 49.87 28.34 17.94 14.03 10.86 9.91 8.29 6.60 4.43
FSBNDM 69.76 35.97 20.29 13.63 11.61 11.67 12.04 12.21 12.26
FSBNDM-2byte 90.33 50.59 30.55 20.43 16.47 16.58 17.02 17.23 17.13
FSBNDM31 224.37 75.28 34.50 18.01 12.81 12.88 13.13 13.26 13.24
FSBNDM31-2byte 215.67 79.00 40.54 23.91 17.54 17.68 18.10 18.32 18.21
GSBNDMq2 − 43.05 20.84 13.53 11.45 11.53 11.70 11.82 11.82
GSBNDMq2-2byte − 54.03 29.15 19.32 15.67 15.75 16.06 16.30 16.19
SBNDMq2 130.04 44.40 21.44 13.83 11.50 11.56 11.69 11.82 11.82
SBNDMq2-2byte 199.07 72.79 37.28 23.01 16.89 16.98 17.32 17.55 17.43
SBNDM/BMH 152.10 78.45 43.68 25.89 19.86 19.97 20.38 20.68 20.51
LBNDM 118.87 64.43 38.63 25.03 18.93 15.80 13.83 9.88 7.33
FJS 201.94 121.84 70.95 39.17 23.03 17.99 16.48 19.16 19.46
FS 259.70 130.52 68.52 36.15 21.24 17.33 16.53 22.84 21.14
FSw4 77.47 39.73 21.91 13.01 9.96 9.64 9.23 10.22 8.80
FSw6 62.46 32.35 18.23 11.44 9.65 9.47 8.97 8.97 7.56
FSw8 57.15 30.93 19.11 12.65 9.62 9.46 8.88 8.72 7.07
Best non-Z to best Z ratio 1.41 1.18 1.16 1.03 1.02 1.06 1.12 1.56 2.07

Table 1. Algorithms running times, |Σ| = 256 (milliseconds)

46 Proceedings of the Prague Stringology Conference 2020

maximal length of a long-shift in the BFL algorithm is 2m− 1, in practice it is often
2m− 3 or less, while any total maximal shift in two sliding windows of RZ-Bit algo-
rithm is 2m−2, i.e. longer in average; (e) when the pattern is shortened below 60 bits,
and importance of a long-shift decreases, the timing difference between RZ-Bit and
BFL becomes especially large, which indicates a higher efficiency of a bit-alignment
checking technique implemented in the RZ-Bit algorithms.

Pattern length 20 40 60 80 100 200 300 400 500
RZ13-Bit 157.65 48.28 34.83 26.03 22.22 15.27 13.17 12.52 12.04
RZ14-Bit 148.76 44.52 32.22 23.74 20.37 13.90 12.14 11.49 11.15
RZ15-Bit 145.22 42.73 31.23 23.10 19.86 13.74 12.12 11.51 11.13
RZ13-Bit-w2 129.49 35.91 26.81 20.88 18.25 13.89 12.29 11.84 11.54
RZ14-Bit-w2 120.65 33.24 24.81 19.07 16.90 13.08 11.78 11.35 11.10
RZ15-Bit-w2 116.87 32.57 24.50 18.96 17.03 13.15 11.94 11.53 11.31
RZ13-Bit-w3 135.61 38.50 28.40 21.96 19.09 13.90 12.25 11.82 11.51
RZ14-Bit-w3 126.74 35.19 26.08 19.79 17.25 12.74 11.43 11.03 10.77
RZ15-Bit-w3 122.25 34.03 25.47 19.44 17.10 12.72 11.41 11.03 10.77
RZ16-Bit-w2 102.02 30.56 23.76 18.91 17.05 13.35 12.26 11.95 11.66
BFL 277.77 91.46 63.80 43.23 36.63 23.38 21.65 25.29 31.32
FED 397.07 130.04 86.42 52.13 46.26 31.14 28.40 27.97 28.95
Best non-Z to best Z ratio 2.72 2.99 2.68 2.28 2.16 1.83 1.89 2.29 2.68

Table 2. Running times on a bitstream (milliseconds)

5 Conclusions

An efficient approach to pattern matching in a bitstream has been investigated and
tested as well as underlying algorithms of string matching in 256-ary texts. It relies
on improving the 2-byte read principle as well as tuning the fast loop and sliding
windows techniques. The averaged results of testing provided on 40 computers show
that different representatives of the developed families of algorithms outperform all
other tested solutions for all studied pattern lengths.

References

1. A. V. Anisimov and I. O. Zavadskyi: Variable-length prefix codes with multiple delimiters.
IEEE Transactions on Information Theory, 63(5) 2017, p. 2885–2895.

2. D. Cantone and S. Faro: Fast-search algorithms: New efficient variants of the Boyer-Moore
pattern-matching algorithm. Journal of Automata, Languages and Combinatorics, 10(5/6) 2005,
pp. 589–608.

3. B. Commentz-Walter: A string matching algorithm fast on the average, in Proceedings of
International Colloquium on Automata, Languages, and Programming, 1979, pp. 118–132.

4. B. Durian, J. Holub, H. Peltola, and J. Tarhio: Tuning BNDM with q-grams, in Pro-
ceedings of the Workshop on Algorithm Engineering and Experiments, I. Finocchi and J. Her-
shberger, Eds. SIAM, New York, New York, USA, 2009, pp. 29–37.

5. S. Faro and T. Lecroq: String matching research tool: Exact string matching algorithms.
https://www.dmi.unict.it/ faro/smart/algorithms.php.

6. S. Faro and T. Lecroq: Efficient variants of the backward-oracle-matching algorithm, in
Proceedings of the Prague Stringology Conference, J. Holub and J. Zdarek, Eds. Czech Technical
University in Prague, Czech Republic, 2008, pp. 146–160.

Igor O. Zavadskyi: Fast Exact Pattern Matching in a Bitstream and 256-ary Strings 47

7. S. Faro and T. Lecroq: An efficient matching algorithm for encoded DNA sequences and
binary strings, in Proceedings of Combinatorial Pattern Matching, G. Kucherov and E. Ukkonen,
Eds., 2009, p. 106–115.

8. S. Faro and T. Lecroq: Efficient pattern matching on binary strings, in 35th International
Conference on Current Trends in Theory and Practice of Computer Science, 2009, p. Poster.

9. S. Faro and T. Lecroq: The exact online string matching problem: a review of the most
recent results. ACM Computing Surveys (CSUR), 45(2) 2013, p. article 13.

10. F. Franek, C. Jennings, and W. Smyth: A simple fast hybrid pattern-matching algorithm.
J. Discret. Algorithms, 5(4) 2007, pp. 682–695.

11. J. Holub and B. Durian: Fast variants of bit parallel approach to suffix automata. Paper
presented at the Second Haifa Annual International Stringology Research Workshop of the Israeli
Science Foundation, 2005.

12. N. R. Horspool: Practical fast searching in strings. Soft.Pract.Exp., 10(6) 1980, pp. 501–506.
13. A. Hudaib, R. Al-khalid, D. Suleiman, M. A. A. Itriq, and A. Al-Anani: A fast

pattern matching algorithm with two sliding windows (tsw). Journal of Computer Science, 4(5),
p. 393–401.

14. A. Hume and D. Sunday: Fast string searching. Softw. Pract. Exp., 21(11) 1991, pp. 1221–
1248.

15. J. Kim, E. Kim, and K. Park: Fast matching method for DNA sequences, in Proceedings of
Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, 2007, p. 271–281.

16. S. Klein and M. Ben-Nissan: Accelerating Boyer Moore searches on binary texts, in Pro-
ceedings of International Conference on Implementation and Application of Automata, CIAA-07,
2007, p. 130–143.

17. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Proceedings of Combinatorial Pattern Matching, 1998, pp. 14–33.

18. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in Pro-
ceedings of the 10th International Symposium on String Processing and Information Retrieval
SPIRE’03, 2003, pp. 80–94.

19. H. Peltola and J. Tarhio: String matching with lookahead. Discrete Applied Mathematics,
163 2014, pp. 352–360.

20. D. Sunday: A very fast substring search algorithm. Comm. ACM, 33(8) 1990, pp. 132–142.
21. B. W. Watson, F. Franek, J. Holub, C. Iliopoulos, and B. Smyth: Fractional n-grams

for shifting. Idea presented at StringMasters 2014 at McMaster University, Hamilton, Ontario,
Canada, 2014.

22. I. O. Zavadskyi: The Z-family algorithms: Implementation in C programming language.
https://github.com/zavadsky/stringology.

23. I. O. Zavadskyi: A family of exact pattern matching algorithms with multiple adjacent search
windows, in Proceedings of the Prague Stringology Conference, J. Holub and J. Zdarek, Eds.
Czech Technical University in Prague, Czech Republic, 2017, p. 152–166.

Fast Practical Computation of the Longest

Common Cartesian Substrings of Two Strings

Simone Faro1, Thierry Lecroq2, and Kunsoo Park3

1 University of Catania, Department of Mathematics and Computer Science, Italy
faro@dmi.unict.it

2 Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France
thierry.lecroq@univ-rouen.fr

3 Seoul National University, Seoul, Korea
kpark@theory.snu.ac.kr

Abstract. Cartesian trees have been introduced 40 years ago. They are associated to
strings of numbers. They are structured as heap and original strings can be recovered
by symmetrical traversal of the trees. The Cartesian tree matching problem appeared
very recently. It consists of finding all substrings of a given text which have the same
Cartesian tree as that of a given pattern. Here we present two methods for computing
the longest common Cartesian substrings of two strings. The first method is a classical
linear suffix tree based method. The alternative method runs in quadratic worst case
time but is more space economical. Experiments show that the alternative solution
runs faster for short strings.

1 Introduction

Cartesian trees have been introduced by Vuillemin [11]. They are associated to strings
of numbers. They are structured as heap and original strings can be recovered by
symmetrical traversal of the trees. They have many applications including finding
patterns in time series data such as share prices in stock markets. It has been shown
that they are connected to Lyndon trees [7,3], to Range Minimum Queries [4] or
to parallel suffix tree construction [9]. Recently new results on Cartesian pattern
matching appear [8,10,6]. It consists of finding substrings of a text that have the
same Cartesian tree as a pattern. Recent studies concern finding periods in Cartesian
tree matching [1].

In this article we are interested in computing the longest common Cartesian sub-
strings of two strings which means common substrings of maximal length and that
have the same Cartesian tree. A usual linear time method for computing longest
common substrings for classical strings consists of building the generalized suffix tree
of the two strings and the deepest internal nodes (in terms of string depth) having
leaves for suffixes of both strings identify longest common substrings. This method
can be applied for computing longest common Cartesian substrings of two strings.
However the suffix tree has to be built on the parent-distance representation of the
two strings and classical suffix tree construction algorithms cannot be used. We pro-
pose a quadratic time algorithm for computing the longest Cartesian substrings of
two strings that uses only constant extra space in addition to the two strings and
their parent-distance representation. Experimental results show that for short strings
and in most practical settings our alternative solution is faster than the suffix tree
based method.

This article is organized as follows. Section 2 presents the notations and definitions
used throughout the rest of the article. Section 3 presents the method for constructing

Simone Faro, Thierry Lecroq, Kunsoo Park: Fast Practical Computation of the Longest Common Cartesian Substrings of Two Strings, pp. 48–60.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 49

the Cartesian tree of a string. Section 4 briefly presents the suffix tree based method
for computing longest common Cartesian substrings. Section 5 describes our new
alternative solution. Section 6 presents experimental results. Section 7 concludes the
article.

2 Notations and Definitions

A string is a sequence of symbol drawn from an alphabet Σ, which is a set of integers.
We assume that a comparison between any two symbols of the alphabet can be done
in constant time. For a string x, x[i] represents the i-th symbol of x, and x[i . . j]
represents the substring of x starting from position i and ending at position j. We
denote by xi = x[1 . . i] the prefix of x of length i.

Let x be a string of numbers of length m. The Cartesian tree CT (x) of x is the
binary tree where:

– the root corresponds to the index i of the minimal element of x (if there are several
occurrences of the minimal element, the leftmost one is chosen);

– the left subtree of the root corresponds to the Cartesian tree of x[1 . . i− 1];
– the right subtree of the root corresponds to the Cartesian tree of x[i+ 1 . .m].

For simplicity in what follows we will use the symbol x[i] to refer to both the i-th
character of x and the node of CT (x) whose key is i, depending on the context.

The following definition of the right path of a binary tree is particularly relevant
to this paper.

Definition 1 (Right path). The right path, rp(T), of a binary tree T is the sequence
of nodes encountered starting from the root of the tree and always going right.

3 Construction of the Cartesian Tree

The construction of the Cartesian tree of a string x of length m can be done by means
of an iterative procedure which iterates over the elements of x, proceeding from left
to right, and computes the Cartesian tree of xi+1 from the Cartesian tree of xi, for
1 ≤ i < m.

To better describe such approach we observe that the Cartesian tree of x[1] consists
of a single node, while CT (xi+1) can be computed from CT (xi) by identifying the
number of nodes that are on the right path of CT (xi) but not on the right path of
CT (xi+1).

Going deeper into the details, let rp(CT (xi)) = 〈x[j1], x[j2], . . . , x[jk]〉 be the right
path of CT (xi), with 1 ≤ k ≤ i and where x[j1] is the root of the Cartesian tree and
jk = i. Assume that x[ju] < x[i+1] < x[ju+1], for some 0 ≤ u ≤ k. We can distinguish
three cases, as depicted in Figure 1:

1. if u = 0 then x[i + 1] is less than x[j1], the current root of the tree, and x[i + 1]
becomes the new root of CT (xi+1);

2. if 0 < u < k then x[i+1] is the smallest value on the right of x[ju] and all elements
in the substring x[ju + 1 . . i] are greater than x[i+ 1]. Then x[i+ 1] is inserted as
the right child of x[ju] and the subtree rooted at x[ju + 1] is moved on the left of
x[i+ 1].

50 Proceedings of the Prague Stringology Conference 2020

(Case 1)

x[j1]

x[j2]

x[jk]

. .

. .

. .

x[i+ 1]

x[j1]

x[j2]

x[jk]

. .

. .

. .

(Case 2)

x[j1]

x[ju]

x[ju+1]

x[jk]

. .

. .

. .

. .

w[j1]

x[ju]

x[i+ 1]

x[ju+1]

x[jk]

. .

. .

. .

. .

(Case 3)

x[j1]

x[j2]

x[jk]

. .

. .

. .

x[j1]

x[j2]

x[jk]

x[i+ 1]. .

. .

. .

Figure 1. The three cases occurring when computing CT (xi+1) from CT (xi). (Case 1) x[i + 1] is
less than the current root of the tree and it is added as the new root; (Case 2): we have x[ju] <
x[i + 1] < x[ju+1]; (Case 3): we have x[i + 1] is greater than x[i]. In all cases x[i + 1] becomes the
last node of the right path of the tree. Nodes belonging to the right path are filled in gray.

3. if u = k then x[i + 1] is greater than x[jk], the rightmost character in the right
path of xi, so that x[i+ 1] is added as the right child of x[jk] in CT (xi+1).

Example 2. Let x = 〈4, 22, 3, 5, 2, 23, 15, 1〉 be a numeric sequence of length 8. Figure 3
shows the Cartesian trees computed by such incremental procedure.

Lemma 3 ([5]). Given a numeric string x, of length m, the Cartesian tree of x can
be computed in O(m)-time.

Proof. In order to analyse the time complexity for the computation of the Cartesian
tree of a string we refer to the algorithm whose pseudocode, presented in Figure 2,
was described in [5].

The for cycle of line 4 is executed m − 1 times. The while loop of line 7 consists
of scanning upward the right path of the tree. Each iteration of this loop decreases
the current length of the right path by one and the scanned node will not be scanned
again thus the overall number of iterations of the while loop over all the iterations of
the for loop is bounded by m. All the other operations can be done in constant time.
Therefore the time complexity of the algorithm for building the Cartesian tree of a
string of length m is O(m).

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 51

Build-Cartesian-Tree(x,m)

1 root← New-Node()
2 Element(root)← x[1]
3 q ← root
4 for i← 2 to m do

⊲ q is the last node of the right path
5 p← New-Node()
6 Element(p)← x[i]
7 while q 6= nil and x[i] < Element(q) do
8 q ← Parent(q)
9 if q = nil then

⊲ Case 1
10 Left(p)← root
11 Parent(root)← p
12 root← p
13 else ⊲ Cases 2 and 3
14 if Right(q) 6= nil then
15 Parent(Right(q))← p
16 Left(p)← Right(q)
17 Right(q)← p
18 Parent(p)← q
19 q ← p
20 return root

Figure 2. The iterative procedure Build-Cartesian-Tree for building the Cartesian tree of a
string x of length m. A node of the Cartesian tree has 4 components: Parent, Element, Left
and Right. The function New-Node() creates a new node and initializes its 4 components to nil.

Step 2

4

22

Step 3

3

4

22

Step 4

3

54

22

Step 5

2

3

54

22

Step 6

2

233

54

22

Step 7

2

15

23

3

54

22

Step 8

1

2

15

23

3

54

22

Figure 3. Different steps of the construction of CT (x) when x = 〈4, 22, 3, 5, 2, 23, 15, 1〉.

For the sake of completeness we point out that the Cartesian tree of a string x
can be also computed by iterating over the elements of x and proceeding from right
to left (instead of from left to right) by means of a symmetrical procedure.

52 Proceedings of the Prague Stringology Conference 2020

For realizing the algorithm given in Figure 2 the right path can be implemented
as a stack so that there is no need to have a link to its parent for each node of the
tree.

Instead of building the Cartesian tree for every position in the text to solve Carte-
sian tree matching, Park et al. [8] introduced the following representation for a Carte-
sian tree.

Definition 4 (Parent-distance representation). The parent-distance representa-
tion of a string x[1 . . m] is a function PDx, which is defined as follows:

PDx(i) =
{
i−max1≤j<i{j | x[j] ≤ x[i]} if such j exists
0 otherwise.

Example 5. The following table gives the parent-distance representation for x =
〈4, 22, 3, 5, 2, 23, 15, 1〉.

i 1 2 3 4 5 6 7 8

x[i] 4 22 3 5 2 23 15 1

PDx(i) 0 1 0 1 0 1 2 0

Since the parent-distance representation has a one-to-one mapping to the Carte-
sian tree [8], it can replace the Cartesian tree without any loss of information. It can
be computed and stored in a table in linear time and space using the algorithm given
in Figure 4 (see [8]).

Compute-Parent-Distance(x,m)

1 ST ← empty stack
2 for i← 1 to m do
3 while ST is not empty do
4 (value, index)← ST .top
5 if value ≤ x[i] then
6 break
7 ST .pop
8 if ST is empty then
9 PDx[i]← 0

10 else PDx[i]← i− index
11 ST .push((x[i], i))
12 return PDx

Figure 4. Computation of the parent-distance representation for a string x of length m.

4 Longest common Cartesian substrings: suffix tree based
solution

The Cartesian suffix tree of a string has to be built on the parent-distance represen-
tation of the string. The parent-distance representation of a substring of x can be
easily computed as follows (see [8]):

PDx[i..j][k] =

{
0 if PDx[i+ k − 1] ≥ k
PDx[i+ k − 1] otherwise.

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 53

This can be used for getting all the suffixes of the parent-distance representation
for building its suffix tree. However classical linear time suffix tree construction al-
gorithms cannot be used because the distinct right context property should hold in
order to apply these algorithms, which means that the suffix link of every internal node
should point to an explicit node. In other words if lcp(x[i . .m], x[j . .m]) = ℓ then
lcp(x[i+1 . . m], x[j+1 . . m]) = ℓ−1 for 1 ≤ i, j ≤ m where lcp(u, v) is the length of the
longest prefix common to two strings u and v. The Cartesian suffix tree does not have
the distinct right context property meaning that if lcp(PDx[i . .m], PDx[j . .m]) = ℓ
then lcp(PDx[i+ 1 . .m], PDx[j + 1 . . m]) can be greater than ℓ− 1.

Example 6. With x = 〈4, 22, 3, 5, 2, 23, 15, 1〉,
lcp(PDx[5..8],PDx[6..8]) = lcp(〈0, 1, 2, 0〉, 〈0, 0, 0〉) = 1

and
lcp(PDx[6..8],PDx[7..8]) = lcp(〈0, 0, 0〉, 〈0, 0〉) = 2.

A linear time construction algorithm for suffix tree with missing suffix links was
first given in [2]. It can be used for building Cartesian suffix trees. These Cartesian
suffix trees can be used to compute longest common Cartesian substrings of two
strings x and y: for instance, by building the generalized Cartesian suffix tree of
PDx and PDy. Then the internal nodes with the largest string depth having leaves
corresponding to both PDx and PDy identify longest common Cartesian substrings
of x and y. This can be done during a traversal of the tree. Thus longest common
Cartesian substrings of two strings can be computed in linear time and in linear
space. The space overhead, in addition to the two strings and their parent-distance
representation, is constituted by the generalized suffix tree.

5 Longest common Cartesian substrings: alternative
solution

Let x and y be two strings of numbers of lengthm and n respectively. We are interested
in finding the longest substrings of x and y having the same Cartesian tree. We
will describe a solution based on dynamic programming. This solution also uses the
parent-distance representation. We will show that if x[i′ . . i− 1] and y[j′ . . j − 1] are
the longest suffixes of x[1 . . i−1] and y[1 . . j−1] having the same Cartesian tree then
the longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree can easily
be computed. Let us first state that if two substrings have the same parent-distance
so have their suffixes.

Fact 7 If PDx[i′..i] = PDy[j′..j] then PDx[i−ℓ..i] = PDy[j−ℓ..j] for 0 ≤ ℓ < i− i′.

Proof. Let 0 ≤ ℓ < i− i′ and i− ℓ− i′ + 1 < k < i− i′, then only two cases have to
be considered:

1. PDx[i′..i][k] = PDy[j′..j][k] < k− i+ ℓ then PDx[i−ℓ..i][k− i+ ℓ+ i′] = PDx[i′..i][k] =
PDy[j′..j][k] = PDy[j−ℓ..j][k − i+ ℓ+ i′] (see Figure 5) or

2. PDx[i′..i][k] = PDy[j′..j][k] ≥ k−i+ℓ then PDx[i−ℓ..i][k−i+ℓ+i′] = 0 = PDy[j−ℓ..j][k−
i+ ℓ+ i′] (see Figure 6).

In both cases PDx[i−ℓ..i][p] = PDy[j−ℓ..j][p] for 1 ≤ p ≤ ℓ + 1 thus PDx[i−ℓ..i] =
PDy[j−ℓ..j].

54 Proceedings of the Prague Stringology Conference 2020

indices 1 2 3 · · · k i− i′ + 1

i′ i− ℓ i
PDx[i′..i]

PDy[j′..j]

j′ j − ℓ j

PDx[i−ℓ..i]

PDy[j−ℓ..j]

indices 1 2 3 k − i+ ℓ+ i′ ℓ+ 1

Figure 5. PDx[i′..i][k] = PDy[j′..j][k] < k − i+ ℓ

indices 1 2 3 · · · k i− i′ + 1

i′ i− ℓ i
PDx[i′..i]

PDy[j′..j]

j′ j − ℓ j

PDx[i−ℓ..i]

PDy[j−ℓ..j]

indices 1 2 3 k − i+ ℓ+ i′ ℓ+ 1

0

0

Figure 6. PDx[i′..i][k] = PDy[j′..j][k] ≥ k − i+ ℓ

We can now state the next lemma.

Lemma 8. Let x[i′ . . i − 1] and y[j′ . . j − 1] be the longest suffixes of x[1 . . i − 1]
and y[1 . . j − 1] having the same Cartesian tree. Let ℓx = PDx[i′..i][i − i′ + 1], ℓy =
PDy[j′..j][j − j′ + 1] and ℓ = min{ℓx, ℓy}.

The longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree are:

1. x[i′ . . i] and y[j′ . . j] if ℓx = ℓy;
2. x[i− ℓy + 1 . . i] and y[j − ℓy + 1 . . j] if ℓx 6= ℓy and ℓx = 0;
3. x[i− ℓx + 1 . . i] and y[j − ℓx + 1 . . j] if ℓx 6= ℓy and ℓy = 0;
4. x[i− ℓ+ 1 . . i] and y[j − ℓ+ 1 . . j] if ℓx 6= ℓy and ℓx 6= 0 and ℓy 6= 0.

Proof. If x[i′ . . i− 1] and y[j′ . . j− 1] have the same Cartesian tree then PDx[i′..i−1] =
PDy[j′..j−1]. We will detail the 4 cases:

1. If ℓx = ℓy then PDx[i′..i] = PDy[j′..j] and thus x[i′ . . i] and y[j′ . . j] have the same
Cartesian tree. Thus x[i′ . . i] and y[j′ . . j] are the longest suffixes of x[1 . . i] and
y[1 . . j] having the same Cartesian tree. Longer suffixes with the same Cartesian
tree would contradict the maximality of the length of x[i′ . . i−1] and y[j′ . . j−1].

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 55

2. If ℓx 6= ℓy and ℓx = 0 then PDy[k..j][j − k + 1] = ℓy 6= ℓx for j′ ≤ k ≤ j − ℓy and
PDy[j−ℓy+1..j][ℓy] = 0 = ℓx. Thus by Fact 7, x[i − ℓy + 1 . . i] and y[j − ℓy + 1 . . j]
are the longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree.

3. If ℓx 6= ℓy and ℓy = 0 then PDx[k..i][i − k + 1] = ℓx 6= ℓy for i′ ≤ k ≤ i − ℓx and
PDx[i−ℓx+1..i][ℓx] = 0 = ℓy. Thus by Fact 7, x[i − ℓx + 1 . . i] and y[j − ℓx + 1 . . j]
are the longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree.

4. If ℓx 6= ℓy and ℓx 6= 0 and ℓy 6= 0 then PDx[k..i][i − k + 1] 6= PDy[k′..j][j − k′ + 1]
for i′ ≤ k ≤ i− ℓ and for j′ ≤ k′ ≤ j − ℓ and PDx[i−ℓ+1..i][ℓ] = 0 = PDy[j−ℓ+1..j][ℓ].
Thus by Fact 7, x[i−ℓ+1 . . i] and y[j−ℓ+1 . . j] are the longest suffixes of x[1 . . i]
and y[1 . . j] having the same Cartesian tree.

A diagonal d corresponds to a pair of factors x[i . . s] and y[j . . t] such 1 ≤ i ≤
s ≤ m, 1 ≤ j ≤ t ≤ n, s − i = t − j and d = j − i. Since factors of length 1
always constitute common Cartesian substrings between two strings, the algorithm
Compute-Longest-Cartesian-Substring given in Figure 7 processes diagonals
from −m+ 2 to n− 2. For each diagonals it uses 4 indices i, i′, j and j′ to compare
x[i′ . . i] and y[j′ . . j] starting with the first factors of length 2 of the current diagonal.
It updates indices i, i′, j and j′ according to Lemma 8. It only computes the length ℓ
of the longest common Cartesian substrings of x and y but could easily be computed
to report two positions i in x and j in y such that x[i . . i+ ℓ− 1] and y[j . . j + ℓ− 1]
have the same Cartesian tree with the same complexities.

Theorem 9. Given two strings x and y of numbers of length m and n respectively,
the longest substrings of x and y having the same Cartesian tree can be computed in
time O(mn) and in space O(m+ n).

Proof. Given x and y, the parent-distance representations PDx and PDy can be
computed in space and time O(m) and O(n) respectively. Then the results of Lemma 8
can be applied on any pair of ending positions of substrings of x and y. There are
O(mn) such pairs and the computation for one pair takes constant time if the result
for the correct previous pair is available. By performing the computation diagonal-
wise the result follows.

Example 10. x = 〈70, 84, 63, 74, 86, 97〉 and y = 〈50, 83, 76, 39, 90, 67, 1, 6〉. Then
PDx = 〈0, 1, 0, 1, 1, 1〉 and PDy = 〈0, 1, 2, 0, 1, 2, 0, 1〉. Let us look at starting
positions i′ = 3 in x and j′ = 4 in y:

– PDx[3..3][1] = 0 and PDy[4..4][1] = 0
– PDx[3..4][2] = 1 and PDy[4..5][2] = 1
– PDx[3..5][3] = 1 and PDy[4..6][3] = 2 then i′ becomes 5 and j′ becomes 6
– PDx[5..6][2] = 1 and PDy[6..7][2] = 0 then i′ becomes 6 and j′ becomes 7

thus the longest Cartesian substring of x[3 . . 6] and y[4 . . 7] has length 2.

6 Experiments

The two methods have been implemented in C programming language. The experi-
ments were performed on a computer running MacOS 10.12.6 with an Intel Core i5
1.3 GHz processor and 4GB RAM. We want to compute the length of the longest
common Cartesian substring of x of length m and of y of length n. Assume w.l.o.g.
that m < n.

56 Proceedings of the Prague Stringology Conference 2020

Compute-Longest-Cartesian-Substring(x,m, y, n)

1 PDx ← Compute-Parent-Distance(x,m)
2 PDy ← Compute-Parent-Distance(y, n)
3 maxlength ← 1
4 for d← −m+ 2 to n− 2 do

⊲ Initialization of i, j, i′, j′

5 (i, j)← (2, 2)
6 if d < 0 then
7 i← −d+ 2
8 else if d > 0 then
9 j ← d+ 2

10 (i′, j′)← (i− 1, j − 1)
⊲ Processing diagonal d

11 while i ≤ m and j ≤ n do
12 (ℓx, ℓy)← (PDx[i′..i][i− i′ + 1],PDy[j′..j][j − j′ + 1])

⊲ Application of Lemma 8
13 if ℓx 6= ℓy then
14 if ℓx = 0 then
15 ℓ← ℓy
16 else if ℓy = 0 then
17 ℓ← ℓx
18 else ℓ← min{ℓx, ℓy}
19 (i′, j′)← (i− ℓ+ 1, j − ℓ+ 1)
20 else ⊲ maxlength can only increase when ℓx = ℓy
21 maxlength ← max{maxlength, i− i′ + 1}
22 (i, j)← (i+ 1, j + 1)
23 return maxlength

Figure 7. Computation of the length of the longest Cartesian substrings of x of length m and y of
length n.

The suffix tree with missing suffix links from [2] has been implemented naively
without back propagation and with a simple hashing function. Our implementation
is not linear in the worst case but we argue that for short strings it is faster than the
linear method which is quite intricate and will lead to an increase in runtime for such
short strings. The method for finding the longest Cartesian substring between two
strings is then the following: the parent distance representation PDx and PDy are
computed. Then we construct PDyx = PDy$1PDx$2 where $1 and $2 are terminators
that do not occur in PDx and PDy. Then the suffix tree of PDyx is build for the
part corresponding of the longest string y. For the remaining part the suffix tree is
scanned to determine the fork where to insert the tail of the current suffix. The string
depth of this fork is used to compute the length of the longest common Cartesian
substring. The tail is then not inserted since it is not necessary for our purposes and
will only lead to a loss of time.

For our alternative solution, main long diagonals are processed first. Shortest
diagonals corresponding to prefixes and suffixes of y are processed in a second time.
During the computation of a diagonal, when the length of the remaining part of the
diagonal is too short and will not possibly contribute to a longest common Cartesian
substring, we processed to the next diagonals.

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 57

6.1 Random data

We built random strings of integers with 4 different alphabets [0; 10[, [0; 100[, [0; 1000[
and [0; 10000[. Then we consider 3 different values for n: 50, 125 and 200. For each
value of n we consider 4 values of m: n/10, n/5, n/2.5 and n/1.25.

Figure 8 to 10 show the running times of the two solutions: σ denotes the alphabet
size, alt the times for the alternative solution and ST the times for the suffix tree
based solution. Times are expressed in µseconds.

σ m 5 10 20 40
10 alt 4283 6189 13621 24711

ST 36120 33230 46744 56796
100 alt 4963 7210 13702 25644

ST 40437 39994 46495 58973
1000 alt 4779 7618 14708 25621

ST 39886 42869 50787 58650
10000 alt 4280 7083 14636 25825

ST 36074 40522 51166 58184

Figure 8. Experiments with random data for n = 50

σ m 12 24 48 96
10 alt 16589 34500 71790 150029

ST 98865 95663 108624 132481
100 alt 15577 37178 77217 139539

ST 96253 106864 121404 128341
1000 alt 14420 35633 72197 141706

ST 85163 101248 111795 126697
10000 alt 15112 34439 74415 140266

ST 94438 95248 114660 128906

Figure 9. Experiments with random data for n = 125

σ m 20 40 80 160
10 alt 38677 91698 203764 436527

ST 127756 150781 181238 261578
100 alt 50687 114319 204344 444743

ST 197489 209726 196585 280190
1000 alt 46502 104542 190889 393760

ST 172624 183040 174690 216348
10000 alt 43269 97887 198550 414818

ST 150034 160674 181007 236281

Figure 10. Experiments with random data for n = 200

For n = 50 our alternative solution is always fastest than the suffix tree solution.
For n = 125 our alternative solution is fastest than the suffix tree solution for values
of m up to n/2. For n = 200 our alternative solution is fastest than the suffix tree
solution for values of m up to n/4.

58 Proceedings of the Prague Stringology Conference 2020

6.2 Real data

We use data from the COVID-19 pandemic.1 We extracted the numbers of cases and
numbers of deaths for the 15 most infected countries at that time. Data were given
in reverse chronological order. We trimmed the data for the tailing runs of 0s and 1s
at the end.

Table 1 gives the country numbers and the number of days for cases and deaths
for each country.

♯ Country Cases Deaths
1 China 102 98
2 France 62 53
3 Germany 62 49
4 Iran 68 68
5 Italy 66 65
6 Korea 72 67
7 Spain 63 54
8 Turkey 45 40
9 UK 105 98
10 USA 67 58
11 Russia 47 32
12 Brazil 54 41
13 Canada 63 42
14 Belgium 57 47
15 Netherlands 60 50

Table 1. Country number, number of cases and deaths considered.

Then we computed the length of the longest common Cartesian substrings for
each pair of countries.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 11 8 11 11 10 10 13 9 13 14 9 9 10 11
2 9 12 11 8 9 16 11 11 10 9 11 7 12
3 8 11 8 11 9 11 9 8 12 8 8 11
4 11 10 9 12 8 14 12 8 9 8 10
5 9 10 10 13 11 11 10 12 9 10
6 9 7 9 8 8 8 9 7 8
7 9 10 9 9 9 9 11 11
8 9 12 15 8 9 7 12
9 10 10 9 14 12 11
10 14 9 10 9 10
11 9 9 8 10
12 11 10 8
13 9 8
14 9

Figure 11. Length of the longest common Cartesian substring between countries for the number of
cases of the COVID-19.

Figure 11 shows the results for the number of cases. These results have been
computed in 9381 µs with the Suffix Tree method and in 5904 µs with our alternative
method.

1 We downloaded data from https://www.ecdc.europa.eu. on 27th April 2020

S. Faro et al.: Fast Practical Computation of the Longest Common Cartesian Substrings. . . 59

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 9 8 14 7 10 10 10 10 8 10 8 9 13 10
2 10 10 9 7 7 10 7 9 9 9 9 12 14
3 9 9 8 11 9 11 10 8 7 8 10 7
4 8 9 10 13 11 9 9 8 9 10 8
5 8 8 7 10 14 10 11 10 8 11
6 8 7 9 7 9 8 7 8 8
7 10 8 9 9 10 9 9 8
8 7 9 10 7 7 11 8
9 8 9 10 10 9 9
10 8 11 8 11 9
11 9 8 10 9
12 7 7 9
13 9 10
14 8

Figure 12. Length of the longest common Cartesian substring between countries for the number of
deaths of the COVID-19.

Figure 12 shows the results for the number of deaths. These results have been
computed in 8727 µs with the Suffix Tree method and in 4758 µs with our alternative
method.

Again, these results show that for such short strings our alternative solution is
faster than the suffix tree based method.

In our experiments, our alternative solution is faster than the suffix tree solution
in 38 cases out of 50 cases (on both random and real data); when it is faster, our
alternative solution is 3.81 times faster on average (up to 8.43 times for the maximum),
and when it is slower, it is 1.3 times slower on average than the suffix tree solution
(up to 1.82 for the maximum).

7 Conclusion

In this article we presented a classical suffix tree based solution for computing the
longest Cartesian substrings between two strings. This solution is based on the parent-
distance representation of the two strings and runs in linear time and linear extra-
space in addition to the two strings and their parent-distance representation. Then
we proposed an alternative solution based on dynamic programming that runs in
quadratic time in the worst case and in constant extra-space in addition to the two
strings and their parent-distance representation. We presented experiments that show
that our alternative solution runs faster for short strings than the suffix tree based
solution. Further works would include the search for the longest approximate common
Cartesian substrings between two strings but the notion of approximation in this
context has to be defined.

References

1. M. Bataa, S. G. Park, A. Amir, G. M. Landau, and K. Park: Finding periods in
Cartesian tree matching, in Combinatorial Algorithms - 30th International Workshop, IWOCA
2019, Pisa, Italy, July 23-25, 2019, Proceedings, C. J. Colbourn, R. Grossi, and N. Pisanti, eds.,
vol. 11638 of Lecture Notes in Computer Science, Springer, 2019, pp. 70–84.

2. R. Cole and R. Hariharan: Faster suffix tree construction with missing suffix links. SIAM
J. Comput., 33(1) 2003, pp. 26–42.

60 Proceedings of the Prague Stringology Conference 2020

3. M. Crochemore and L. M. S. Russo: Cartesian and Lyndon trees. Theor. Comput. Sci.,
806 2020, pp. 1–9.

4. E. D. Demaine, G. M. Landau, and O. Weimann: On Cartesian trees and Range Minimum
Queries. Algorithmica, 68(3) 2014, pp. 610–625.

5. H. N. Gabow, J. L. Bentley, and R. E. Tarjan: Scaling and related techniques for geometry
problems, in Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1984, Washington, DC, USA, R. A. DeMillo, ed., ACM, 1984, pp. 135–143.

6. G. Gu, S. Song, S. Faro, T. Lecroq, and K. Park: Fast multiple pattern Cartesian
tree matching, in WALCOM: Algorithms and Computation - 14th International Conference,
WALCOM 2020, Singapore, March 31 - April 2, 2020, Proceedings, M. S. Rahman, K. Sadakane,
and W. Sung, eds., vol. 12049 of Lecture Notes in Computer Science, Springer, 2020, pp. 107–119.

7. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theor. Comput.
Sci., 307(1) 2003, pp. 173–178.

8. S. G. Park, A. Amir, G. M. Landau, and K. Park: Cartesian tree matching and indexing,
in 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019,
Pisa, Italy., N. Pisanti and S. P. Pissis, eds., vol. 128 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2019, pp. 16:1–16:14.

9. J. Shun and G. E. Blelloch: A simple parallel Cartesian tree algorithm and its application
to parallel suffix tree construction. ACM Trans. Parallel Comput., 1(1) 2014, pp. 8:1–8:20.

10. S. Song, C. Ryu, S. Faro, T. Lecroq, and K. Park: Fast Cartesian tree matching, in String
Processing and Information Retrieval - 26th International Symposium, SPIRE 2019, Segovia,
Spain, October 7-9, 2019, Proceedings, N. R. Brisaboa and S. J. Puglisi, eds., vol. 11811 of
Lecture Notes in Computer Science, Springer, 2019, pp. 124–137.

11. J. Vuillemin: A unifying look at data structures. Commun. ACM, 23(4) 1980, pp. 229–239.

Forward Linearised Tree Pattern Matching Using

Tree Pattern Border Array

Jan Trávńıček, Robin Ob̊urka, Tomáš Pecka⋆, and Jan Janoušek⋆⋆

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University in Prague
Thákurova 9

160 00 Praha 6
Czech Republic

{Jan.Travnicek, oburkrob, Tomas.Pecka, Jan.Janousek}@fit.cvut.cz

Abstract. We define a tree pattern border array as a property of linearised trees anal-
ogous to border arrays from the string domain. We use it to define a new forward tree
pattern matching algorithm for ordered trees, which finds all occurrences of a single
given linearised tree pattern in a linearised input tree. As with the classical Morris-Pratt
algorithm, the tree pattern border array is used to determine shift lengths in the search-
ing phase of the tree pattern matching algorithm. We compare the new algorithm with
the best performing previously existing algorithms based on backward linearised tree
pattern matching algorithms, (non-)linearised tree pattern matching algorithms using
finite tree automata or stringpath matchers. We show that the presented algorithm
outperforms these for single tree pattern matching.

Keywords: tree processing, tree linearisation, Morris-Pratt algorithm

1 Introduction

Trees are one of the fundamental data structures used in Computer Science and the
theory of formal tree languages has been extensively studied and developed since
the 1960s [9,11]. Tree pattern matching on node-labeled trees is an important al-
gorithmic problem with applications in many tasks such as compiler code selection,
interpretation of nonprocedural languages, implementation of rewriting systems, or
markup languages processing. Trees can be represented as a string by various lineari-
sations [16]. Such a linear notation can be obtained by a corresponding tree traversal.
Moreover, every sequential algorithm on a tree traverses its nodes in a sequential
order, which corresponds to some linear notation. Such a linear representation need
not be built explicitly.

Tree patterns are trees whose leaves can be labelled by a special wildcard, the
nullary symbol S, which serves as a placeholder for any subtree. Since the linear
notation of a subtree of a tree is a substring of the linear notation of that tree, the
subtree matching and tree pattern matching problems are in many ways similar to the
string pattern matching problem. We note that the tree pattern matching problem is
more complex than the string matching one because there can be at most n(n− 1)/2
distinct substrings of a string of size n, whereas there can be at most 2n−1+n distinct
tree patterns which match a tree of size n [13].

⋆ This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/208/OHK3/3T/18.

⋆⋆ The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

Jan Trávnı́ček, Robin Obůrka, Tomáš Pecka, Jan Janoušek: Forward Linearised Tree Pattern Matching Using Tree Pattern Border Array, pp. 61–73.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

62 Proceedings of the Prague Stringology Conference 2020

Border array and borders in general are one of well-studied string properties used
in various efficient single pattern string pattern matching algorithms (Morris-Pratt
and Knuth-Morris-Pratt algorithms, etc.) [17,15,4], and multi-pattern ones (Aho-
Corasick) [1].

For unrestricted tree pattern sets, among the fastest pattern matching algorithms
in practice are algorithms based on deterministic frontier-to-root (bottom-up) tree au-
tomata (DFRTAs) [6,8,12] and Hoffmann-O’Donnell-style stringpath matchers [2,12].
The latter uses Aho-Corasick pattern matching algorithm, but processes the tree in
its natural representation.

Tree pattern matching algorithms processing a linearised representation of a tree
exist as well. They either use pushdown automata [10] or, in the case of single pattern
matching, adapt ideas known from backward string pattern matching [20]. However,
no existing tree pattern matching algorithm uses the border array constructed for a
linearised tree pattern directly on linearised trees.

The best performing algorithms using deterministic tree automata or deterministic
pushdown automata generally run in Θ(n+occ) time, where n is the size of the subject
tree [8]. On the other hand, the backward tree pattern matching algorithm require
Ω(n/m+ occ) and O(m · n+ occ) time, where m is the size of the tree pattern [20].

While modifying forward string pattern matching to forward subtree matching
(searching for occurrences of given subtrees) is straightforward, this is not the case
for forward tree pattern matching, where complications arise due to the use of nullary
symbol S and matched subtrees being possibly recursively nested.

In this paper, a definition of tree pattern border array is presented. The size of the
tree pattern border array table is linear with the size of the linearised pattern. The tree
pattern border array is later used in the design of a new forward tree pattern matching
algorithm. The presented forward tree pattern matching algorithm is a modification of
the Morris-Pratt algorithm from the string domain and even though it does not keep
the linear complexity of the searching phase with respect to the size of the subject tree
n, it often performs better in practice than sublinear backward tree pattern matching
algorithm [20]. Even though the Knuth-Morris-Pratt algorithm is a straight-forward
extension of the Morris-Pratt algorithm, this is not the case in trees and therefore the
presented algorithm is based on the Morris-Pratt algorithm. Our experimental results
show that the presented algorithm outperforms even the aforementioned DFRTAs and
Aho-Corasick stringpath matchers in single-pattern matching case.

The paper is organised as follows: Section 2 recalls basic definitions and properties
of trees and the Morris-Pratt algorithm. Section 3 defines the tree pattern border array
and presents the new forward linearised tree pattern matching algorithm based on
the Morris-Pratt algorithm. Section 4 compares the results with other state-of-the-art
algorithms. Some concluding remarks are presented in Section 5.

2 Basic notions

An alphabet is a finite nonempty set of symbols. In a ranked alphabet A, each symbol
ℓ is assigned a nonnegative arity or rank denoted by Arity(ℓ). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are called nullary (constants),
unary, binary, . . ., p-ary symbols, respectively. We assume that A contains at least
one constant. In the examples, we use numbers at the end of identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 63

A string s is a sequence of n symbols s1s2s3 · · · sn from a given alphabet, where
n is the size of the string. A sequence of zero symbols is called the empty string. The
empty string is denoted by symbol ε. A s[i .. j] is a substring (factor) si · · · sj of s,
note that ε substring of s is obtained by s[i..i−1]. A prefix and a suffix of a string s of
length n is a substring s[1..j] and s[i..n], respectively, where 1 ≤ j ≤ n and 1 ≤ i ≤ n.
A proper prefix and a proper suffix of s is a prefix and a suffix, respectively, which is
not equal to s.

Based on concepts and notations from graph theory [3], a rooted tree t is a weakly
connected acyclic directed graph t = (V,E) with a special node r ∈ V , called the
root, such that r has in-degree 0, all other nodes of t have in-degree 1, and there is
just one path from the root r to every f ∈ V and f 6= r, where a path from a node
f0 to a node fn is a sequence of nodes (f0, f1, ..., fn) for n > 0 and (fi, fi+1) ∈ E for
each 0 ≤ i < n. Nodes of a rooted tree with out-degree 0 are called leaves.

A node g is a direct descendant of node f if a pair (f, g) ∈ E and descendant of
node f if (f, f1, f2, ..., fn, g) for n ≥ 0 is a path in t.

A tree is an ordered, ranked and labelled rooted tree with nodes labelled by symbols
from a ranked alphabet satisfying that the out-degree of a node f labelled by symbol
ℓ ∈ A equals Arity(ℓ) and with the direct descendants g1, g2, . . . , gn of a node f
ordered.

A subtree (a complete subtree) of tree t = (V,E) is any tree t′ = (V ′, E ′) such
that:

1. V ′ is an nonempty subset of V ,
2. E ′ = (V ′ × V ′) ∩ E, and
3. no node of V \ V ′ is a descendant of a node in V ′.

The prefix notation pref (t) of a tree t is defined as follows:

1. pref (ℓ) = ℓ0 if ℓ is a leaf,
2. pref (t) = ℓn pref (t1) pref (t2) · · · pref (tn), where ℓ is the label of the root of tree

t, n = Arity(ℓ) and t1, t2, . . . , tn are direct descendants of the root of t.

Let s = s1s2 · · · sn, n ≥ 1, be a string over a ranked alphabet A. Then, the arity
checksum ac(s) =

∑n
i=1 Arity(si) − n + 1. Let pref (t) and s of size n be a tree t in

prefix notation and a substring of pref (t), respectively. Then, s is the prefix notation
of a subtree of t, if and only if ac(s) = 0, and ac(s[1..j]) ≥ 1 for all 1 ≤ j < n [16].

Example 1. Consider a tree t1r over a ranked alphabet A = {a2, a1, a0}, pref (t1r) =
a2 a2 a0 a1 a0 a1 a0. Trees can be represented graphically, as is done for tree t1r
in Figure 1a.

To define a tree pattern, we use a special wildcard symbol S 6∈ A, Arity(S) = 0,
which serves as a placeholder for any subtree. A tree pattern is defined as a labelled
ordered tree over ranked alphabet A ∪ {S}. We will assume that the tree pattern
contains at least one node labelled by a symbol from A. Note that the wildcard
symbol can only label leaves of tree pattern.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject tree t
at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of t such that
the tree p′, obtained from p by substituting the subtree ti for the i-th occurrence of
S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted at n.

64 Proceedings of the Prague Stringology Conference 2020

a2

a2

a0 a1

a0

a1

b0

(a) Tree t1r over a ranked
alphabet from Exam-
ple 1.

a2

a0 a1

a0

(b) Subtree (tree) p1r
from Example 2.

a2

S a1

S

(c) Tree pattern p2r
from Example 2.

Figure 1. Trees and tree patterns over a ranked alphabet from Example 1 and Example 2.

Example 2. Consider a tree t1r from Example 1, which is illustrated in Figure 1a.
Consider a subtree p1r over ranked alphabet A, pref (p1r) = a2 a0 a1 a0 and a tree
pattern p2r over ranked alphabet A∪{S}, pref (p2r) = a2 S a1 S, which are illustrated
in Figure 1b and Figure 1c. Tree pattern p1r occurs once in t1r — match is at node
2 of t1r. Tree pattern p2r occurs twice in t1r, it matches at nodes 1 and 2 of t1r.

2.1 Forward string pattern matching algorithm

A classical representant of a forward string pattern matching algorithm is the Morris-
Pratt algorithm [17,15]. The algorithm’s execution splits into preprocessing and search-
ing phases.

A precomputed table to determine the length of shift and also to know the num-
ber of symbols not required to be matched again in the following match attempt is
constructed during the preprocessing phase. The table used in the algorithm is the
border array [18,5]. The border array for a string of length m can be constructed in
O(m) time.

Note the border array is defined as in [5] without explicitly defining borders to
ease transition from strings to linearised tree patterns where concepts of prefix and
suffix do not apply.

Definition 3 (border array ([5]) B(s)). Let s be a string of length n. The border
array B(s) is defined for each index 1 ≤ i ≤ n such that B(s)[1] = 0 and otherwise
B(s)[i] = max({0} ∪ {k : s[1..k] = s[i− k + 1..i] ∧ k ≥ 1 ∧ i− k + 1 > 1}).

From the definition, the substrings s[1..k] and s[i − k + 1..i] are referred to as
borders.

Example 4. Consider a string s = ababc of length 5. The border array B(s) =
0, 0, 1, 2, 0.

The algorithm locates all occurrences of a pattern in a text in a searching phase.
Note that the presented algorithms deviates from the classical presentation of the
Morris-Pratt algorithm to simplify the transition from its string version to a tree
version.

The searching phase of the Morris-Pratt algorithm has time complexity O(m+n).
The algorithm makes at most 2n− 1 comparisons during the searching phase [17,15].
Line 10 of Algorithm 1 represents the shift and line 11 of Algorithm 1 represents a
carry of information of how many symbols do not need to be matched again.

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 65

Algorithm 1: Morris-Pratt matching function.
Input: The subject string s of size n, the pattern string p of size m, the border array table

B(p)
Result: A list of matches.

1 begin
2 i := 0
3 j := 1
4 while i ≤ n−m do
5 while j ≤ m and s[i+ j] = p[j] do
6 j += 1
7 end
8 if j > m then yield i+ 1
9 if j 6= 1 then

10 i += j − B(p)[j − 1]− 1
11 j := B(p)[j − 1] + 1

12 else
13 i += 1
14 end

15 end

16 end

3 Forward Linearised Tree Pattern Matching

The pattern occurrences in linear notation are represented by substrings of trees in
the linear notation. They can contain “gaps” given by a special wildcard symbol S,
which serves as a placeholder for any subtree.

The string pattern matching algorithm must be modified to handle these gaps.
The wildcard symbol S represents any subtree. Moreover, matched subtrees may be
possibly nested. The wildcard symbol S therefore needs special care.

In order to handle these gaps a Subtree jump table structure is defined. The struc-
ture was introduced in [14].

Definition 5 (subtree jump table for prefix notation sjt(pref (t))). Let t and
pref (t) = ℓ1ℓ2 · · · ℓn, n ≥ 1, be a tree and its prefix notation, respectively. A sub-
tree jump table for prefix notation sjt(pref (t)) is a mapping from a set {1..n} into
a set {2..n + 1}. If ℓiℓi+1 · · · ℓj−1 is the prefix notation of a subtree of tree t, then
sjt(pref (t))[i] = j, 1 ≤ i < j ≤ n+ 1.

Note that the definition of subtree jump table for prefix notation is applicable to
tree patterns without changes as well.

Informally, the subtree jump table contains an entry for each subtree r of tree t.
The entry for subtree r is located at the position of its root in the prefix notation
pref (t) of the tree t. The entry stores an index into string pref (t) to a symbol that
is one after the last of the subtree r, i.e., position of the root of r plus the length
of pref (r). This structure has the same size as the prefix notation of the tree t. The
construction time is O(n) where n is the length of pref (t) [14].

3.1 Linearised tree border

The Morris-Pratt algorithm uses shift heuristics based on borders. One needs to
define a tree pattern border array in order to obtain similar shift heuristics in the
Morris-Pratt algorithm modification for trees.

66 Proceedings of the Prague Stringology Conference 2020

In order to define the tree pattern border array, first, let us define equivalence of
linear representations of a tree pattern and its factor.

Definition 6 (matches relation s matches r). Let S be a wildcard symbol repre-
senting a complete subtree in prefix ranked notation of trees. Two strings s and r are
in relation matches if:

s = ℓs′ r = ℓr′ and s′ matches r′

and ℓ ∈ A,
s = Ss′ r = Sr′ and s′ matches r′,
s = ℓ1 · · · ℓms′ r = Sr′ and ac(ℓ1 · · · ℓm) = 0

and ∀k, 1 ≤ k < m, ac(ℓ1 · · · ℓk) ≥ 1
and s′ matches r′,

s = Ss′ r = ℓ1 · · · ℓmr′ and ac(ℓ1 · · · ℓm) = 0
and ∀k, 1 ≤ k < m, ac(ℓ1 · · · ℓk) ≥ 1
and s′ matches r′,

s = Ss′ r = ℓ1 · · · ℓm and ∀k, 1 ≤ k ≤ m, ac(ℓ1 · · · ℓk) ≥ 1,
s = ε or r = ε

The two strings s and r are in relation matches if symbols of strings r and s
compare on corresponding positions, wildcards in string r correspond to complete
subtrees in string s, and wildcards in string s correspond to complete subtrees within
string r and possibly incomplete subtree at the end of string r. Note that the cor-
responding symbols may not be on the same indexes in strings s and r as a subtree
corresponding to wildcard S may be longer than a single symbol.

Informally, the two strings s and r representing prefixes of prefix notation of
a tree pattern are in relation matches if the corresponding tree pattern subgraphs
structurally and symbol-wise align.

Definition 7 (tree pattern border array B(pref (p))). Let pref (p) be a tree pat-
tern in a prefix notation of length n. The B(pref (p)) is defined for each index 1 ≤
i ≤ n such that B(pref (p))[1] = 0 and otherwise B(pref (p))[i] = max({0} ∪ {k :
pref (p) matches pref (p)[i− k + 1..i] ∧ k ≥ 1 ∧ i− k + 1 > 1}).

Notice that the definition of tree pattern border array is different from the defi-
nition of the border array for strings in the use of the matches relation and in use of
the complete linear representation of tree pattern as its left argument.

1 2 3 4 5 6 7 8
pref(p) a2 a2 S a2 b1 S a0 a0

pref(p)[2..5] a2 ⊢ S ⊣ a2 mismatch at position 8
pref(p)[3..5] ⊢ S ⊣ a2 b1 match
pref(p)[4..5] a2 b1 mismatch at position 2
pref(p)[5..5] b1 mismatch at position 1
pref(p)[6..5] match because pref(p)[6..5] = ε

Table 1. Trace of naive computation of pref (p) matches pref (p)[j + 1..5] for 1 ≤ j ≤ 5 and
pref (p) = a2 a2 S a2 b1 S a0 a0.

Example 8. Let pref (p) = a2 a2 S a2 b1 S a0 a0 be a prefix notation of a tree pattern
p. In order to compute B(pref (p))[5] according to Definition 7 the computation of
pref (p) matches pref (p)[j + 1..5] for 1 ≤ j ≤ 5 is necessary.

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 67

The minimal j for which pref (p) matches pref (p)[j + 1..5] is 2, therefore, the
B(pref (p))[5] = 5−2 = 3. The process of computation of relation matches is depicted
in Table 1.

The visualisation of the alignment of pref (p) and pref (p)[2..5], internally com-
puted by the matches relation is depicted in Figure 2 on non-linearised tree pattern
p and tree pattern p subgraph corresponding to pref (p)[2..5]. The other alignment
visualisations can be depicted in a similar manner.

a2

a2

S a2

b1

S

a0

a0

(a) Tree pattern p and the sub-
graph of p corresponding to the
prefix of pref (p) relevant to the
computation of relation matches.

a2

S a2

b1

(b) The subgraph of
p corresponding to
pref (p)[2..5].

a2

a2

S a2

b1

S

a0

a0

a2

S a2

b1

=

= 6=

(c) Visualisation of the
alignment.

Figure 2. Visualisation of a single alignment of p and subgraph corresponding to pref (p)[2..5] in
computation of pref (p) matches pref (p)[j + 1..5]) for 1 ≤ j ≤ 5.

The B(pref (p)) can naively be implemented using Definition 7. The relation
matches is easy to implement using iteration with the help of sjt(pref (p)). The naive
computation requires O(m3) time, where m is the length of pref(p).

The computation of B(pref (p)) can also be done in quadratic time with respect
to the length of pref (p). All the factors beginning at offset are tested in one iteration
through the pattern pref (p) to determine the result of pref (p)matches pref (p)[offset+
1..i] ∀ 1 ≤ offset ≤ i ≤ m. This approach avoids repeating some comparisons. One
iteration through pref (p) takes O(m) time and has to be repeated m − 1 times for
different values of offset . The procedure of creating B(pref (p)) is formalised in Algo-
rithm 2.

3.2 Forward linearised tree pattern matching algorithm

One of the usages of the border array is in the Morris-Pratt algorithm. The string
version of the algorithm consists of two alternating components – occurrence check
and shift computation. Both can be adapted to trees with the later requiring the tree
pattern border array defined.

The Algorithm 3 is a modification of the Morris-Pratt algorithm for strings. It
uses index j into the pref (p) and two indexes i and offset into the pref (s). The index
i holds the position of the current attempt and offset holds the position of currently
compared symbol. Index offset is needed due to the “elasticity” of the pattern caused
by the wildcards. The shift distances are precomputed but otherwise the computation
is unchanged, however, the number of symbols that are not required to be matched
again is derived from the border array and is limited by the first occurrence of the
wildcard due to variability of the subtree in place of the wildcard.

68 Proceedings of the Prague Stringology Conference 2020

Algorithm 2: Computation of tree pattern border array.
Input: A pattern tree pref (p) (pattern) of size m and a vector of integers sjt(pref (p))
Output: A vector of integers B(pref (p)) indexed as [1..m]

1 begin
2 for i := 1 to m do B(pref(p))[i] := 0
3 for offset := 1 to m do
4 i := 1 /* index into full pref(p) */

5 j := offset + 1 /* index into a factor of pref(p) */

6 while True do
7 if i > m then
8 while j ≤ m do
9 B(pref (p))[j] := max (B(pref (p))[j], j − offset)

10 j += 1

11 end
12 break

13 else if j > m then
14 break
15 else if pref (p)[i] = pref (p)[j] then
16 B(pref (p))[j] := max (B(pref (p))[j], j − offset)
17 i += 1
18 j += 1

19 else if pref (p)[i] = S ∨ pref (p)[j] = S then
20 for k := j to sjt(pref(p))[j]− 1 do
21 B(pref (p))[k] := max (B(pref (p))[k], k − offset)
22 end
23 i := sjt(pref (p))[i] /* skip S */

24 j := sjt(pref (p))[j]

25 else
26 break /* mismatch */

27 end

28 end

29 end

30 end

Theorem 9. Given a tree pattern p in prefix notation pref (p) and tree pattern bor-
der array B(pref (p)) constructed by Algorithm 2, the Algorithm 3 does not skip any
occurrence of the pattern p in an input tree t.

Proof. Assume that the match attempt found a mismatch on j-th symbol of the
pattern, therefore the shift is either by single position if j = 1, which is always safe,
or, according to the tree pattern border array, j − B(pref (p))[j − 1]− 1 if j ≥ 1.

Assume, that for the shift where j ≥ 1 there is a shorter shift by k positions,
where 0 < k < j − B(pref (p))[j − 1] − 1. It must therefore be possible to match
pref (p)[k..j − 1] with the pattern pref (p) itself. However, the shift for mismatch at
j-th position is derived from the B(pref (p))[j−1], which according to the Definition 7
failed to match pref (p)[k..j − 1] with the pattern pref (p) itself by Definition 6 for
each 0 < k < j − B(pref (p))[j − 1]− 1. ⊓⊔

3.3 Example

Example 10. Consider a tree pattern p and a subject s with their respective repre-
sentations in prefix notation pref (p) = a2 a2 S a2 b1 S a0 a0 and pref (s) = a2 a2

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 69

Algorithm 3: Forward tree pattern matching algorithm
Input: The subject tree in pref (s) notation of size n, the tree pattern in pref (p) notation

of size m, and a vector of integers sjt(pref (p))
Input: A vector of integers B(pref (p))
Result: Locations of occurrences of the tree pattern p in the subject tree s.

1 begin
2 Spos := min({j : pref (p)[j] = S ∧ 1 ≤ j ≤ m})
3 shift[1] := 1
4 for i := 2 to m+ 1 do shift[i] := i− B(pref (p))[i− 1]− 1
5 i := 0
6 j := 1
7 while i ≤ n−m do
8 offset := i+ j
9 while j ≤ m and offset ≤ n do

10 if pref (p)[j] = pref (s)[offset] then
11 j += 1
12 offset += 1

13 else if pref (p)[j] = S then
14 offset := sjt(pref (s))[offset]
15 j += 1

16 else
17 break
18 end

19 end
20 if j > m then yield i+ 1
21 i += shift(pref (p))[j]
22 j := max(1,min(Spos, j)− shift(pref (p))[j])

23 end

24 end

id 1 2 3 4 5 6 7 8 9
pref(p) a2 a2 S a2 b1 S a0 a0

B(pref(p)) 0 1 2 2 3 4 5 6
shift(pref(p)) 1 1 1 1 2 2 2 2 2

Table 2. The tree pattern border array B(pref (p)) and shift(pref (p)) used in Algorithm 3.

a2 a0 a2 b1 b0 a0 a0 a2 a2 a0 a2 b1 b0 a0 a0. Table 2 shows the tree pattern border
array and derived shift function values for pattern p and Table 3 shows the run of
the tree pattern matching algorithm. Matches are at indexes 2 and 10.

3.4 Time complexity

Consider a pattern p of length m and a subject s of length n. The time complexity
of the preprocessing phase (construction of sjt(pref (p)) and Algorithm 2) is O(m2).

The classical Morris-Pratt algorithm runs in linear time with respect to the subject
size thanks to the saving some subject to pattern symbol comparisons arising from the
border array properties. Since the Forward linearised tree pattern matching algorithm
skips some parts of the subject tree where wildcards are and the information about
symbols inside the skipped subtree is not known while doing so, the number of symbols
not needed to be matched in the next pattern to subject alignment is limited by the
first subtree wildcard in the tree pattern. Matching itself therefore takes O(m·n+occ)

70 Proceedings of the Prague Stringology Conference 2020

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pref(s) a2 a2 a2 a0 a2 b1 b0 a0 a0 a2 a2 a0 a2 b1 b0 a0 a0
sjt 18 10 9 5 9 8 8 9 10 18 17 13 17 16 16 17 18

1 a2 a2 ⊢ S ⊣ a2
2 a2 a2 S a2 b1 S a0 a0
3 a2
4 a2 a2
5 a2
6 a2
7 a2
8 a2
9 a2 a2 S a2 b1 S a0 a0

Table 3. Algorithm 3 run for the subject and the pattern from Example 10.

in general and Θ(n+ occ) time when the pattern tree does not contain any wildcard.
Time required for construction of sjt(pref (s)) is included.

4 Some empirical results

An existing Forest FIRE toolkit and accompanying FIRE Wood graphical user inter-
face [7,19] were extended with the implementation of the presented algorithm. Many
tree pattern matching algorithms based on automata, like those described in [2,6,8,12]
and others, are already implemented within the toolkit. Single pattern matching al-
gorithm based on linearisations of both pattern tree and subject tree utilising a back-
ward shift heuristics [20] is also present. Performance of the presented algorithm is
compared with some of the best-performing algorithms in the toolkit based on auto-
mata, according to the results in [8], and with the algorithm based on linearisation of
tree structures utilising a backward shift heuristics. The running time of the pattern
preprocessing was not measured as it is done only once for all queries by the pattern
on many subjects.

We have measured the following running times of searching phases: 1) our new
forward tree pattern matching algorithm based on linearisations of pattern and sub-
ject tree (FLTPM); 2) an algorithm based on linearisation of pattern and subject tree
utilising a backward shift heuristics (BLTPM); 3) an algorithm based on the use of a
deterministic frontier-to-root (bottom-up) tree automaton constructed for the pattern
(DFRTA); and 4) an algorithm based on the use of a Aho-Corasick automaton con-
structed for the pattern’s stringpath set (AC). The construction of a subtree jump
table is included in the running time for both FLTPM and BLTMP algorithms and
these algorithms’ running times were recorded with trees represented in their prefix
notation. Additionally, a modified version of the DFRTA algorithm reading prefix no-
tation of a subject was implemented in the Forest FIRE toolkit as another reference
algorithm (DFRTA Prefix). Since this algorithm doesn’t need subtree jump table, its
construction isn’t included in the running time of DFRTA Prefix algorithm.

The performance of the new algorithm was measured using a pattern set previ-
ously used to measure the performance of preexistent algorithms in the Forest FIRE
toolkit. This pattern set was obtained by taking the Mono project’s X86 instruction
set grammar and, for each grammar production, taking the tree in the production’s
right-hand side, and replacing any nonterminal occurrences by wildcard symbol oc-
currences. The resulting pattern set consists of 460 tree patterns of varying sizes.

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 71

Two sets of subject trees were used previously to measure the performance of
Forest FIRE toolkit and the same two sets were used in the benchmarking of the new
algorithm. The two subject sets were a set of 150 trees of approximately 500 nodes
each and a set of 500 trees of approximately 150 nodes each.

As in the case of the BLTPM algorithm, the new algorithm is a single-pattern
one. All chosen algorithms were executed with each pattern from the pattern set and
each subject tree from two subject sets individually. The running times of the pattern
matching algorithms were aggregated for a single tree pattern and all subject trees.

Benchmarking was conducted on a 2GHz Intel Core i7 with 24GB of RAM run-
ning OpenSUSE GNU/Linux version 15.2 using Java SE 11.

The linearised representations of subject trees and pattern trees were constructed
in-memory and are linear in size with respect to the sizes of the subject trees and
the pattern trees. The time required to construct the linear representation was not
included in the running time of the searching phase. Also, because the search time
was our primary concern, we do not consider memory use. Figure 3a and Figure 3b
show the search times of tree patters with a wildcard symbol as boxplots. The figures
of BLTPM and FLTPM algorithms were split to three based on the distance of the
first wildcard symbol from the beginning of the pattern in its prefix representation
to present this distance affects the running time. The distances are one symbol, two
symbols, and three and more symbols. Similarly, Figure 4a and Figure 4b show the
search times of tree patterns without a wildcard symbol as boxplots. The figures for
BLTPM and FLTPM algorithms were split to three based on the length of the tree
patterns, to patterns of length one, two, and three and more.

(a) Results on 150 trees of ca. 500 nodes each. (b) Results on 500 trees of ca. 150 nodes each.

Figure 3. Distributions of pattern matching times for the respective algorithms and patterns with
wildcards.

The BLTPM algorithm generally runs faster for longer tree patterns without a
wildcard or with a wildcard further from the beginning of the pattern whereas the
FLTPM algorithm is unaffected by the wildcard position nor by the length of the
pattern. The plots are clearly showing that on average, our new forward linearised
tree pattern matching algorithm considerably outperforms the existing ones based on
the automata approach for the single-pattern case (note the logarithmic scale) and
even the backward linearised tree pattern matching algorithm.

72 Proceedings of the Prague Stringology Conference 2020

(a) Results on 150 trees of ca. 500 nodes each. (b) Results on 500 trees of ca. 150 nodes each.

Figure 4.Distributions of pattern matching times for the respective algorithms and patterns without
wildcards.

5 Concluding remarks

We presented a property of linearised trees similar to border arrays from strings. Using
tree pattern border arrays, a new forward tree pattern matching algorithm similar to
the Morris-Pratt algorithm for strings is defined. The algorithm was designed for trees
represented in the prefix notation, but the idea can be adapted to other notations.
The algorithm was empirically compared with other pattern matching algorithms and
was shown to perform well in practice. Future work should focus on the identification
of properties of the tree pattern border array to improve the preprocessing time and
modification of the shift heuristics similar to the one used in the Knuth-Morris-Pratt
algorithm. Future work should also include an investigation into a shift heuristics for
multiple tree patterns, i.e., into a modification of the Aho-Corasick algorithm.

References

1. A. Aho and M. Corasick: Efficient string matching: An aid to bibliographic search. Commun.
ACM, 18 06 1975, pp. 333–340.

2. A. V. Aho, M. Ganapathi, and S. W. K. Tjiang: Code generation using tree matching and
dynamic programming. ACM Trans. Program. Lang. Syst., 1989, pp. 491–516.

3. A. V. Aho and J. D. Ullman: The theory of parsing, translation, and compiling, Prentice-
Hall, 1972.

4. R. Beal and D. Adjeroh: Border array for structural strings, in Combinatorial Algorithms,
S. Arumugam and W. F. Smyth, eds., Berlin, Heidelberg, 2012, Springer Berlin Heidelberg,
pp. 189–205.

5. R. Beal and D. Adjeroh: Border array for structural strings, in Combinatorial Algorithms,
S. Arumugam and W. F. Smyth, eds., Berlin, Heidelberg, 2012, Springer Berlin Heidelberg,
pp. 189–205.

6. D. R. Chase: An improvement to bottom-up tree pattern matching, in POPL, ACM Press,
1987, pp. 168–177.

7. L. Cleophas: Forest FIRE and FIRE Wood: Tools for tree automata and tree algorithms, in
FSMNLP, J. Piskorski, B. W. Watson, and A. Yli-Jyrä, eds., vol. 19 of Frontiers in Artificial
Intelligence and Applications, IOS Press, 2008, pp. 191–198.

8. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Department of
Mathematics and Computer Science, Eindhoven University of Technology, Apr. 2008.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi: Tree automata: Techniques and applications, 2007,
http://www.grappa.univ-lille3.fr/tata/.

J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 73

10. T. Flouri, J. Janoušek, B. Melichar, C. S. Iliopoulos, and S. P. Pissis: Tree template
matching in ranked ordered trees by pushdown automata, in Implementation and Application of
Automata, B. Bouchou-Markhoff, P. Caron, J.-M. Champarnaud, and D. Maurel, eds., vol. 6807
of Lecture Notes in Computer Science, Springer Verlag, 2011, pp. 273–281.

11. F. Gécseg and M. Steinby: Tree Languages, vol. 3 of Handbook of Formal Languages,
Springer, 1997, pp. 1–68.

12. C. M. Hoffmann and M. J. O’Donnell: Pattern matching in trees. Journal of the ACM,
29(1) January 1982, pp. 68–95.

13. J. Janoušek: Arbology: Algorithms on trees and pushdown automata, PhD thesis, habilitation
thesis, Brno University of Technology, 2010, submitted, 2010.

14. J. Janoušek, B. Melichar, R. Polách, M. Poliak, and J. Trávńıček: A full and linear
index of a tree for tree patterns, in Descriptional Complexity of Formal Systems, H. Jürgensen,
J. Karhumäki, and A. Okhotin, eds., vol. 8614 of Lecture Notes in Computer Science, Springer
International Publishing, 2014, pp. 198–209.

15. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt: Fast pattern matching in strings. SIAM
journal on computing, 6(2) 1977, pp. 323–350.

16. B. Melichar, J. Janoušek, and T. Flouri: Arbology: trees and pushdown automata. Ky-
bernetika, 48, No.3 2012, pp. 402–428.

17. J. Morris Jr and V. Pratt: A linear pattern-matching algorithm, Technical Report 40,
University of California, Berkeley, 1970.

18. W. F. Smyth: Computing Patterns in Strings, Addison-Wesley-Pearson Education Limited,
2003.

19. R. Strolenberg: ForestFIRE & FIREWood, A Toolkit & GUI for Tree Algorithms, Master’s
thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology,
June 2007, http://alexandria.tue.nl/extra1/afstversl/wsk-i/strolenberg2007.pdf.

20. J. Trávńıček, J. Janoušek, B. Melichar, and L. Cleophas: On modification of boyer-
moore-horspool’s algorithm for tree pattern matching in linearised trees. Theoretical Computer
Science, 830-831 2020, pp. 60 – 90.

Greedy versus Optimal Analysis of

Bounded Size Dictionary Compression

and On-the-Fly Distributed Computing

Sergio De Agostino

Computer Science Department
Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
deagostino@di.uniroma1.it

Abstract. Scalability and robustness are not an issue when compression is applied for
massive data storage, in the context of distributed computing. Speeding up on-the-fly
compression for data transmission is more controversial. In such case, a compression
technique merging together an adaptive and a non-adaptive approach has to be con-
sidered. A practical implementation of LZW (Lempel, Ziv and Welch) compression,
called LZC (C indicates the Unix command ’compress’), has this characteristic. The
non-adaptive phases work with bounded size prefix dictionaries built by LZW factor-
izations during the adaptive ones. In order to improve the compression effectiveness,
we suggest to apply LZMW (Lempel, Ziv, Miller and Wegman) factorization to LZC
compression (LZCMW) during the adaptive phases since it builds better dictionaries
than LZW. The LZMW heuristic was originally thought with a dictionary bounded
by the least recently used strategy. We introduce the LZCMW heuristic in order to
have non-adaptive phases. All the heuristics mentioned above employ the greedy ap-
proach. We show, finally, a worst case analysis of the greedy approach with respect
to the optimal solution decodable by the LZC decompressor. Such analysis suggests
parallelization of on the fly compression is not suitable for highly disseminated data
since the non-adaptive phases are too far from optimal.

Keywords: on-the-fly compression, factorization, distributed system, scalability

1 Introduction

Massive data are, usually, defined as big when the order of magnitude is greater
than a terabyte. Compression is considered advantageous and actionable by the big
data community since it is possible to evaluate many predicates without having to
decompress. However, the locality principle stated by Zipf’s law [26] for arbitrarily
large datasets provides another good reason (perhaps an even better reason in the near
future) for massive data compression, that is, compression and, more importantly, de-
compression that are highly parallelizable. In fact, using the computational resources
to speed up compression and decompression could be more practical than employing
sophisticated techniques to query compressed data (as, for example, compressed pat-
tern matching). Moreover, the locality principle is so general that parallelism could
be applied to any kind of data and with any compression technique, even with smaller
order of magnitudes than a petabyte. Indeed, any sequential compression technique
could be applied in parallel and independently to relatively large pieces of data on
standard small, medium and large scale distributed systems.

While speeding up massive data compression for storage on a distributed system
is not an issue for the reasons mentioned above, speeding up on-the-fly compression

Sergio De Agostino: Greedy versus Optimal Analysis of Bounded Size Dictionary Compression and On-the-Fly Distributed Computing, pp. 74–83.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 75

for data transmission is more controversial. In such case, it seems that the only way to
exploit the full computational power of a distributed system is to employ a technique
comprising an adaptive phase followed by a non-adaptive one which can process the
data until it becomes obsolete. Then, iteratively, the two phases can be repeated. This
iteration of the sequential procedure can be parallelized if we divide the input into
blocks of data long enough to run one step of the iteration on each block. Each block
is, obviously, split in a first sub-block where the adaptive phase is run and a second
one to be compressed in a non-adaptive way. A general parallel approach for this kind
of compression technique is to compress the first sub-block with only one processor
and, afterwards, to parallelize massively the compression of the second sub-block.
We will see that this is possible if we employ a practical implementation of LZW
compression [24], called LZC [1], since it has this characteristic. The non-adaptive
phases work with bounded size prefix dictionaries built by LZW factorizations during
the adaptive ones. In order to improve the compression effectiveness, we suggest to
apply LZMW (Lempel, Ziv, Miller and Wegman) factorization to LZC compression
(LZCMW) during the adaptive phases since it builds better dictionaries than LZW.
The LZMW heuristic was originally thought with a dictionary bounded by the least
recently used strategy [21]. We introduce the LZCMW heuristic in order to have
non-adaptive phases.

All the heuristics mentioned above employ the greedy approach. We show, finally,
a worst case analysis of the greedy approach with respect to the optimal solution
decodable by the LZC decompressor. Such analysis suggests parallelization of on-the-
fly compression is not suitable for highly disseminated data since the non-adaptive
phases are too far from optimal. Massive data compression for storage and the lo-
cality principle are discussed in Section 2, where implementations of Zip and LZW
compressors are described. How to speed-up on-the-fly LZW compression with dis-
tributed computing is faced in Section 3, where the improvement by means of the
LZMW heuristic is discussed. The greedy versus optimal analysis is given in Section
5. Conclusion and future work of this pure theory paper are given in Section 6.

2 Distributed Massive Data Compression

Distributed systems have two types of complexities, the interprocessor communica-
tion and the input-output mechanism. While the input/output issue is inherent to
any parallel algorithm and has standard solutions, the communication cost of the
computational phase after the distribution of data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation to design a
practical algorithm. The simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no communication cost. The
arguments of next subsection imply that compressing massive data for storage is not
an issue for any technique on such a distributed system and the most popular com-
pressors belonging to the Zip family are described. On the other hand, improving
the speed-up of on-the-fly compression for massive data transmission is more contro-
versial and requires characteristics that, to our knowledge, only LZW compression
has. We describe the unbounded and bounded memory versions of this technique in
the second and third subsection so that the issue of massive data transmission and
distributed computing can be faced in the next section.

76 Proceedings of the Prague Stringology Conference 2020

2.1 The Locality Principle

Zipf’s law states that the frequency of any word in a collection is inversely proportional
to its rank in the frequency table. The most frequent word occurs twice as often as the
second most frequent, and so on. The effect of this uneven distribution of byte patterns
is evident in the effectiveness of common compression programs, as for example,
the family of Zip compressors based on the Lempel-Ziv sliding window factorization
technique [18], [19], [23]. Such factorization of a string S is S = f1f2 · · · fi · · · fm where
fi is the longest match with a substring occurring previously in the prefix f1f2 · · · fi if
fi 6= λ (empty string), otherwise fi is the alphabet character next to f1f2 · · · fi−1. fi
is encoded by the pointer qi = (di, ℓi), where di is the displacement back to the copy
of the factor and ℓi is the length of the factor. If di = 0, ℓi is the alphabet character.
In other words, there is a window sliding its right end over the input string and all
the substrings of the prefix read so far in the computation are potential reference
copies for the current factor. In practice, the work space must be bounded and this
is done by sliding a fixed length window and by bounding the match length. Simple
real time implementations are realized by means of hashing techniques providing a
specific position in the window where a good approximation of the longest match is
found on realistic data. In [25], the two current characters are hashed and collisions
are chained via an offset array. The Unix gzip compressor chains collisions too but
hashes three characters [16].

While gzip stores 64 kB of history, it averages approximately 64 percent com-
pression. Instead, bzip2 stores between 100 kB and 900 kB of history and averages
66 percent compression, a very small gain in comparison with the increase of memory.
Therefore, 64 kB of history are enough to compress data and this can be generalized
to any compression technique we want to use. Such locality principle is critical if
we want to speed up compression and, more importantly, decompression on a large
scale network. Indeed, we can apply compression in parallel to data blocks relatively
small (a few hundreds kilobytes) since the locality principle holds for arbitrarily large
datasets on the basis of Zipf’s law and scalability and robustness are guaranteed.
This follows from the fact that the loss of compression effectiveness due to the lack
of history at the beginning of each block is amortized if the block length is one or-
der of magnitude greater than the amount of past data to which we need to refer for
compression [8]. Then, distributing data blocks of size approximately half a megabyte
among the nodes of a network allows an efficient application of any adaptive com-
pression method and guarantees scalability and robustness for massive data (for the
interested reader, improved variants of the sliding window factorization technique ex-
ist employing either fixed-length codewords [2], [20] or variable-length ones [3], [13],
[14], [15], [17]). Parallel decompression is symmetrical.

2.2 LZW Compression

Ziv-Lempel compression is a dictionary-based technique [18], [27], using a string fac-
torization process where the factors of the string are substituted by pointers to copies
stored in a dictionary which are called targets. The standard LZW (Lempel-Ziv-Welch)
factorization of a string S is S = f1f2 · · · fi · · · fm where each factor fi is the longest
match with the concatenation of a previous factor and the next character [24]. fi
is encoded by a pointer qi whose target is such concatenation (LZW compression).
LZW compression can be implemented in real time by storing the dictionary with a
trie data structure. When the string length goes to infinity, also the dictionary size

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 77

does. Such unbounded version was proved to be P -complete [4], [5], [6], [7], [8], mean-
ing that such factorization is hard to parallelize even on a shared memory random
access machine or on a highly interconnected network. Therefore, we need to con-
sider bounded memory versions of LZW compression in order to make such technique
suitable for distributed computing.

2.3 Bounded Size Dictionaries

In practical implementations the dictionary size is bounded by a constant and the
pointers have equal size. Let d + α be the cardinality of the fixed size dictionary
where α is the cardinality of the alphabet. With the most naive approach, there is a
first phase of the factorization process where the dictionary is filled up and “frozen”.
Afterwards, the factorization continues in a non-adaptive way using the factors of the
frozen dictionary. In other words, the factorization of a string S is S = f1f2 · · · fi · · · fm
where fi is the longest match with the concatenation of a previous factorfj , with j ≤
d, and the next character. The shortcoming of this heuristic is that after processing
the string for a while the dictionary often becomes obsolete. If the dictionary elements
were removed with a heuristic, new elements could be added.

The best deletion heuristic is the LRU (last recently used) strategy [22]. The LRU
deletion heuristic removes elements from the dictionary by deleting at each step of
the factorization the least recently used factor, which is not a proper prefix of another
one. If the size of the dictionary is O(logk n), the LRU strategy is log-space hard for
SCk [7],[8],[12]. SC is the class of problems solvable simultaneously in polynomial time
and polylogarithmic space and SCk is the class of problems solvable simultaneously
in polynomial time and O(logk n) space for a fixed k. LZW compression using a
dictionary of size O(logk n) and the LRU deletion heuristic belongs to SCk+1. Indeed,
the LZW algorithm with LRU deletion heuristic on a dictionary of size O(logk n) can
be performed in polynomial time and O(logk n log(log n)) space, where n is the length
of the input string. The trie requires O(logk n) space by using an array implementation
since the number of children for each node is bounded by the alphabet cardinality.
The log(log n) factor is required to store the information needed for the LRU deletion
heuristic since each node must have a different age, which is an integer value between
0 and the dictionary size.

The hardness result is not so relevant for the space complexity analysis since
Ω(logk n) is an obvious lower bound to the work space needed for the computation.
Much more interesting is what can be said about the parallel complexity analysis.
In [12] it was shown that LZW compression using the LRU deletion heuristic with a
dictionary of size c can be performed in parallel either in O(log n) time with 2O(c log c)n
processors or in 2O(c log c) log n time with O(n) processors on a shared memory random
access machine or a highly connected network. This means that if the dictionary size
is constant the compression problem belongs to NC, the class of problems solvable in
polylogarithmic parallel time with a polynomial number of processors on a random
access shared memory machine or a highly connected network. NC and SC are classes
that can be viewed in some sense symmetric and are believed to be incomparable.
Since log-space reductions are in NC, the compression problem cannot belong to NC
when the dictionary size is polylogarithmic if NC and SC are incomparable. We want
to point out that the dictionary size c figures as an exponent in the parallel complexity
of the problem. This is not by accident. If we believe that SC is not included in NC,
then the SCk-hardness of the problem when c is O(logk n) implies the exponentiation

78 Proceedings of the Prague Stringology Conference 2020

of some increasing and diverging function of c. Indeed, without such exponentiation
either in the number of processors or in the parallel running time, the problem would
be SCk-hard and in NC when c is O(logk n). Observe that the P-completeness of the
problem, which requires a superpolylogarithmic value for c, does not suffice to infer
this exponentiation since c can figure as a multiplicative factor of the time function.
Moreover, this is a unique case so far where somehow we use hardness results to ar-
gue that practical algorithms of a certain kind (NC in this case) do not exist because
of huge multiplicative constant factors occurring in their analysis. If in theory LZW
compression with the LRU deletion heuristic cannot be parallelized on any kind of
parallel or distributed system for the reasons explained above, in practice the locality
principle allows an effective distributed implementation. Considering the fact that a
practical bound to the dictionary size is 216 and that about 300 kilobytes are enough
to fill up a dictionary of this size on realistic data, we can argue that compressing in-
dependently blocks of at least 600 kilobytes is a sufficiently robust approach. However,
the process of adding and removing dictionary elements at each step never works in a
non-adaptive way. The deletion heuristic providing such method is RESTART. After
the dictionary is filled up, the RESTART deletion heuristic starts a non-adaptive
phase and monitors the compression ratio. When the ratio deteriorates, the heuristic
deletes all the elements from the dictionary but the alphabet characters and restarts
a new adaptive phase. Let S = f1f2 · · · fj · · · fi · · · fm be the factorization of the input
string S computed by the LZW compression algorithm using the RESTART deletion
heuristic. Let j be the highest index less than i where a restart operation happens.
Then, fj is an alphabet character and fi is the longest match with the concatena-
tion of a previous factor fh, with h ≥ j, and the next character (1 and k + 1 are
considered restart positions by default). This heuristic, called LZC [1], is used by the
Unix command Compress since it has a good compression effectiveness and it is easy
to implement. Since the dictionary size is 216 the number of different concatenations
of a factor with the next character between fh and ft is equal to 216 decreased by
the alphabet size, with h and t two consecutive positions where the restart operation
happens (ft is not counted). Usually, the dictionary performs well in a non-adaptive
way on a block long enough to learn another dictionary of the same size. This is what
is done by the SWAP deletion heuristic. When the other dictionary is filled, they
swap their roles on the successive block. The improvement introduced by the SWAP
heuristic cannot be utilized with distributed computing since the processing of the
successive block cannot start until the dictionary is learned from the previous block.
In conclusion, LZC compression is the version we will adopt in the next section.

3 Speeding up On-the-Fly Data Compression

We have seen in the previous section that LZC compression is a technique comprising
an adaptive phase followed by a non-adaptive one which can process the data until
it becomes obsolete. Since the dictionary size is 216 in practical implementations and
about 300 kB are enough to fill up a dictionary of this size on realistic data, another
300 kB can be considered a robust lower bound to the amount of data for which the
non-adaptive way works properly [9]. Then, we divide conceptually the input into
blocks of about 600 kB with each block split in a first half of about 300 kB, where
the adaptive phase is run sequentially, and a second one to be compressed in a non-
adaptive way with the dictionary just learned, using the computational power of the
distributed system. The second half is, therefore, partitioned into sub-blocks. The

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 79

architecture of the distributed system could be modeled as a star network where the
central node runs the sequential adaptive phase until the dictionary is filled. At each
factorization step, the central node sends the current factor concatenated with the
next character to the adjacent nodes to update their own copy of the dictionary. To
speed up the broadcasting of such concatenation its longest proper prefix (that is, the
current factor) can be compressed with the pointer having such prefix as target. This
means that the processors receiving the factors store the dictionary in a trie using an
auxiliary perfect hashing table where the pointers are the keys and the targets are
the values. Then sub-blocks of the next 300 kilobytes are broadcasted to the adjacent
nodes. We show how to implement the non-adaptive phase on small and medium
scale systems in the next subsection. Then, we scale up the system and modify the
approach to keep its robustness in the second subsection. The third subsection con-
siders decompression. Improvements by the LZMW approach are discussed in the last
subsection.

3.1 Small and Medium Scale

After having just learned the dictionary, 300 kB have to be compressed in a non-
adaptive way using such dictionary. In [10], it is shown that if we distribute sub-
blocks among different processors to compress them independently then the sub-block
length must be the order of a few kilobytes to guarantee robustness. Ten processors
and one hundred processors are the orders of magnitudes for small and medium
scale distributed systems, respectively. Therefore, robustness is guaranteed. On the
other hand, the size of a large scale system is the order of magnitude of a thousand
implying that the sub-block length has the order of magnitude of 100 bytes. In such
case, overlapping of adjacent sub-blocks and a preprocessing of the boundaries are
necessary. We experimented in [10] that, when compressing megabytes of English
text, the LZC average compression ratio is 0.42 while the distributed approach has a
one percent loss in both cases.

3.2 Large Scale

Both overlapping of adjacent sub-blocks and a preprocessing of the boundaries are
necessary since the boundary positions are arbitrary and, therefore, likely not to be
at the beginning of natural factors. Consequently, a sub-block factorization starts
with factors much smaller than the average factor length. This initial disadvantage is
amortized if the sub-block length has the order of magnitude of a kilobyte, which is
not the case of large scale distributed systems as explained in the previous subsection.
Again, after having just learned the dictionary, 300 kB have to be compressed in a
non-adaptive way using such dictionary. Generally speaking, sub-blocks of length
M(k + 2), except for the first one and the last one which are M(k + 1) long, are
broadcasted to the processors, with k a positive integer and M the maximum factor
length. Each sub-block overlaps on 2M characters with the adjacent ones to the left
and to the right, respectively (obviously, the first one overlaps only to the right and
the last one only to the left). We call a boundary match a factor either covering
positions in the first and second half of the 2M characters shared by two adjacent
sub-blocks or being a suffix of the first half. The processors execute the following
algorithm to compress each sub-block:

80 Proceedings of the Prague Stringology Conference 2020

– for each sub-block, every corresponding processor computes the longest boundary
matches to the left and to the right (only to the right (left) if the sub-block is the
first (last) one).

– each processor computes the greedy factorization from the end of the boundary
match on the left boundary of its sub-block to the beginning of the boundary
match on the right boundary.

The parallel running time of the preprocessing phase computing the boundary
matches is O(M2) by brute force. In [10], it is shown experimentally that for k =
10 the compression ratio achieved by such factorization is about the same as the
sequential one. Considering that typically the average match length is about 10, one
processor can compress 100 bytes independently and this is why this approach is
suitable for a large scale distributed system.

3.3 On-the-Fly Decompression

To decode on-the-fly the compressed data on a distributed system, after the sequential
decompression of the first half of a block, it is enough to use during the compressing
phase a special mark occurring in the sequence of pointers each time the coding of a
sub-block ends in the second half of the block. A copy of the dictionary is stored in
every processor since the sequential decompression of the first half is run again by the
central node of the star network, sending a new dictionary element to the adjacent
nodes at each step. Differently from the coding phase, a perfect hashing table rather
than a trie is used to store the dictionary. Moreover, the special marks allow the
broadcasting of the subsequences of pointers coding each sub-block of the second half
to the adjacent nodes. Therefore, the decoding of the sub-blocks is straightforward.

3.4 Improving On-the-Fly Compression of Massive Data

The prefix dictionaries built by LZW have the disadvantage to include useless el-
ements. To ameliorate this, the LZMW factorization builds better dictionaries by
updating it at each step with the concatenation of the last two factors. Therefore,
the LZMW factorization of a string S is S = f1f2 · · · fi · · · fm where each factor fi
is the longest match with the concatenation of two consecutive previous factors. In
practical implementations, the LZMW heuristic was originally thought with a dictio-
nary bounded by the least recently used strategy and fi was encoded by a pointer qi
whose target is in such dictionary [21], improving even ten per cent on LZW in some
cases. We propose the LZCMW heuristic in order to have non-adaptive phases, where
the dictionary is bounded to 216 elements by the RESTART deletion heuristic. This
makes LZMW compression suitable for parallel implementations of on-the-fly com-
pression on small and large scale distributed systems in a similar fashion as for LZC.
Therefore, the amelioration provided by LZMW compression in the sequential case
is kept on every scale distributed system since the loss of compression effectiveness
of the RESTART deletion heuristic with respect to LRU is quite limited [1]. Run-
ning the LZCMW heuristic on different types of data could be an interesting future
experimental work.

4 The Greedy versus Optimal Analysis

A feasible d-restarted LZW factorization S = f1 · · · fm is such that the number of
different concatenations of a factor with the next character between fh and ft (ft is

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 81

not counted) is less or equal than d decreased by the alphabet size, with h and t two
consecutive positions where the restart operation happens, and each factor fi with
h < i < t is equal to fjc, where c is the first character of fj+1 and h ≤ j < i (1 and k+1
are considered restart positions by default). We define optimal the feasible d-restarted
LZW factorization with the smallest number of factors. A practical algorithm to
compute the optimal solution is not known.

A trivial upper bound to the approximation multiplicative factor of a feasible
factorization with respect to the optimal one is the maximum factor length of the
optimal solution, that is, the height of the trie storing the dictionary. Such upper
bound is Θ(d), where d is the dictionary size (O(d) follows from the feasibility of the
factorization and Ω(d) from the factorization of the unary string). We give worst case
examples for the procedures of section 3 using only two characters a and b. It follows
that the worst case analysis is valid for any given alphabet of cardinality greater than
1. If any of the procedures described in subsections 3.1 and 3.2 is applied to the input
block of length d2

bd
2/4−d/2(

d/2−1∏

i=0

abibai)(
d∏

i=1

ad/2)

where the dictionary is learned in the first half and employed to compress in a non-
adaptive way the second one, then the factorization of the first half of the block, that

is, bd
2/4−d/2(

∏d/2−1
i=0 abibai) is

b, bb, . . . , bℓ, bℓ
′
, a, b, ab, ba, abb, baa, . . . , abi, bai, . . . , abd/2−1, bad/2−1

where ℓ′ ≤ ℓ + 1 and the dictionary is filled if we assume its size is d + ℓ + 3. The
non-adaptive factorization of the second half is a, a, · · · a, a and the total cost of the
factorization of the block is ℓ + 1 + d + d2/2, which is Θ(d2). On the other hand,
the cost of the optimal solution on the block is ℓ + 5d/2 which is Θ(d) since the
factorization of the first half is

b, bb, . . . , bℓ, bℓ
′
, a, b, ab, b, a, abb, b, aa, . . . , abi, b, ai, . . . , abd/2−1, b, ad/2−1

Observe that the O(d) approximation multiplicative factor depends on the non-
adaptive phase and this happens when the dictionary learned on the first half of
the block performs badly on the second half, that is in practice, when the data
are highly disseminated. In such case, the totally adaptive feasible d-restarted LZW
factorization (restarting as soon as the dictionary is filled with a greedy choice at
each factorization step) is much more appropriate, as shown by the following theorem
(the proof employs techniques similar to the ones for the unbounded dictionary case
of [11]), but unfortunately does not seem to be parallelizable.

Theorem 1. The totally adaptive d-restarted LZW factorization is an O(
√
d) ap-

proximation of the optimal one, where d is the dictionary size.

Proof. Let S be the input string and T be the trie storing the dictionary of factors of
the optimal d-restarted LZW factorization Φ of S between two consecutive positions
where the restart operation happens. Each dictionary element (but the alphabet
characters) corresponds to the concatenation of a factor f of the optimal factorization
with the first character of the next factor, that we call an occurrence of the dictionary

82 Proceedings of the Prague Stringology Conference 2020

element (node of the trie) in Φ. We call an element of the dictionary built by the
greedy process internal if its occurrence is contained in the occurrence of a node of T
and denote with MT the number of internal occurrences. The number of non-internal
occurrences is less than the number of factors of Φ. Therefore, we can consider only
the internal ones. An occurrence f ′ of the greedy factorization internal to an factor
f of Φ is represented by a subpath of the path representing f in T . Let u be the
endpoint at the lower level in T of this subpath (which, obviously, represents a prefix
of f). Let d(u) be the number of subpaths representing internal phrases with endpoint
u and let c(u) be the total sum of their lengths. All the occurrences of the greedy
factorization are different from each other between two consecutive positions where
the restart operation happens. Since two subpaths with the same endpoint and equal
length represent the same factor, we have c(u) ≥ d(u)(d(u) + 1)/2. Therefore

1/2
∑

u∈T
d(u)(d(u) + 1) ≤

∑

u∈T
c(u) ≤ 2n ≤ 2|Φ|HT

where HT is the height of T , |Φ| is the number of phrases of Φ and the multiplicative
factor 2 is due to the fact that occurrences of dictionary elements may overlap. We
denote with |T | the number of nodes in T ; since MT =

∑
u∈T d(u), we have

M2
T ≤ |T |

∑

u∈T
d(u)2 ≤ |T |

∑

u∈T
d(u)(d(u) + 1) ≤ 4|T ||Φ|HT

where the first inequality follows from the fact that the arithmetic mean is less than
the quadratic mean. Then

MT ≤
√
4|T ||Φ|HT = |Φ|

√√√√4|T |HT

|Π| ≤ 2|Φ|
√
HT

Since the trie height is Θ(d) at worst, the theorem statement follows. ⊓⊔

We wish to point out that the proof works for any alphabet cardinality, so the com-
parative analysis of the procedures of section 3 with the totally adaptive d-restarted
LZW factorization is the same for every non-unary alphabet on the highly dissemi-
nated data illustrated above.

5 Conclusion

We discussed massive data compression and decompression in the context of dis-
tributed computing. The locality principle implies that scalability and robustness
are not an issue when compression is applied for massive data storage. Speeding up
on-the-fly compression for data transmission is more controversial and, in such case,
it seems we need compression techniques merging together an adaptive and a non-
adaptive approach. We proposed a practical implementation of LZW compression,
called LZC, as the most suitable to our knowledge since it has this characteriistic
and introduced a new version of LZC compression, employing LZMW factorization
in order to improve the compression effectiveness. However, a greedy versus optimal
analysis shows such approach is not suitable for highly disseminated data. As future
work, different techniques could be developed or existing ones could be adapted to
work in this fashion with the purpose of improving compression effectiveness further.

Sergio De Agostino: Compression and On-the-Fly Distributed Computing 83

References

1. T. C. Bell and I. H. Witten: Text Compression, Prentice Hall, 1990.
2. M. Crochemore, A. Langiu, and F. Mignosii: Note on the greedy parsing optimality for

dictionary-based text compression. Theoretical Computer Science, 525 2014, pp. 55–59.
3. M. Crochemore, G. M., A. Langiu, F. Mignosi, and A. Restivo: Dictionary-simbolwise

flexible parsing. Journal of Discrete Algorithms, 14 2012, pp. 74–90.
4. S. DeAgostino: P-complete problems in data compression. Theoretical Computer Science, 127

1994, pp. 181–186.
5. S. DeAgostino: Sub-linear algorithms and complexity issues for lossless data compression,

1994.
6. S. DeAgostino: Parallelism and data compression via textual substitution, 1995.
7. S. DeAgostino: Parallelism and dictionary-based data compression. Information Sciences, 135

2001, pp. 43–56.
8. S. DeAgostino: Lempel-ziv data compression on parallel and distributed systems. Algorithms,

4 2011, pp. 183–199.
9. S. DeAgostino: Lzw data compression on large scale and extreme distributed systems, in

Proceedings Prague Stringology Conference, 2012, pp. 18–27.
10. S. DeAgostino: The greedy approach to dictionary-based static text compression on a dis-

tributed system. Journal of Discrete Algorithms, 34 2015, pp. 54–61.
11. S. DeAgostino and R. Silvestri: A worst case analisys of the lz2 compression algorithm,

1997.
12. S. DeAgostino and R. Silvestri: Bounded size dictionary compression: SCk-completeness

and nc algorithms. Information and Computation, 180 2003, pp. 101–112.
13. A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini: Bicriteria data com-

pression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 14), 2014,
pp. 1582–1585.

14. P. Ferragina, I. Nittoi, and R. Venturini: On optimally partitioning a text to improve
its compression. Algorithmica, 61 2011.

15. P. Ferragina, I. Nittoi, and R. Venturini: On the bit-complexity of lempel-ziv compression.
SIAM Journal on Computing, 42 2013.

16. J. Gailly and M. Adler: http://www.gzip.org, 1991.
17. A. Langiu: On parsing optimality for dictionary-based text compression - the zip case. Journal

of Discrete Algorithms, 20 2013, pp. 65–70.
18. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-

tion Theory, 22 1976, pp. 75–81.
19. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23 1977, pp. 337–343.
20. Y. Matias and C. S. Sahinalp: On the optimality of parsing in dynamic dictionary-based

data compression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 99),
1999, pp. 943–944.

21. V. S. Miller and M. N. Wegman: Variations on theme by ziv-lempel, 1985.
22. J. A. Storer: Data Compression: Methods and Theory, Computer Science Press, 1988.
23. J. A. Storer and T. G. Szymanski: Data compression via textual substitution. Journal of

ACM, 29 1982, pp. 928–951.
24. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
25. D. Whiting, G. A. George, and G. E. Ivey: Data compression apparatus and method,

1991.
26. G. K. Zipf: The Ppsycology of Language, Houghton-Mifflin, 1935.
27. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

Left Lyndon Tree Construction

Golnaz Badkobeh1 and Maxime Crochemore2,3

1 Department of Computing
Goldsmiths University of London

United Kingdom
g.badkobeh@gold.ac.uk

2 Department of Informatics
King’s College London

United Kingdom
Maxime.Crochemore@kcl.ac.uk

3 Université Gustave Eiffel
Marne-la-Vallée, France

Abstract. We extend the left-to-right Lyndon factorisation of a word to the left Lyn-
don tree construction of a Lyndon word. It yields an algorithm to sort the prefixes
of a Lyndon word according to the infinite ordering defined by Dolce et al. (2019). A
straightforward variant computes the left Lyndon forest of a word. All algorithms run
in linear time on a general alphabet (letter-comparison model).

1 Lyndon words

In this article we consider algorithmic questions related to Lyndon words. Introduced
in the field of combinatorics by Lyndon (see [11]) and used in algebra, these words
have shown their usefulness for designing efficient algorithms on words. The notion of
Lyndon tree associated with the decomposition of a Lyndon word, for example, has
been used by Bannai et al. [1] to solve a conjecture of Kolpakov and Kucherov [9]
on the maximal number of runs (maximal periodicities) in words, following a result
in [2].

The key result in [1] is that every run in a word y contains as a factor, a Lyndon
root (according to the alphabet order or its inverse), that corresponds to a node of the
associated Lyndon tree. Since the Lyndon tree has a linear number of nodes according
to the length of y, browsing all its nodes leads to a linear-time algorithm in order
to report all the runs occurring in y. However, the time complexity of this technique
also depends on the time it takes to build the tree and to extend a potential root to
an actual run.

Here we consider the left Lyndon tree of a Lyndon word y. This tree has a single
node if y is reduced to a single letter, otherwise its structure corresponds recursively
to the left standard factorisation (see Viennot [13]) of y as uv where u is the longest
proper Lyndon prefix of y.

The dual notion of the right Lyndon tree of a Lyndon word y (based on the
factorisation y = uv where v is the longest proper Lyndon suffix of y) is strongly
related to the sorted list of suffixes of y. Indeed, Hohlweg and Reutenauer [8] showed
that the Lyndon tree is the Cartesian tree built from the ranks of suffixes in their
sorted list (sometimes called the inverse suffix array of the word). The list corresponds
to the standard permutation of suffixes of the word and is the main component of
the suffix array (see [4]), one of the major data structures for text indexing.

Golnaz Badkobeh, Maxime Crochemore: Left Lyndon Tree Construction, pp. 84–95.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 85

Inspired by a result of Ufnarovskij [12], Dolce et al. [6] showed that the left Lyndon
tree is also a Cartesian tree built from ranks of prefixes sorted according to an order
they call the infinite order.

The main result of this article is to show that sorting prefixes of a Lyndon word
according to the infinite order can be attained in linear time in the letter-comparison
model (comparing letters is assumed to be carried out in constant time). This pro-
duces the prefix standard permutation of the word. The algorithm is based on the
Lyndon factorisation of words by Duval [7] and it extends naturally to build the
Lyndon forest of a word.

Definitions

Let A be an alphabet with an ordering < and A+ be the set of all non-empty words
over A. The length of a word w is denoted by |w|. Let ǫ denotes the empty word, i.e.,
word of length 0. We say that uv is a non-trivial factorisation of a word w if uv = w
and u, v are non-empty words.

A word is said to be strongly smaller than a word v, u << v, if there are words r,
s and t, and letters a and b with u = ras, v = rbt and a < b. A word u is smaller
than a word v, u < v, if either u << v or u is a proper prefix of v. In addition to this
usual lexicographical ordering the infinite order ≺ (see [5,6]) is defined by: u ≺ v if
u∞ < v∞ or both u∞ = v∞ and |u| > |v|. Note that u∞ = v∞ implies that u and v are
powers of the same word, consequence of Fine and Wilf’s Periodicity lemma (see [10,
Proposition 1.3.5]). For example, if u = abba, v = abb, then u∞ = abbaabbaabba . .
and v∞ = abbabbabb . ., therefore u∞ < v∞ and consequently u ≺ v. If u = ababab,
v = abab, then u∞ = v∞ = abababab . . and u ≺ v.

The next proposition defines Lyndon words that are not reduced to a single let-
ter. Condition in item (i) is the original definition and condition in item (iii) is by
Ufnarovskij [12].

Proposition 1. The following conditions are equivalent and define a Lyndon word
w, |w| > 1: for any non-trivial factorisation uv of w, (i) w < vu, (ii) w < v, (iii)
u∞ < w∞.

2 Lyndon suffix table

This section recalls known algorithms. The algorithms presented in this article strongly
use the notion of Lyndon suffix table of a word, which is denoted by LynS y or simply
by LynS for the generic word y. Table LynS of a word y is defined, for each position
j on y, by

LynS [j] = max{|w| | w Lyndon suffix of y[0 . . j]}.
Example 2. Let y0 = ababbababbabac on the alphabet of constant letters {a, b, . . .}
ordered as usual a < b < · · ·. The corresponding LynS y0 table is as follows:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a b b a b a b b a b a c

LynS y0 [j] 1 2 1 2 5 1 2 1 2 5 1 2 1 14

The LynS table is the dual notion of the Lyndon table l in [1] or Lyn in [3] used
to detect maximal periodicities (also called runs) in words: Lyn[j] is the maximal
length of the Lyndon prefixes of y[j . . |y| − 1].

86 Proceedings of the Prague Stringology Conference 2020

The computation of LynS is a mere extension of the algorithm for testing if a
word is the prefix of a Lyndon word. It includes the key point of the factorisation
algorithm in [7] and is recalled first as Algorithm LyndonWordPrefix that works
online on its input word y.

LyndonWordPrefix(y non-empty word of length n)

1 (per , i)← (1, 0)

2 for j ← 1 to n− 1 do

3 if y[j] < y[i] then ⊲ y[i] = y[j − per]

4 return false

5 elseif y[j] > y[i] then

6 (per , i)← (j + 1, 0)

7 else i← i+ 1 mod per

8 return true

y x x z
0 i j

z
✲✛

per

The key feature of the method stands in lines 5-6 of the algorithm and is illustrated
on the above picture. If y[j] > y[i] = y[j − per], not only the periodicity per of
y[0 . . j − 1] breaks but y[0 . . j] is a Lyndon word with period j + 1. This feature is a
consequence of the following known properties.

Proposition 3. (i) Let z be a word and a a letter for which za is a prefix of the
Lyndon word x. Let b be a letter with a < b. Then zb is a Lyndon word.
(ii) Let u and v be two Lyndon words with u < v, then uv is Lyndon word.

Algorithm LyndonSuffix computes the Lyndon suffix table of a Lyndon word.
This algorithm results from a minor modification of Algorithm LyndonWordPre-
fix and can be easily enhanced to compute also the smallest period of all non-empty
prefixes of the input.

LyndonSuffix(y Lyndon word of length n)

1 LynS [0]← 1

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 return LynS

Proposition 4. Algorithm LyndonSuffix computes the Lyndon suffix table of a
Lyndon word of length n in time O(n) in the letter-comparison model.

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 87

3 Left Lyndon tree construction

The left Lyndon tree L(y) of a Lyndon word y represents recursively the left standard
factorisation of Lyndon words. Leaves of the tree are positions on the word and inter-
nal nodes correspond to concatenations of Lyndon factors of the word, and as such
can be viewed as interpositions. Namely, L(y) = (0) if |y| = 1 else it is (p,L(u),L(v))
where the root p ∈ {|y| . . 2|y| − 2} is an integer and uv is the left standard factori-
sation of y, that is, u is the longest proper Lyndon prefix of y (v is then a Lyndon
word).

Subtrees of L(y) are handled from positions on y in the following manner. The
subtree associated with position j is L(y[i . . j]) with root root[j], where y[i . . j] is
the longest Lyndon suffix of y[0 . . j], i.e. j − i + 1 = LynS [j]. Position j on y is the
rightmost leaf of the subtree and LynS [j] is its width.

It is known that y, |y| > 1, is of the form xkzb where x is a Lyndon word of length
per = period(xkz), k > 0, z is a proper prefix of x and b is a letter greater than letter
a following z in x (za is a prefix of x) [7].

The construction of L(y) is achieved with the help of the table LynS of y. It is
done by processing y from left to right building first L(x) and reproducing that tree
or part of it up to z. The picture displays the subtrees built for the word (ababb)2aba.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

The main step of the procedure, in addition to computing LynS by Algorithm
LyndonSuffix, is to aggregate partial Lyndon trees when processing the last letter
b of y; to create the final tree as a bundle of all subtrees. In fact, this step is also
carried out when dealing with xkz at each position j for which LynS [j] > 1. In order
to aggregate the subtrees, the second property of Proposition 3 is applied iteratively,
processing the subtrees from right to left. Instruction of this step appear at lines 10-15
in Algorithm LeftLyndonTree, in which left[q] and right[q] are respectively the
left and right children of the internal node q of the tree.

The process of bundling can be viewed as a translation into the tree structure of
the proof of the key feature of Algorithm LyndonWordPrefix. Even so the latter
deals with this process in constant time, which is not the case here, the iteration
of bundling instructions does not affect the asymptotic running time of the present
algorithm.

88 Proceedings of the Prague Stringology Conference 2020

LeftLyndonTree(y Lyndon word of length n)

1 (LynS [0], root[0])← (1, 0)

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 root[j]← j

5 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

6 LynS [j]← j + 1

7 (per , i)← (j + 1, 0)

8 else LynS [j]← LynS [i]

9 i← i+ 1 mod per

10 (ℓ, k)← (1, j − 1)

11 while ℓ < LynS [j] do

12 q ← new node ≥ n

13 (left[q], right[q])← (root[k], root[j])

14 root[j]← q

15 (ℓ, k)← (ℓ+ LynS [k], k − LynS [k])

16 return root[n− 1]

The picture below shows thick links and nodes created by the final round of
instructions at lines 10-15 in Algorithm LeftLyndonTree.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

Proposition 5. Algorithm LeftLyndonTree builds the left Lyndon tree of a Lyn-
don word of length n in time O(n) in the letter-comparison model.

Proof. All instructions inside the for loop are executed in constant time except the
while loop. In addition, since each execution of instructions in the while loop takes
constant time and leads to the creation of an internal node of the final tree, twinned
with the fact that there are exactly n − 1 internal nodes, the total running time is
O(n).

4 Sorting prefixes

We show that Algorithm LeftLyndonTree can be adapted to sort the prefixes of a
Lyndon word according to the infinite ordering ≺. This is a consequence of Theorem
7 below.

An internal node p of the left Lyndon tree of a Lyndon word y is the root of
a Lyndon subtree associated with a Lyndon factor w, |w| > 1 of y. This factor is

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 89

obtained by concatenating two consecutive occurrences of Lyndon factors u and v. If
the concerned occurrence of w ends at position j on y, node p is identified with the
prefix of y ending at position j. The correspondence between internal nodes of the
tree and proper non-empty prefixes of y is clearly one-to-one because internal nodes
are identified with interpositions, pairs (i, i+ 1) of positions on y.

Labelling internal nodes with the ≺-ranks of their associated prefixes transforms
the tree into a heap, i.e. ranks are increasing from leaves to the root. The relation
between the infinite order and left Lyndon trees is established by the next result [6].

Theorem 6 (Dolce, Restivo, Reutenauer, 2019). The tree of internal nodes of
the left Lyndon tree of a Lyndon word y in which nodes are labelled by the ranks of
proper prefixes of y sorted according to the infinite order is the Cartesian tree of the
ranks.

The following picture shows the left Lyndon tree of y0 = ababbababbabac and
the ≺-rank labels of its internal nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

1 2

3

4

5 6

7

8

9 10

11

12

13

Denoting a prefix of y0 by the position of its last letter (length minus 1), the table
below shows ≺-ranks of proper non-empty prefixes of the word and their sorted list,
inverse of Rank. The sorted list is a ≺ aba ≺ abab ≺ ab ≺ ababba ≺ ababbaba ≺
ababbabab ≺ ababbab ≺ ababbababba ≺ ababbababbaba ≺ ababbababbab ≺
ababbababb ≺ ababb.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a b b a b a b b a b a c

rank[j] 1 4 2 3 13 5 8 6 7 12 9 11 10

prefix list 0 2 3 1 5 7 8 6 10 12 11 9 4

The tree below is the Cartesian tree of prefix ≺-ranks.

1 4 2 3 13 5 8 6 7 12 9 11 10
a b a b b a b a b b a b a c

1 2

3

4

5 6

7

8

9 10

11

12

13

90 Proceedings of the Prague Stringology Conference 2020

Note that Algorithm LeftLyndonTree processes the resulting tree in left-to-
right post-order. The next result links this order to prefix ≺-ranks.
Theorem 7. Algorithm LeftLyndonTree on a Lyndon word y of length n > 1,
creates and processes internal nodes of the tree in the order of their corresponding
prefix ranks according to the ordering ≺.
Proof. A Lyndon word that is not reduced to a single letter, y is of the form xkzb
where x is a Lyndon word of length period(xkz), k > 0, z is a proper prefix of x and
b is a letter greater than letter a following prefix z in x [7].

Algorithm LeftLyndonTree processes nodes of the Lyndon trees L(y) as fol-
lows. Initially, it builds L(x) and Lyndon trees of the next occurrences of x in a
left-to-right manner. It continues with the tree related to z. Eventually during the
last bundling (run of instructions at lines 10-15) the algorithm builds L(zb) and fol-
lows with the nodes corresponding to the concatenations x · zb, x ·xzb, . . . , x ·xk−1zb
in that order.

The statement is proved by induction on the length of the period |x| of xkz. If is
|x| = 1, x is reduced to a single letter and y is of the form akb for two letters a and b
with a < b. Nodes associated with prefixes ak, ak−1, . . . , a are processed in this order,
which matches the ≺-order of prefixes, ak ≺ ak−1 ≺ · · · ≺ a, as expected.

We then assume |x| > 1 and consider disjoint groups of non-empty proper prefixes
of y. For e = 0, 1, . . . , k, let

Pe = {xeu prefix of y | e|x| < |xeu| < min{(e+ 1)|x|, |y|}}.
The main part of the proof relies on three claims that we prove first.

Claim 1: prefixes xeu ∈ Pe, 0 < e ≤ k, are in the same relative ≺-order as prefixes
u ∈ P0. Let u, v ∈ P0 with u ≺ v and let us show xeu ≺ xev considering two cases.

x
u ū

v w v̄
x

Case u∞ = v∞ and |u| > |v|. By the Periodicity lemma u, v and v−1u are powers
of the same word. Let w = v−1u, v̄ = w−1x and ū the prefix of x of length |v̄| (see
picture). Since x is a Lyndon word, ū < x < v̄, which implies ux < vx because w is
a prefix of x. Therefore we have (xeu)∞ < (xev)∞, that is, xeu ≺ xev.

Case u∞ < v∞. Assume u is shorter than v and let h be the largest exponent for
which uh is a prefix of v. It is a proper prefix because u∞ < v∞ and then w = (uh)−1v
is not empty.

If |u| ≤ |w|, we have u << w, which implies ux << vx and (xeu)∞ < (xev)∞, that
is, xeu ≺ xev. (This case can happen if for example, u = ab, v = abababbbb, then
w = bbb which means |u| < |w|)

x
u u u u

v u
x

If |u| > |w|, v is a proper prefix of uh+1 but uh+1 shorter than vu cannot be a
prefix of it due to the Periodicity lemma applied on periods |u| and |v| of uh+1. Then

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 91

u << wu and since u is a prefix of x it implies ux << vx and (xeu)∞ < (xev)∞, that
is, xeu ≺ xev as before.

The situation in which u is longer than v is fairly symmetric and treated similarly.
Therefore again u ≺ v implies xeu ≺ xev, which proves the claim.

Claim 2: prefixes in Pe are ≺-smaller than prefixes in Pf when 0 ≤ e < f ≤ k. Let
u ∈ Pe and v ∈ Pf . We have to compare u and v according to ≺, that is, to compare
u∞ and v∞.

xkz x x x x z

u∞ · · ·r r

v∞ · · ·s

When e > 0, u is longer than x. Let r be the prefix of u for which |ur| = |xe+1|
(see picture in which u ∈ P1 and v ∈ P2) and s the suffix of x of the same length.
Comparing u∞ and v∞ amounts to compare r and s, because u is a prefix of v. Since
r is a prefix and s a suffix of the Lyndon word x, we have r < s and even more,
r << s, then u∞ < v∞ and u ≺ v.

When e = 0, u is shorter than x. Let h be the largest integer for which uh is a
prefix of x. It is a proper prefix because x is a Lyndon word and w = (uh)−1x is not
empty. As in the proof of previous claim, uh+1 cannot be prefix of xu that is a prefix
of v. The same conclusion follows, that it, uh+1 << vu and eventually u ≺ v.

Claim 3: prefixes in Pe, 0 ≤ e ≤ k, are ≺-smaller than prefixes xf , 0 < f ≤ k. To
prove the claim, in view of the statement of Claim 2 and the fact xk ≺ xk−1 ≺ x by
definition, it is enough to show that Pk ≺ xk. Note that if Pk is empty the proof can
be shown with Pk−1 instead, and if in addition k = 1 then we are left with an element
in the proof of Claim 2.

Let xku ∈ Pk, s = u−1x and r the prefix of x of length |s|. As prefix and suffix of
x, r and s satisfy r < s. Since xkur < xkus = xk+1 and r is a prefix of x, it results in
(xku)∞ < x∞ and eventually xku ≺ xk. This proves the claim.

To summarise, claims show

P0 ≺ P1 ≺ · · · ≺ Pk ≺ xk ≺ xk−1 ≺ · · · ≺ x.

Let us go back to induction. By induction hypothesis, the result holds for internal
nodes of L(x) corresponding to prefixes in P0.

Consider the next occurrences of x. Since the Lyndon suffix table for each of
them is copied from that of prefix x due to the instruction at line 8 in Algorithm
LeftLyndonTree, the Lyndon trees of all occurrences of x have the same structure.
Therefore, both from the induction hypothesis and from Claim 1, the order in which
internal nodes of the eth occurrence of x are processed and created matches the
≺-order of prefixes in Pe, for 0 < e ≤ k.

The algorithm processes occurrences of x from left to right, which corresponds to
the result of Claim 2. The treatment of zb is done at the beginning of the bundling
run, which also corresponds to the fact that prefixes in Pk are ≺-larger than all
prefixes that have been considered before.

Finally, the last part of the bundling creates nodes associated with xk, xk−1, . . . ,
x in that order, which matches the order xk ≺ xk−1 ≺ · · · ≺ x.

This ends the proof of the theorem.

92 Proceedings of the Prague Stringology Conference 2020

A consequence of the theorem is that Algorithm LeftLyndonTree can be down-
graded to compute directly the ≺-sorted list of non-empty proper prefixes of a Lyndon
word. Dolce et al. [6] call this ordered list the prefix standard permutation. The
following algorithm computes the prefix standard permutation.

PrefixStandardPermutation(y Lyndon word of length n)

1 S ← ()

2 (LynS [0], per , i)← (1, 1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 (k,m)← (j − 1, 1)

10 while m < LynS [j] do

11 S ← S · (j −m)

12 m← m+ LynS [k]

13 k ← k − LynS [k]

14 return S

Corollary 8. Sorting the proper non-empty prefixes of a Lyndon word of length n ac-
cording to the infinite order ≺ can be carried out in time O(n) in the letter-comparison
model.

Proof. It essentially suffices to substitute the handling of the sequence to the process-
ing of internal nodes of the Lyndon tree of the word in Algorithm LeftLyndonTree,
which is equivalent to do a left-to-right post-order traversal of the tree. The change
is realised by Algorithm PrefixStandardPermutation.

5 Lyndon forest

When the non-empty word y is not a Lyndon word, the above process can be carried
out on each factor of its Lyndon factorisation, a decreasing list of Lyndon factors of the
word. Lyndon factorisation of y is a list x1, x2, . . . , xk for which both x1x2 · · · xk = y
and x1 ≥ x2 ≥ · · · ≥ xk. This factorisation is unique (see [10, Chen-Fox-Lyndon
theorem]).

The factorisation and its algorithm by Duval [7] is the guiding thread of previous
algorithms. The Lyndon forest of word y is the list of Lyndon trees L(x1), L(x2), . . . ,
L(xk). Its computation uses again the Lyndon suffix table of the word, computed by
Algorithm LongestLyndonSuffix whose input is not necessarily a Lyndon word.

It is a revision of Algorithm LyndonSuffix. The change stands in instructions
on lines 4-7. They reset the computation to the suffix y[h . . n− 1] of the input after
the factorisation of the prefix y[0 . . h− 1] is definitely achieved.

y x x z
h i j

z
✲✛

period(y[h . . j − 1])

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 93

LongestLyndonSuffix(y non-empty word of length n)

1 LynS [0]← 1

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 if y[j] < y[i] then

5 h← j − (i− h)

6 LynS [h]← 1

7 (per , i, j)← (1, h, h+ 1)

8 elseif y[j] > y[i] then

9 LynS [j]← j − h+ 1

10 j ← j + 1

11 (per , i)← (j − h, h)

12 else LynS [j]← LynS [i]

13 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

14 return LynS

Proposition 9. Algorithm LongestLyndonSuffix computes the Lyndon suffix ta-
ble of a word of length n > 0 in time O(n) in the letter-comparison model.

Proof. Let us consider values of expression h+j and show they form a strictly increas-
ing sequence after each iteration in the while loop. This claim holds if the condition
at line 4 is false, because j is incremented by at least one unit (on line 10 or on
line 13) and h remains unchanged. This claim also holds if the condition at line 4 is
true, because h is incremented by at least period(y[h . . j− 1]) while j is decremented
by less than the same value.

Since h+ j goes from 1 to at most 2n− 1 the running time is O(n).

Note the Lyndon factorisation of a word y can be retrieved from its LynS table by
sequentially tracing back the starting position of the previous factor, starting from
|y|. The list of starting positions of factors, in reverse order, is ik = |y|−LynS [|y|−1],
ik−1 = ik − LynS [ik−1 − 1], . . . , 0.

Example 10. The Lyndon suffix table of y1 = babbababbaabb is as follows.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

y[j] b a b b a b a b b a a b b

LynS [j] 1 1 2 3 1 2 1 2 5 1 1 3 4

Starting positions of factors of its Lyndon factorisation are 9 = 13 − LynS [12], 4 =
9−LynS [8], 1 = 4−LynS [3], 0 = 1−LynS [0]. The factorisation is b·abb·ababb·aabb.
The following depicts the Lyndon forest corresponding to y1.

0 1 2 3 4 5 6 7 8 9 10 11 12

b a b b a b a b b a a b b

94 Proceedings of the Prague Stringology Conference 2020

Algorithm LeftLyndonForest is merely adapted from the previous algorithm
in order to manage Lyndon tree constructions of factors of the Lyndon factorisation
while computing the latter. The next proposition is a direct consequence of Proposi-
tion 9.

Proposition 11. Algorithm LeftLyndonForest computes the Lyndon forest of a
word of length n > 0 in time O(n) in the letter-comparison model.

LeftLyndonForest(y non-empty word of length n)

1 (LynS [0], root[0])← (1, 0)

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 root[j]← j

5 if y[j] < y[i] then

6 h← j − (i− h)

7 LynS [h]← 1

8 (per , i, j)← (1, h, h+ 1)

9 elseif y[j] > y[i] then

10 LynS [j]← j − h+ 1

11 j ← j + 1

12 (per , i)← (j − h, h)

13 else LynS [j]← LynS [i]

14 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

15 ⊲ Bundle

16 (p,m, k)← (root[j], 1, j − 1)

17 while m < LynS [j] do

18 q ← new node ≥ n

19 (left[q], right[q])← (root[k], p)

20 (p,m)← (q,m+ LynS [k])

21 k ← k − LynS [k]

22 return root[n− 1]

6 Conclusions

In this paper, algorithm LyndonSuffix computes, for a given Lyndon word, its
Lyndon suffix table. The Lyndon suffix table is an essential part of algorithm Left-
LyndonTree which constructs the left Lyndon tree of a Lyndon word in linear time.
We further investigated the prefix standard permutation, initially introduced by Dolce
et al. [6], and its relation to the left Lyndon tree. This study resulted in a linear-time
algorithm for computing prefix standard permutation in the letter-comparison model.
In addition, we exhibited a strong connection between the prefix ranks and the left
Lyndon tree. This connection dictates that the order in which the internal nodes of
the left Lyndon tree are created and processed coincides with that of the prefix ranks
according to infinite ordering.

We finally endeavoured to design a linear-time algorithm LyndonForest which
computes the Lyndon forest of a given word. This process entailed modifications

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 95

of algorithm LyndonSuffix to create algorithm LongestLyndonSuffix, which
enables us to construct the Lyndon suffix table of also non-Lyndon words.

Many interesting questions remain, for example, is there a connection between
runs and the internal nodes of the Lyndon forest? Is there a relation between the left
and the right Lyndon trees?

References

1. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “runs”
theorem. SIAM J. Comput., 46(5) 2017, pp. 1501–1514.

2. M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and
T. Walen: The maximal number of cubic runs in a word. J. Comput. Syst. Sci., 78(6) 2012,
pp. 1828–1836.

3. M. Crochemore, T. Lecroq, and W. Rytter: One Twenty Five Problems in Text Algo-
rithms, Cambridge University Press, 2020, In press.

4. M. Crochemore and L. M. S. Russo: Cartesian and Lyndon trees. Theoretical Computer
Science, 806 February 2020, pp. 1–9.

5. F. Dolce, A. Restivo, and C. Reutenauer: On generalized lyndon words. Theor. Comput.
Sci., 777 2019, pp. 232–242.

6. F. Dolce, A. Restivo, and C. Reutenauer: Some variations on Lyndon words. CoRR,
abs/1904.00954 2019.

7. J. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
8. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theor. Comput.

Sci., 307(1) 2003, pp. 173–178.
9. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,

in 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, IEEE Computer Society, 1999, pp. 596–604.

10. M. Lothaire: Combinatorics on Words, Addison-Wesley, 1983, Reprinted in 1997.
11. R. C. Lyndon: On Burnside problem i. Trans. Amer. Math. Soc., 77 1954, pp. 202–215.
12. V. A. Ufnarovskij: Combinatorial and asymptotic methods in algebra, in Algebra VI: Com-

binatorial and Asymptotic Methods of Algebra. Non-Associative Structures, A. Kostrikin and
I. Shafarevich, eds., vol. 57 of Encyclopaedia of Mathematical Sciences, Springer, Berlin, 2011,
pp. 1–196.

13. G. Viennot: Algèbres de Lie libres et monöıdes libres, vol. 691 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1978.

On Arithmetically Progressed Suffix Arrays⋆

Jacqueline W. Daykin1, Dominik Köppl2, David Kübel3, and Florian Stober4

1 Department of Computer Science, Aberystwyth University, UK; Department of Information
Science, Stellenbosch University, South Africa

jwd6@aber.ac.uk; jackie.daykin@gmail.com,
2 Kyushu University, Japan Society for Promotion of Science, Japan

dominik.koeppl@inf.kyushu-u.ac.jp,
3 University of Bonn, Institute of Computer Science, Germany

kuebel@cs.uni-bonn.de,
4 University of Stuttgart, Institute for Formal Methods of Computer Science (FMI), Germany

florian.stober@t-online.de

Abstract. We characterize those strings whose suffix arrays are based on arithmetic
progressions, in particular, arithmetically progressed permutations where all pairs of
successive entries of the permutation have the same difference modulo n. We show that
an arithmetically progressed permutation P coincides with the suffix array of a unary,
binary, or ternary string. We further analyze the conditions of a given P under which
we can find a uniquely defined string over either a binary or ternary alphabet having
P as its suffix array. These results give rise to numerous future research directions.

Keywords: arithmetic progression, suffix array, string combinatorics

1 Introduction

The integral relationship between the suffix array [18] (SA) and Burrows-Wheeler
transform [4] (BWT) is explored in [1], which also illustrates the versatility of the
BWT beyond its original motivation in lossless block compression [4]. BWT applica-
tions include compressed index structures using backward search pattern matching,
multimedia information retrieval, bioinformatics sequence processing, and it is at the
heart of the bzip2 suite of text compressors. By its association with the BWT, this
also indicates the importance of the SA data structure and hence our interest in
exploring its combinatorial properties.

These combinatorial properties can be useful when checking the performance or
integrity of string algorithms or data structures on string sequences in testbeds when
properties of the employed string sequences are well understood. In particular, due
to current trends involving massive data sets, indexing data structures need to work
in external memory (e.g., [3]), or on distributed systems (e.g. [11]). For devising a
solution adaptable to these scenarios, it is crucial to test whether the computed index
(consisting of the suffix array or the BWT, for instance) is correctly stored on the
hard disk or on the computing nodes, respectively. This test is more cumbersome than
in the case of a single machine working with RAM. One way to test is to compute
the index for an instance, whose index shape can be easily verified. For example, one
could check the validity of the computed BWT on a Fibonacci word since the shape
of its BWT is known [20,5,23].

Other studies based on Fibonacci words are the suffix tree [22] or the Lempel-
Ziv 77 (LZ77) factorization [2]. In [16], the suffix array and its inverse of each even

⋆ This work was initiated at the open problems session of StringMasters colocated with IWOCA
2019 (International Workshop on Combinatorial Algorithms).

Jacqueline W. Daykin, Dominik Köppl, David Kübel, Florian Stober: On Arithmetically Progressed Suffix Arrays, pp. 96–110.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 97

Fibonacci word is studied as an arithmetic progression. In this study, the authors,
like many at that time, did not append the artificial $ delimiter (also known as a
sentinel) to the input string, thus allowing suffixes to be prefixes of other suffixes.
This small fact makes the definition of BWTT[i] = T[SAT[i] − 1] for a string T with
suffix array SAT incompatible with the traditional BWT defined on the BWT matrix,
namely the lexicographic sorting of all cyclic rotations of the string T.

For instance, SAbab = [2, 3, 1] with BWTbab = bab, while SAbab$ = [4, 2, 3, 1] and
BWTbab$ = bba$ with $ < a < b. However, the traditional BWT constructed by read-
ing the last characters of the lexicographically sorted cyclic rotations [abb , bab , bba]
of bab yields bba, which is equal to BWTbab$ = bba$ after removing the $ character.

Note that not all strings are in the BWT image. An O(n log n)-time algorithm is
given by Giuliani et al. [13] for identifying all the positions in a string S that a $ can
be inserted into so that S becomes the BWT image of a string ending with $.

Despite this incompatibility in the suffix array based definition of the BWT, we
can still observe a regularity for even Fibonacci words [16, Sect. 5]. Similarly, both
methods for constructing the BWT are compatible when the string T consists of a
Lyndon word. The authors of [16, Remark 1] also observed similar characteristics for
other, more peculiar string sequences. For the general case, the $ delimiter makes
both methods equivalent, however the suffix array approach is typically preferred
as it requires Θ(n) time [21] compared to Θ(n2) with the BWT matrix method [4].
By utilizing combinatorial properties of the BWT, an in-place algorithm is given by
Crochemore et al. [8], which avoids the need for explicit storage for the suffix sort and
output arrays, and runs in O(n2) time using O(1) extra memory (apart from storing
the input text). Köppl et al. [15, Sect. 5.1] adapted this algorithm to compute the
traditional BWT within the same space and time bounds.

Up to now, it has remained unknown whether we can formulate a class of string
sequences for which we can give the shape of the suffix array as an arithmetic progres-
sion (independent of the $ delimiter). With this article, we catch up on this question,
and establish a correspondence between strings and suffix arrays generated by arith-
metic progressions. Calling a permutation of integers [1..n] arithmetically progressed
if all pairs of successive entries of the permutation have the same difference modulo n,
we show that an arithmetically progressed permutation coincides with the suffix array
of a unary, binary or ternary string. We analyze the conditions of a given arithmeti-
cally progressed permutation P under which we can find a uniquely defined string T
over either a unary, a binary, or ternary alphabet having P as its suffix array.

The simplest case is for unary alphabets: Given the unary alphabet Σ := {a} and
a string T of length n over Σ, SAT = [n, n− 1, . . . , 1] is an arithmetically progressed
permutation with ratio −1 ≡ n− 1 mod n.

For the case of a binary alphabet {a, b}, several strings of length n exist that solve
the problem. Trivially, the solutions for the unary alphabet also solve the problem for
the binary alphabet. However, studying those strings of length n whose suffix array
is [n, n − 1, . . . , 1], there are now multiple solutions: each T = bras with r, s ∈ [0..n]
such that r + s = n has this suffix array. Similarly, T = an−1b has the suffix array
SAT = [1, 2, . . . , n], which is an arithmetically progressed permutation with ratio 1.

In what follows, we present a comprehensive analysis of strings whose suffix arrays
are arithmetically progressed permutations (under the standard lexicographic order).
In practice, such knowledge can reduce the O(n) space for the suffix array to O(1).

The structure of the paper is as follows. In Section 2 we give the basic definitions
and background, and also deal with the elementary case of a unary alphabet. The

98 Proceedings of the Prague Stringology Conference 2020

main results are presented in Section 3: we justify the need for coprimality, then
cover ternary and binary alphabets followed by considering inverse permutations, and
finally link the binary characterization to Fibonacci words. We conclude in Section 4
and propose a list of open problems and research directions, showing there is plenty
of scope for further investigation. We proceed to the foundational concepts.

2 Preliminaries

Let Σ be an alphabet with size σ := |Σ|. An element of Σ is called a character 1. Let
Σ+ denote the set of all nonempty finite strings over Σ. The empty string of length
zero is denoted by ε; we write Σ∗ = Σ+ ∪ {ε}. Given an integer n ≥ 1, a string2 of
length n over Σ takes the form T = t1 · · · tn with each ti ∈ Σ. We write T = T[1..n]
with T[i] = ti. The length n of a string T is denoted by |T|. If T = uwv for some
strings u,w, v ∈ Σ∗, then u is a prefix , w is a substring , and v is a suffix of T; we say
u (resp. w and v) is proper if u 6= T (resp. w 6= T and v 6= T). We say that a string T
of length n has period p ∈ [1..n−1] if T[i] = T[i+p] for every i ∈ [1..n−p] (note that
we allow periods larger than n/2). If T = uv, then vu is said to be a cyclic rotation of
T. A string that is both a proper prefix and a proper suffix of a string T 6= ε is called
a border of T; a string is border-free if the only border it has is the empty string ε.

If Σ is a totally ordered alphabet with order <, then this order < induces the
lexicographic ordering ≺ on Σ∗ such that u ≺ v for two strings u, v ∈ Σ∗ if and only
if either u is a proper prefix of v, or u = ras, v = rbt for two characters a, b ∈ Σ
such that a < b and for some strings r, s, t ∈ Σ∗. In the following, we select a totally
ordered alphabet Σ having three characters a, b, c with a < b < c.

A string T is a Lyndon word if it is strictly least in the lexicographic order among
all its cyclic rotations [17]. For instance, abcac and aaacbaabaaacc are Lyndon words,
while the string aaacbaabaaac with border aaac is not.

For the rest of the article, we take a string T of length n ≥ 2. The suffix array
SA := SAT[1..n] of T is a permutation of the integers [1..n] such that T[SA[i]..n]
is the i-th lexicographically smallest suffix of T. We denote with ISA its inverse,
i.e., ISA[SA[i]] = i. By definition, ISA is also a permutation. The string BWT with
BWT[i] = T[SA[i]− 1 mod n] is the (SA-based) BWT of T.

The Fibonacci sequence is a sequence of binary strings {Fm}m≥1 with F1 := b,
F2 := a, and Fm := Fm−1Fm−2. Then Fm and fm := |Fm| are called the m-th Fibonacci
word and the m-th Fibonacci number , respectively.

The focus of this paper is on arithmetic progressions. An arithmetic progression is
a sequence of numbers such that the differences between all two consecutive terms are
of the same value: Given an arithmetic progression {pi}i≥1, there is an integer k ≥ 1
such that pi+1 = pi+k for all i ≥ 1. We call k the ratio of this arithmetic progression.
Similarly to sequences, we can define permutations that are based on arithmetic
progressions: An arithmetically progressed permutation with ratio k ∈ [1..n− 1] is an
array P := [p1, . . . , pn] with pi+1 = pi+ k mod n for all i ∈ [1..n], where we stipulate
that pn+1 := p1.

3 Here x mod n := x if x ≤ n and x − n mod n otherwise for an
integer x ≥ 1. In what follows, we want to study (a) strings whose suffix arrays are

1 Also known as letter or symbol in the literature.
2 Also known as word in the literature.
3 We can also support negative values of k: Given a negative k < 0, we exchange it with k′ := n−k
mod n ∈ [1..n] and use k′ instead of k.

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 99

arithmetically progressed permutations, and (b) the shape of these suffix arrays. For
a warm-up, we start with the unary alphabet:

Theorem 1. Given the unary alphabet {a}, the suffix array of a string of length n
over {a} is uniquely defined by the arithmetically progressed permutation [n, n −
1, . . . , 1] with ratio n− 1.

Conversely, given the arithmetically progressed permutation P = [n, n− 1, . . . , 1],
we want to know the number of strings from a general totally ordered alphabet Σ =
[1..σ] with the natural order 1 < 2 < · · · < σ, having P as their suffix array. For that,
we fix a string T of length n with SAT = P . Let sj ≥ 0 be the number of occurrences
of the character j ∈ Σ appearing in T. Then

∑σ
j=1 sj = n. By construction, each char-

acter j has to appear after all characters k with k > j. Therefore, T = σsσσsσ−1 · · · 1s1
such that the position of the characters are uniquely determined. In other words, we
can reduce this problem to the classic stars and bars problem [10, Chp. II, Sect. 5]
with n stars and σ bars, yielding

(
n+σ−1

n

)
possible strings. Hence we obtain:

Theorem 2. There are
(
n+σ−1

n

)
strings of length n over an alphabet with size σ having

the suffix array [n, n− 1, . . . , 1].

As described above, strings of Theorem 2 have the form σsσσsσ−1 · · · 1s1 . The
BWT based on the suffix array is 1s1−12s2 · · · σsσ1. For s1 ≥ 2, it does not coincide
with the BWT based on the rotations since the lexicographically smallest rotation is
1s1σsσ · · · 2s2 , and hence the first entry of this BWT is 2. For s1 = 1, the last character
‘1’ acts as the dollar sign being unique and least among all characters, making both
BWT definitions equivalent.

For the rest of the analysis, we omit the arithmetically progressed permutation
[n, n − 1, . . . , 1] of ratio k = n − 1 as this case is complete. All other permutations
(including those of ratio k = n − 1) are covered in our following theorems whose
results we summarized in Fig. 1.

p1 k Min. Size of Σ Properties of Strings Reference

1 2 unique, Lyndon word Theorem 11

k + 1 2 unique, period (n− k) Theorem 11

n
6= (n− 1) 2 unique, period (n− k) Theorem 11
= (n− 1) 1 trivially periodic Theorem 2

6∈ {1, k + 1, n} 3 unique Theorem 4

Figure 1. Characterization of strings whose suffix array is an arithmetic progression P = [p1, . . . , pn]
of ratio k. The choice of p1 determines the minimum size of the alphabet and whether a string is
unique, periodic or a Lyndon word. The column Min. Size of Σ denotes the smallest possible size
of Σ for which there exists such a string whose characters are drawn from Σ.

3 Arithmetically Progressed Suffix Arrays

We start with the claim that each arithmetically progressed permutation coincides
with the suffix array of a string on a ternary alphabet. Subsequently, given an arith-
metically progressed permutation P , we show that either there is precisely one string T

100 Proceedings of the Prague Stringology Conference 2020

Rotation T P p1−k−1
mod n

BWTT

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(1) b a b b a b a c [5, 2, 7| 4, 1, 6, 3| 8] 7 b4ca3

(2) b a b a c b a c [2, 7, 4| 1, 6, 3| 8, 5] 4 b3c2a3

(3) a c b a c b a c [7, 4, 1| 6, 3| 8, 5, 2] 1 b2c3a3

(4) a c b a c a c c [4, 1, 6| 3| 8, 5, 2, 7] 6 bc4a3

(5) a b a b b a b b [1, 6, 3| 8, 5, 2, 7, 4] 3 b5a3

(6) c c a c c a c b [6, 3| 8| 5, 2, 7, 4, 1] 8 c5a2b

(7) c c a c b c c b [3| 8, 5| 2, 7, 4, 1, 6] 5 c5ab2

(8) b a b b a b b a [8, 5, 2| 7, 4, 1, 6, 3] 2 b5a3

Figure 2. T of Eq. 1 for each arithmetically progressed permutation P of length n = 8 with ratio k =
5, starting with p1 := P [1] = k = 5. The permutation of the k-th row is the k-th cyclic rotation
of the permutation P in the first row. The splitting of P into the subarrays is visualized by the
| symbol. For (5) and (8), the alphabet is binary and the BWTs are the same. The strings of (3)
and (8) are periodic with period n − k, since the last text position of each subarray is at most
as large as n − k = 3 (cf. the proof of Theorem 11). For i ∈ [1..n], BWTT[i] = T[P [i + n − k−1

mod n]] = T[P [i+ 3 mod n]] with k−1 = k = 5 defined in Section 3.4.

with SAT = P whose characters are drawn from a ternary alphabet, or, if there are
multiple candidate strings, then there is precisely one whose characters are drawn
from a binary alphabet. For this aim, we start with the restriction on k and n to be
coprime:

3.1 Coprimality

Two integers are coprime4 if their greatest common divisor (gcd) is one. An ideal
kN := {ki}i∈N is a subgroup of ([1..n],+). It generates [1..n] if |kN| = n, i.e., kN =
[1..n]. Fixing one element P [1] ∈ kN of an ideal kN generating [1..n] induces an
arithmetically progressed permutation P [1..n] with ratio k by setting P [i + 1] ←
P [i] + k for every i ∈ [1..n − 1]. On the contrary, each arithmetically progressed
permutation with ratio k induces an ideal kN (the induced ideals are the same for
two arithmetically progressed permutations that are shifted). Consequently, there is
no arithmetically progressed permutation with ratio k if k and n are not coprime
since in this case {(ki) mod n | i ≥ 1} ([1..n], from which we obtain:

Lemma 3. The numbers k and n must be coprime if there exists an arithmetically
progressed permutation of length n with ratio k.

3.2 Ternary Alphabet

Given an arithmetically progressed permutation P := [p1, . . . , pn] with ratio k, we
define the ternary string T[1..n] by splitting P right after the values n − k and
(p1 − k − 1) mod n into the three subarrays A, B, and C (one of which is possibly
empty) such that P = ABC. Subsequently, we set

T[pi] :=

a if pi ∈ A, or

b if pi ∈ B, or

c if pi ∈ C.

(1)

Figure 2 gives an example of induced ternary/binary strings.

4 Also known as relatively prime in the literature.

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 101

1
pi+1 + 1

i
pi

i+ 1
pi+1

n
pi + 1

P = A B C
p1 p1 − k − 1 p1 − 1 n− k n pn

Figure 3. Setting of the proof of Theorem 4 with the condition pi + 1 = p1 − k = pn. In the Figure
we assume that the entry p1 − k − 1 appears before n− k in P .

Theorem 4. Given an arithmetically progressed permutation P := [p1, . . . , pn] 6= [n,
n− 1, . . . , 1] with ratio k, SAT = P for T defined in Eq. 1.

Proof. Suppose we have constructed SAT. Since a < b < c, according to the above
assignment of T, the suffixes starting with a lexicographically precede the suffixes
starting with b, which lexicographically precede the suffixes starting with c. Hence,
SA[1..|A|], SA[|A|+1..|A|+ |B|] and SA[|A|+ |B|+1..n] store the same text positions
as A, B, and C, respectively. Consequently, it remains to show that the entries of
each subarray (A, B or C) are also sorted appropriately. Let pi and pi+1 be two
neighboring entries within the same subarray. Thus, T[pi] = T[pi+1] holds, and the
lexicographic order of their corresponding suffixes T[pi..n] and T[pi+1..n] is determined
by comparing the subsequent positions, starting with T[pi +1] and T[pi+1 +1]. Since
we have (pi+1 + 1) − (pi + 1) = pi+1 − pi = k, we can recursively show that these
entries remain in the same order next to each other in the suffix array until either
reaching the last array entry or a subarray split, that is, (1) pi + 1 = p1 − k or (2)
pi = n− k.

1. When pi + 1 becomes p1 − k mod n = pn (the last entry in SA), pi+1 is in the
subsequent subarray of the subarray of pi = p1−k−1 (remember that A or B ends
directly after p1−k−1, cf. Fig. 3). Hence T[pi] < T[pi+1], and T[pi..n] ≺ T[pi+1..n].

2. The split at the value n− k ensures that when reaching pi = n− k and pi+1 = n,
we can stop the comparison here as there is no character following T[pi+1]. The
split here ensures that we can compare the suffixes T[n − k..n] and T[n] by the
characters T[n−k] < T[n]. If we did not split here, T[n] = T[n−k], and the suffix
T[n] would be a prefix of T[n− k..n], resulting in T[n] ≺ T[n− k..n] (which yields
a contradiction unless pn = n).

To sum up, the text positions stored in each of A, B and C are in the same
order as in SAT since the j − 1 subsequent text positions of each consecutive pair of
entries pi and pi+1 are consecutive in P for the smallest integer j ∈ [1..n] such that
pi+1 + jk ∈ {p1 − 1, n}.

Knowing the suffix array of the ternary string T of Eq. 1, we can give a char-
acterization of its BWT. We start with the observation that both BWT definitions
(rotation based and suffix array based) coincide for the strings of Eq. 1 (but do not in
general as highlighted in the introduction, cf. Fig. 4), and then continue with insights
in how the BWT looks like.

Theorem 5. Given an arithmetically progressed permutation P := [p1, . . . , pn] 6= [n,
n − 1, . . . , 1] with ratio k and the string T of Eq. 1, the BWT of T defined on the
BWT matrix coincides with the BWT of T defined on the suffix array.

102 Proceedings of the Prague Stringology Conference 2020

BWT matrix of babbabac:

abacbabb

abbabacb

acbabbab

babacbab

babbabac

bacbabba

bbabacba

cbabbaba

BWT matrix of ccaccacb:

acbccacc

accacbcc

bccaccac

cacbccac

caccacbc

cbccacca

ccacbcca

ccaccacb

BWT matrix of bbabbabb:

abbabbbb

abbbbabb

babbabbb

babbbbab

bbabbabb

bbabbbba

bbbabbab

bbbbabba

Figure 4. BWTs defined by the lexicographic sorting of all rotations of strings whose suffix arrays
are cyclic rotations. This figure shows (from left to right) the BWT matrices of the strings of
Rotation (1) and (6) of Fig. 2 as well as of Case (2) from Fig. 6. Reading the last column of a BWT
matrix (whose characters are italic) from top down yields the BWT defined on the BWT matrix.
While the BWT defined on the BWT matrix and the one defined by the suffix array coincides for
the strings of Eq. 1 due to Theorem 5, this is not the case in general for the binary strings studied
in Section 3.3, where we observe that BWTbbabbabb = bbbbbaab defined by the suffix array differs
from bbbbbaba (the last column on the right)

Proof. According to Theorem 4, SAT = P , and therefore the BWT of T defined on the
suffix array is given by BWTT[i] = T[pi − 1 mod n]. The BWT matrix is constituted
of the lexicographically ordered cyclic rotations of T. The BWT BWTmatrix based on
the BWT matrix is obtained by reading the last column of the BWT matrix from
top down (see Fig. 4). Formally, BWTmatrix[i] = T[Q[i]− 1 mod n], where Q[i] is the
starting position of the lexicographically i-th smallest rotation T[Q[i]..n]T[1..Q[i]−1].
We prove the equality P = Q by showing that, for all i ∈ [1..n − 1], the rotation
Ri := T[pi..n]T[1..pi − 1] starting at pi = SAT[i] is lexicographically smaller than the
rotation Ri+1 := T[pi+1..n]T[1..pi+1 − 1] starting at pi+1 = SAT[i+ 1]. We do that by
comparing both rotations Ri and Ri+1 characterwise:

Let j be the first position where Ri and Ri+1 differ, i.e., Ri[j] 6= Ri+1[j] and
Ri[q] = Ri+1[q] for every q ∈ [1..j).

First we show that j 6= pn − pi + 1 mod n by a contradiction: Assuming that
j = pn−pi+1 mod n, we conclude that j 6= 1 by the definition of i ∈ [1..n−1]. Since
k is the ratio of P , we have

Ri[j − 1] = T[pi + j − 2 mod n] = T[pn − 1 mod n] = T[p1 − k − 1 mod n]

and Ri+1[j−1] = T[p1−1 mod n]. By Eq. 1, p1−k−1 mod n and p1−1 mod n belong
to different subarrays of P , therefore T[p1−k−1] 6= T[p1−1] and Ri[j−1] 6= Ri+1[j−1],
contradicting the choice of j as the first position where Ri and Ri+1 differ.

This concludes that j ≤ n (hence, Ri 6= Ri+1) and j 6= pn − pi + 1 mod n. Hence,
Ri[j] = T[pi+j−1 mod n] and Ri+1[j] = T[pi+1+j−1 mod n] = T[pi+j−1+k mod n]
are characters given by two consecutive entries in SAT, i.e., SAT[q] = pi+ j−1 mod n
and SAT[q + 1] = pi + j − 1 + k mod n for a q ∈ [1..n − 1]. Thus Ri[j] ≤ Ri+1[j],
and by definition of j we have Ri[j] < Ri+1[j], leading finally to Ri ≺ Ri+1. Hence,
Q = P .

Lemma 6. Let P := [p1, . . . , pn] 6= [n, n − 1, . . . , 1] be an arithmetically progressed
permutation with ratio k. Further, let T[1..n] be given by Eq. 1 such that SAT = P
according to Theorem 4. Given that pt = p1− 1− k mod n for a t ∈ [1..n], BWTT is

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 103

1
p1 p1 − k − 1 p1 − 1 n− k n

n
pn

P = A B C

p1 − 1 p1 − k − 1

P ′ = B C A

1
p1 n− k n p1 − k − 1 p1 − 1

n
pn

P = C A B

p1 − 1 p1 − k − 1

P ′ = B C A

Figure 5. Setting of Eq. 1 with the distinction whether the entry p1− k− 1 appears before (left) or
after (right) n− k in P , yielding a different shape of the BWTT defined as BWTT[i] = T[P ′[i]] with
P ′[i] = SAT[i]− 1 mod n.

given by the t-th rotation of T[SA[1]] · · ·T[SA[n]], i.e., BWTT[i] = T[P [i+ t mod n]]
for i ∈ [1..n].

Proof. Since P is an arithmetically progressed permutation with ratio k then so is
the sequence P ′ := [p′1, . . . , p

′
n] with p′i = pi − 1 mod n. In particular, P ′ is a cyclic

shift of P with p′n = p1 − 1 − k mod n because p′1 = p1 − 1. However, p1 − 1 − k is
a split position of one of the subarrays A, B, or C, meaning that P ′ starts with one
of these subarrays and ends with another of them (cf. Fig. 5). Consequently, there is
a t such that pt = p′n, and we have the property that BWTT with BWTT[i] = T[P ′[i]]
is the t-th rotation of T[SA[1]] · · ·T[SA[n]].

We will determine the parameter t = n − k−1 mod n after Eq. 3 in Section 3.4,
where k−1 is defined such that k ·k−1 mod n = 1 mod n. With Lemma 6, we obtain
the following corollary which shows that the number of runs in BWTT for T defined
in Eq. 1 are minimal:

Corollary 7. For an arithmetically progressed permutation P := [p1, . . . , pn] 6= [n,
n− 1, . . . , 1] and the string T defined by Eq. 1, BWTT consists of exactly 2 runs if T
is binary, while it consists of exactly 3 runs if T is ternary.

Theorem 8. Given an arithmetically progressed permutation P := [p1, . . . , pn] with
ratio k such that p1 6∈ {1, k + 1, n}, the string T given in Eq. 1 is unique.

Proof. The only possible way to define another string T′ would be to change the
borders of the subarrays A, B, and C. Since p1 6∈ {1, n}, n − k and n, as well as
p1 − k − 1 and p1 − 1, are stored as a consecutive pair of text positions in P .

– If P is not split between its consecutive text positions n−k and n, then T′[n−k] =
T′[n]. Consequently, we have the contradiction T′[n] ≺ T′[n− k..n].

– If P is not split between its consecutive text positions (p1−k−1) mod n and (p1−
1) mod n, then T′[p1− k− 1 mod n] = T′[p1− 1 mod n]. Since p1 6= k+ 1, and
T′[p1 − k mod n] = T′[pn] > T′[p1], this leads to the contradiction T′[(p1 − k −
1 mod n)..n] ≻ T′[(p1 − 1 mod n)..n], cf. Fig. 3.

Following this analysis of the ternary case we proceed to consider binary strings.
A preliminary observation is given in Fig. 2, which shows, for the cases p1 is 1 and
n in Theorem 8, namely Rotations (5) and (8), that a rotation of n − k in the
permutation gives a rotation of one in the corresponding binary strings. We formalize
this observation in the following lemma, drawing a connection between binary strings
whose suffix arrays are arithmetically progressed and start with 1 or n.

104 Proceedings of the Prague Stringology Conference 2020

Lemma 9. Let P := [p1, . . . , pn] be an arithmetically progressed permutation with
ratio k and p1 = 1 for a binary string T over Σ = {a, b} with SAT = P . Suppose that
the number of a’s in T is m and that T′ = T[2] · · ·T[n]T[1] is the first rotation of T.
Then SAT′ is the m-th rotation of P with SAT′ [1] = n. Furthermore, BWTT = BWTT′.

Proof. Since p1 = 1, T[1] = a and T[n] = b. In the following, we show that P ′ = SAT′

for P ′ := [p′1, . . . , p
′
n] := [p1− 1 mod n, . . . , pn− 1 mod n] with p′1 = p1− 1 = n (since

T′[n] = a). For that, we show that each pair of suffixes in SAT is kept in the same
relative order in P ′ (excluding SAT[1] = 1):

Consider two text positions pi, pj ∈ [p2, . . . , pn] with T[pi..n] = u1 · · · us ≺ T[pj..n] =
v1 · · · vt.
– If uh 6= vh for the least h ∈ [1..min{s, t}], then u1 · · · usa ≺ v1 · · · vta.
– Otherwise, u1 · · · us is a proper prefix of v1 · · · vt = u1 · · · usvs+1 · · · vt.
• If vs+1 = b, then u1 · · · usa ≺ u1 · · · usbvs+2 · · · vta = v1 · · · vta.
• Otherwise (vs+1 = a), u1 · · · usa is a proper prefix of v1 · · · vta, and similarly
u1 · · · usa ≺ u1 · · · usavs+2 · · · vta = v1 · · · vta.

Hence the relative order of these suffixes given by [p2, . . . , pn] and [p′2, . . . , p
′
n] is the

same. In total, we have p′i = pi−1 mod n for i ∈ [1..n], hence P ′ is an arithmetically
progressed permutation with ratio k. Given the first m entries in P index represent
all suffixes of T starting with a, P ′ is the m-th rotation of P since p′1 = n is the
(m+ 1)-th entry of P , i.e., the smallest suffix starting with b in T. Finally, since the
strings T and T′ are rotations of each other, their BWTs are the same.

Like the parameter t of Lemma 6, we will determine the parameter m after Eq. 3
in Section 3.4.

3.3 Binary Alphabet

We start with the construction of a binary string from an arithmetically progressed
permutation:

Theorem 10. Given an arithmetically progressed permutation P := [p1, . . . , pn] 6= [n,
n− 1, . . . , 1] with ratio k such that p1 ∈ {1, k + 1, n}, we can modify T of Eq. 1 to be
a string over the binary alphabet {a, b} with SAT = P .

Proof. If p1 = 1, then P is split after the occurrences of the values n−k and−k = n−k
mod n, which gives only two non-empty subarrays. If p1 = n, P is split after the
occurrence of n − k − 1, which implies that C is empty since pn = n − k. Hence, T
can be constructed with a binary alphabet in those cases, cf. Fig. 2.

For the case p1 = k + 1, P is split after the occurrences of the values n − k
and k + 1 − k − 1 mod n = n mod n, so B contains only the text position n. By
construction, the requirement is that the suffix T[n] is smaller than all other suffixes
starting with c. So instead of assigning the unique symbol T[n]← b as in Theorem 4,
we can assign T[n] ← c, which still makes T[n] the smallest suffix starting with c.
We conclude this case by converting the binary alphabet {a, c} to {a, b}. Cf. Fig. 2,
where T in Rotation (6) has become bbabbabb with period n− k = 3.

The main result of this section is the following theorem. There, we characterize all
binary strings whose suffix arrays are arithmetically progressed permutations. More
precisely, we identify which of them are unique5, periodic, or a Lyndon word.

5 The exact number of these binary strings is not covered by Theorem 8.

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 105

Case T SA ps s

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(1) b a b b a b b a [8, 5, 2, 7, 4, 1, 6, 3] 2 3
(2) b b a b b a b b [6, 3, 8, 5, 2, 7, 4, 1] 3 2
(3) a b a b b a b b [1, 6, 3, 8, 5, 2, 7, 4] 3 3

Figure 6. All binary strings of length 8 whose suffix arrays are arithmetically progressed permuta-
tions with ratio k = 5. Theorem 11 characterizes these strings (and also gives the definition of ps).
Cases (1) and (3) also appear in Fig. 2 at Rotation (8) and (5), respectively, while Case (2) can be
obtained from Rotation (6) by exchanging the last character with c. Cases (1) and (2) both have
period n− k = 3, and Case (3) is a Lyndon word.

1 n− k − 1 n− 1 n

Ts = a b a

ps ps+1 p1

1 k + 1 n− k n

Ts = b a a b

pn p1 ps ps+1

1 n− k n

Ts = a a b

p1 ps ps+1

Case 1 Case 2 Case 3

Figure 7. Sketches of the cases of Theorem 11. Ts is uniquely determined if the suffix array SA of
Ts is arithmetically progressed with ratio k and the first entry SA[1] ∈ {1, k + 1, n− k} is given.

Theorem 11. Let n and k ∈ [1..n − 1] be two coprime integers. If k 6= n − 1, there
are exactly three binary strings of length n whose suffix arrays are arithmetically
progressed permutations with ratio k. Each such solution Ts ∈ {a, b}+ is characterized
by

Ts[i] =

{
a for i ∈ SATs [1..s], or

b otherwise,
(2)

for all text positions i ∈ [1..n] and an index s ∈ [1..n− 1] (the split index).
The individual solutions are obtained by fixing the values for p1 and ps, the position

of the lexicographically largest suffix starting with a, of SATs = [p1, . . . , pn]:

1. p1 = n and ps = n− k − 1,
2. p1 = k + 1 and ps = n− k, and
3. p1 = 1 and ps = n− k.

The string Ts has period n − k in Cases 1 and 2, while Ts of Case 3 is a Lyndon
word, which is not periodic by definition.

For k = n − 1, Cases 2 and 3 each yields exactly one binary string, but Case 1
yields n binary strings according to Theorem 2.

Proof. Let S be a binary string of length n, and suppose that SAS = P := [p1, . . . , pn]
is an arithmetically progressed permutation with ratio k. Further let ps be the position
of the largest suffix of S starting with a. Then S[pi..n] ≺ S[pi+1..n] and thus S[pi] ≤
S[pi+1]. We have S[j] = S[j + k mod n] for all j ∈ [1..n] \ {pn, ps} since
– pn = SAS[n] is the starting position of the largest suffix (S[pn] = b 6= a = S[p1] =
S[pn + k]).

– S[ps..n] and S[ps+1..n] are the lexicographically largest suffix starting with a and
the lexicographically smallest suffix starting with b, respectively, such that S[ps] =
a 6= b = S[ps+1].

To sum up, since S[ps..n] ≺ S[ps+1..n] by construction, S[pi..n] ≺ S[pi+1..n] holds
for pi > pi+1 whenever pi 6= pn. This, together with the coprimality of n and k,

106 Proceedings of the Prague Stringology Conference 2020

determines ps uniquely in the three cases (cf. Fig. 6 for the case that n = 8 and k = 5
and Fig. 7 for sketches of the proof):

Case 1: We first observe that the case k = n−1 gives us P = [n, n−1, . . . , 1], and this
case was already treated with Theorem 1. In the following, we assume k < n− 1,
and under this assumption we have s > 1, Ts[n] = Ts[p1] = a and Ts[n − 1] = b

(otherwise Ts[n− 1..n] would be the second smallest suffix, i.e., P [2] = n− 1 and
hence k = n − 1). Consequently, Ts[n − 1..n] = Ts[ps+1..n] is the smallest suffix
starting with b, namely ba, and therefore ps = n− 1− k.

Case p1 6= n: If p1 6= n, then Ts[n] = b (otherwise Ts[n] ≺ Ts[p1..n]). Therefore, Ts[n]
is the smallest suffix starting with b, and consequently ps = n− k.

For the periodicity, with Ts[j] = Ts[j + k mod n] = Ts[j − (n − k) mod n] for
j ∈ [1..n] \ {p1, ps} we need to check two conditions:

– If pn− (n− k) > 0, then Ts[pn− (n− k)] = Ts[p1] 6= Ts[pn] breaks the periodicity.
– If ps− (n−k) > 0, then Ts[ps− (n−k)] = a 6= b = Ts[ps+1] breaks the periodicity.

For Case 1, pn = n−k and ps = n−k−1 (hence pn−(n−k) = 0 and ps−(n−k) = −1),
thus Case 1 is periodic.
Case 2 is analogous to Case 1.
For Case 3, Ts does not have period n−k as pn = n−k+1, and hence pn−(n−k) > 0.
It cannot have any other period since Case 3 yields a Lyndon word (because the
lexicographically smallest suffix Ts[p1..n] = Ts[1..n] starts at the first text position).
Note that Case 3 can be obtained from Case 2 by setting Ts[1] ← a (the smallest
suffix Ts[k + 1..n] thus becomes the second smallest suffix).

Finally, we need to show that no other value for p1 admits a binary string S having
an arithmetically progressed permutation P := [p1, . . . , pn] with ratio k as its suffix
array. So suppose that p1 /∈ {1, k + 1, n}, then this would imply the following:

– S[p1] = a because the smallest suffix starts at text position p1, and
– S[p1 − 1] = b because of the following: First, the text position S[p1 − 1] exists
due to p1 > 1. Second, since p1 < n, there is a text position j ∈ [p1 + 1..n]
such that S[p1] = . . . = S[j − 1] = a and S[j] = b (otherwise S[n] would be the
smallest suffix). If S[p1− 1] = a, then the suffix S[p1− 1..n] starting with aj−p1+1b

is lexicographically smaller than the suffix S[p1..n] starting with aj−p1b. Hence,
S[p1 − 1] = b must hold.

– pn − 1 ≥ 1 (since p1 6= k + 1) and S[pn − 1] = a. If S[pn − 1] = b, then the suffix
S[pn − 1..n] has a longer prefix of b’s than the suffix S[pn..n], and is therefore
lexicographically larger.

Since S[pn−1] = a and S[p1−1] = b with pn−1+k mod n = p1−1, the smallest
suffix starting with b is located at index p1 − 1. This is a contradiction as p1 6= n
implies S[n] = b (if S[n] = a, then SA[1] = n instead of SA[1] = p1) and thus the
smallest suffix starting with b is located at index n (this is a contradiction since we
assumed that this suffix starts at p1 − 1 ∈ [1..n − 1]). This establishes the claim for
p1.

For a given arithmentically progressed permutation with ratio k, and first entry
p1 ∈ {1, k + 1, n}, the string Ts of Theorem 11 coincides with T of Theorem 10.

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 107

3.4 Inverse Permutations

Since the inverse P−1 of a permutation P with P−1[P [i]] = i is also a permutation,
one may wonder whether the inverse P−1 of an arithmetically progressed permutation
is also arithmetically progressed. We affirm this question in the following. For that,
we use the notion of the multiplicative inverse k−1 of an integer k (to the congruence
class [1..n] = Z/nZ), which is given by k−1 ·k mod n = 1 mod n. The multiplicative
inverse k−1 is uniquely defined if k and n are coprime.

Theorem 12. The inverse P−1 of an arithmetically progressed permutation P with
ratio k is an arithmetically progressed permutation with ratio k−1 and P−1[1] = (1−
P [n]) · k−1 mod n.

Proof. Let x := P [i] for an index i ∈ [1..n]. Then P [i + k−1 mod n] = x − k ·
k−1 mod n = x−1 mod n. For the inverse permutation P−1 this means that P−1[x] =
i and P−1[x−1 mod n] = i+k−1 mod n. Thus the difference P−1[x−1 mod n]−P−1[x]
is k−1.

Since P [i] = j ⇐⇒ P [n] + ik mod n = j holds for all indices i ∈ [1..n], we have
(using i← P−1[1] and j ← 1 in the above equivalence)

P [P−1[1]] = 1 mod n⇐⇒ P [n] + P−1[1] · k = 1 mod n

⇐⇒ P−1[1] · k = 1− P [n] mod n

⇐⇒ P−1[1] = (1− P [n]) · k−1 mod n.

Consequently, using the split index s of ps for SA and

ISA[i] = ISA[1] + (i− 1)k−1 mod n

= (1− SA[n]) · k−1 + (i− 1)k−1 mod n

= (i− SA[n]) · k−1 mod n,

we can rewrite Ts defined in Eq. 2 as

Ts[i] =

{
a if ISA[i] ≤ ps, or

b otherwise
(3)

where SA and ISA denote the suffix array and the inverse suffix array of Ts, respec-
tively. Another result is that ISA[ps] = s is the number of a’s in Ts, for which we split
the study into the cases of Theorem 11:

1. If SA[1] = n and ps = n− k − 1, then SA[n] = n− k and ISA[i] = (i− n + k)k−1

mod n. Consequently, ISA[ps] = (−1)k−1 mod n = n− k−1 mod n.
2. If SA[1] = k + 1 and ps = n− k, then SA[n] = 1 and ISA[i] = (i− 1)k−1 mod n.

Consequently, ISA[ps] = (n − k − 1)k−1 mod n = nk−1 − 1 − k−1 mod n =
n− 1− k−1 mod n.

3. If SA[1] = 1 and ps = n−k, then SA[n] = n−k+1 and ISA[i] = (i−n+k−1)k−1

mod n. Consequently, ISA[ps] = (−1)k−1 mod n = n−k−1 mod n as in Case (1).

For Fig. 6 with k = 5 and n = 8, we know that the number of a’s is ISA[ps] = 3
in Cases (1) and (3), and ISA[ps] = 2 in Case (2) because k−1 = 5 ⇔ k · k−1

mod n = 1 mod n. This also determines the constant m used in Lemma 9. Finally,
we can fix the parameter t in Lemma 6 defined such that pt = p1 − 1 − k mod n:
For that, write ISA[i] = (i − pn)k

−1 mod n = (i + k − p1)k
−1 mod n and compute

ISA[pt] = ISA[p1 − 1− k] = (−1)k−1 mod n = n− k−1 mod n.

108 Proceedings of the Prague Stringology Conference 2020

3.5 Relation to the Fibonacci word sequence

Köppl and I [16, Thm. 1] observed that the suffix array of Fm for even m is the
arithmetically progressed permutation SAFm with ratio fm−2 mod fm and SAFm [1] =
fm. Theorem 11 generalizes this observation by characterizing all binary strings whose
suffix arrays are arithmetically progressed. Hence, Fm must coincide with Case 1 of
Theorem 11 since it ends with character a.

Lemma 13. The Fibonacci word Fm for even m is given by

Fm[i] =

{
a if 1 + i · fm−2 mod fm ≤ fm−1, or

b otherwise.

Proof. We use the following facts:

– The greatest common divisor of fi and fj is the Fibonacci number whose index is
the greatest common divisor of i and j [24, Fibonacci numbers]. Hence, fm−1 and
fm are coprime for every m ≥ 2.

– f 2
m−2 mod fm = 1 holds for every even m ≥ 3 [14]. Hence, k−1 = k = fm−2.

– By definition, Fm[fm] = a if m is even, and therefore SAFm [1] = fm.

The split position ps is ps = fm − k = fm−1. So SAFm [fm] = fm − k = fm − fm−2. By
Theorem 12, ISAFm [i] = ifm−2−SAFm [fm]fm−2 mod fm = ifm−2+1 mod fm, where
−SAFm [fm]fm−2 mod fm = (fm−2 − fm)fm−2 mod fm = 1 − fmfm−2 mod fm = 1.
The rest follows from Eq. 3.

Let F̄m denote the m-th Fibonacci word whose a’s and b’s are exchanged, i.e.,
F̄m = a⇔ Fm = b.

Lemma 14. SAF̄m
is arithmetically progressed with ratio fm−2 for odd m.

Proof. Since F̄m[|F̄m|] = a for odd m, F̄m[fm..] is the lexicographically smallest suffix.
Hence, SA := SAF̄m

= |F̄m|. If SA is arithmetically progressed with ratio k, then its
split position must be ps = n−k−1 according to Theorem 11. We show that k = fm−2

by proving

F̄m[fm..] ≺ F̄m[fm + fm−2 mod fm..] ≺ F̄m[fm + 2fm−2 mod fm..] ≺ . . .

≺ F̄m[fm + (fm − 1)fm−2 mod fm..]

in a way similar to [16, Lemma 8]. For that, let S̄ of a binary string S ∈ {a, b}∗ denote
S after exchanging a’s and b’s (i.e., S̄ = a ⇔ S = b). Further, let ⋖ be the relation
on strings such that S ⋖ T if and only if S ≺ T and S is not a prefix of T. We need
this relation since S⋖T⇐⇒ S̄⋗ T̄ while S ≺ T and S̄ ≺ T̄ holds if S is a prefix of T.

– For i ∈ [1..fm−1), we have Fm[i..] ⋗ Fm[i + fm−2..] due to [16, Lemma 7], thus
F̄m[i..]⋖ F̄m[i+ fm−2..].

– For i ∈ (fm−1..fm], since Fm = Fm−1Fm−2 = Fm−2Fm−3Fm−2, Fm[i..] is a prefix
of Fm[i − fm−1..] = Fm[i + fm−2 mod fm..]. Therefore, F̄m[i..] is a prefix F̄m[i +
fm−2 mod fm..] and F̄m[i..] ≺ F̄m[i+ fm−2 mod fm..].

Since fm and fm−2 are coprime, {i+fm−2 mod fm | i > 0} = [1..n]. Starting with the
smallest suffix F̄m[fm..], we end up at the largest suffix F̄m[fm+(fm−1)fm−2 mod fm..]
after m − 1 arithmetic progression steps of the form F̄m[fm + ifm−2 mod fm..] for
i ∈ [0..fm−1]. By using one of the two above items we can show that these arithmetic
progression steps yield a list of suffixes sorted in lexicographically ascending order.

J.W.Daykin et al.: On Arithmetically Progressed Suffix Arrays 109

4 Conclusion and Problems

Given an arithmetically progressed permutation P with ratio k, we studied the min-
imum alphabet size and the shape of those strings having P as their suffix ar-
ray. Only in the case P = [n, n − 1, . . . , 1], a unary alphabet suffices. For general
P = [p1, . . . , pn] 6= [n, n − 1, . . . , 1], there is exactly one such string on the binary
alphabet if and only if p1 ∈ {1, k + 1, n}. In all other cases, there is exactly one such
string on the ternary alphabet.We conclude by proposing some research directions.

– Prove which of the solutions for binary strings (if any) yield balanced words , i.e.,
binary strings T such that for each character c ∈ {a, b}, the number of occurrences
of c in U and in V differ by at most one, for all pairs of substrings U and V with
|U| = |V| of the infinite concatenation T · T · · · of T .

– A natural question arising from this research is to characterize strings having
arithmetic progression properties for the run length exponents of their BWTs,
particularly for the bijective [12] or extended BWT [19], which are always invert-
ible.

For example, given the arithmetically progressed permutation 3214, then the run-
length compressed string a3c2$b4 (a) matches the permutation 3214 and (b) is
a BWT image because its inverse is b2cb2ca3$, which can be computed by the
Last-First mapping. However, for the same permutation, a3b2$b4 does not work
since it is not a BWT image.

– Arithmetic properties can likewise be considered for the following stringology in-
teger arrays:

• Firstly the longest common prefix (LCP) array LCP, whose entry LCP[i] is the
length of the longest common prefix of the lexicographically i-th smallest suffix
with its lexicographic predecessor for i ∈ [2..n].

• Given a string T ∈ Σ+ of length n, the prefix table PT of T is given by PT[i] =
LCP(T,T[i..n]) for i ∈ [1..n]; equivalently, the border table BT of T is defined
by

BT[i] = max{|S| | S is a border of T[1..i]} for i ∈ [1..n].

• Integer prefix lists are more concise than prefix tables and give the lengths of
overlapping LCPs of T and suffixes of T (cf. [7]).

• The i-th entry of the Lyndon array λ = λT[1..n] of a given string T = T[1..n]
is the length of the longest Lyndon word that is a prefix of T [i..] – reverse
engineering in [9] includes a linear-time test for whether an integer array is a
Lyndon array. Likewise, the Lyndon factorization array F = FT[1..n] of T in
[6] gives at each position i the number of factors in the Lyndon factorization
starting at i, that is the number of factors in the suffix FT[i..n]. The problems
are to characterize those arithmetic progressions which define a valid Lyndon
array, respectively Lyndon factorization array. For example, consider the string
T = azyx, then its Lyndon array is λT = [4, 1, 1, 1], while the Lyndon factor-
ization array is FT = [1, 3, 2, 1]. Trivially, for T = abc . . . z the Lyndon array
is an arithmetic progression and likewise for the Lyndon factorization array of
T = ztytxt . . . at.

– A challenging research direction is to consider arithmetic progressions for multi-
dimensional suffix arrays and Fibonacci word sequences.

110 Proceedings of the Prague Stringology Conference 2020

Acknowledgements

We thank Gabriele Fici for the initial help in guiding this research started at String-
Masters.

Funding: This research was part-funded by JSPS KAKENHI with grant number
JP18F18120, and by the European Regional Development Fund through the Welsh
Government [Grant Number 80761-AU-137 (West)]:

References

1. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data com-
pression, Suffix arrays, and Pattern matching, Springer, 2008.

2. J. Berstel and A. Savelli: Crochemore factorization of Sturmian and other infinite words,
in Proc. MFCS, vol. 4162 of LNCS, 2006, pp. 157–166.

3. T. Bingmann, J. Fischer, and V. Osipov: Inducing suffix and LCP arrays in external
memory. ACM Journal of Experimental Algorithmics, 21(1) 2016, pp. 2.3:1–2.3:27.

4. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, Palo Alto, California, 1994.

5. M. Christodoulakis, C. S. Iliopoulos, and Y. J. P. Ardila: Simple algorithm for sorting
the Fibonacci string rotations, in Proc. SOFSEM, vol. 3831 of LNCS, 2006, pp. 218–225.

6. A. Clare and J. W. Daykin: Enhanced string factoring from alphabet orderings. Inf. Process.
Lett., 143 2019, pp. 4–7.

7. J. Clément and L. Giambruno: Representing prefix and border tables: results on enumeration.
Mathematical Structures in Computer Science, 27(2) 2017, pp. 257–276.

8. M. Crochemore, R. Grossi, J. Kärkkäinen, and G. M. Landau: Computing the Burrows-
Wheeler transform in place and in small space. J. Discrete Algorithms, 32 2015, pp. 44–52.

9. J. W. Daykin, F. Franek, J. Holub, A. S. M. S. Islam, and W. F. Smyth: Reconstructing
a string from its Lyndon arrays. Theor. Comput. Sci., 710 2018, pp. 44–51.

10. W. Feller: An introduction to probability theory and its applications, Wiley, 1968.
11. J. Fischer and F. Kurpicz: Lightweight distributed suffix array construction, in Proc.

ALENEX, 2019, pp. 27–38.
12. J. Y. Gil and D. A. Scott: A bijective string sorting transform. ArXiv 1201.3077, 2012.
13. S. Giuliani, Z. Lipták, and R. Rizzi: When a dollar makes a BWT, in Proc. ICTCS,

vol. 2504 of CEUR Workshop Proceedings, 2019, pp. 20–33.
14. V. Hoggatt and M. Bicknell-Johnson: Composites and Primes Among Powers of Fi-

bonacci Numbers increased or decreased by one. Fibonacci Quarterly, 15 1977, p. 2.
15. D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara: In-place bijective Burrows-

Wheeler transformations, in Proc. CPM, LIPIcs, 2020, p. to appear.
16. D. Köppl and T. I: Arithmetics on suffix arrays of Fibonacci words, in Proc. WORDS,

vol. 9304 of LNCS, 2015, pp. 135–146.
17. M. Lothaire: Combinatorics on Words, Cambridge Mathematical Library, Cambridge Uni-

versity Press, 2 ed., 1997.
18. U. Manber and E. W. Myers: Suffix arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5) 1993, pp. 935–948.
19. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: An extension of the Burrows-

Wheeler transform. Theor. Comput. Sci., 387(3) 2007, pp. 298–312.
20. S. Mantaci, A. Restivo, and M. Sciortino: Burrows-Wheeler transform and Sturmian

words. Inf. Process. Lett., 86(5) 2003, pp. 241–246.
21. G. Nong, S. Zhang, and W. H. Chan: Linear suffix array construction by almost pure

induced-sorting, in Proc. DCC, 2009, pp. 193–202.
22. W. Rytter: The structure of subword graphs and suffix trees of Fibonacci words. Theor.

Comput. Sci., 363(2) 2006, pp. 211–223.
23. J. Simpson and S. J. Puglisi: Words with simple Burrows-Wheeler transforms. Electr. J.

Comb., 15(1) 2008.
24. D. Wells: Prime Numbers: The Most Mysterious Figures in Math, Wiley, 2005.

Pointer-Machine Algorithms for Fully-Online

Construction of Suffix Trees and DAWGs on

Multiple Strings

Shunsuke Inenaga

Department of Informatics, Kyushu University, Japan
PRESTO, Japan Science and Technology Agency, Japan

inenaga@inf.kyushu-u.ac.jp

Abstract. We deal with the problem of maintaining the suffix tree indexing structure
for a fully-online collection of strings, where a new character can be prepended to
any string in the collection at any time. The only previously known algorithm for the
problem, recently proposed by Takagi et al. [Algorithmica 82(5): 1346-1377 (2020)],
runs in O(N log σ) time and O(N) space on the word RAM model, where N denotes
the total length of the strings and σ denotes the alphabet size. Their algorithm makes
heavy use of the nearest marked ancestor (NMA) data structure on semi-dynamic
trees, that can answer queries and supports insertion of nodes in O(1) amortized time
on the word RAM model. In this paper, we present a simpler fully-online right-to-left
algorithm that builds the suffix tree for a given string collection in O(N(log σ+ log d))
time and O(N) space, where d is the maximum number of in-coming Weiner links to
a node of the suffix tree. We note that d is bounded by the height of the suffix tree,
which is further bounded by the length of the longest string in the collection. The
advantage of this new algorithm is that it works on the pointer machine model, namely,
it does not use the complicated NMA data structures that involve table look-ups. As a
byproduct, we also obtain a pointer-machine algorithm for building the directed acyclic
word graph (DAWG) for a fully-online left-to-right collection of strings, which runs
in O(N(log σ + log d)) time and O(N) space again without the aid of the NMA data
structures.

1 Introduction

1.1 Suffix trees and DAWGs

Suffix trees are a fundamental string data structure with a myriad of applications [10].
The first efficient construction algorithm for suffix trees, proposed by Weiner [21],
builds the suffix tree for a string in a right-to-left online manner, by updating the
suffix tree each time a new character is prepended to the string. It runs in O(n log σ)
time and O(n) space, where n is the length of the string and σ is the alphabet size.

One of the most interesting features of Weiner’s algorithm is a very close rela-
tionship to Blumer et al.’s algorithm [2] that builds the directed acyclic word graph
(DAWG) in a left-to-right online manner, by updating the DAWG each time a new
character is prepended to the string. It is well known (c.f. [4,5]) that the DAG of
the Weiner links of the suffix tree of T is equivalent to the DAWG of the reversal T
of T , or symmetrically, the suffix link tree of the DAWG of T is equivalent to the
suffix tree of T . Thus, right-to-left online construction of suffix trees is essentially
equivalent to left-to-right construction of DAWGs. This means that Blumer et al.’s
DAWG construction algorithm also runs in O(n log σ) time and O(n) space [2].

DAWGs also support efficient pattern matching queries, and have been applied to
other important string problems such as local alignment [6], pattern matching with

Shunsuke Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees and DAWGs on Multiple Strings, pp. 111–124.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

112 Proceedings of the Prague Stringology Conference 2020

variable-length don’t cares [14], dynamic dictionary matching [11], compact online
Lempel-Ziv factorization [23], finding minimal absent words [8], and finding gapped
repeats [18].

1.2 Fully online construction of suffix trees and DAWGs

Takagi et al. [17] initiated the generalized problem of maintaining the suffix tree for a
collection of strings in a fully-online manner, where a new character can be prepended
to any string in the collection at any time. This fully-online scenario arises in real-
time database systems e.g. for sensor networks or trajectories. Takagi et al. showed
that a direct application of Weiner’s algorithm [21] to this fully-online setting requires

one to visit Θ(N min(K,
√
N)) nodes, where N is the total length of the strings and

K is the number of strings in the collection. Note that this leads to a worst-case
Θ(N1.5 log σ)-time construction when K = Ω(

√
N).

In their analysis, it was shown that Weiner’s original algorithm applied to a fully-
online string collection visits a total of Θ(N min(K,

√
N)) nodes. This means that

the amortization argument of Weiner’s algorithm for the number of nodes visited in
the climbing process for inserting a new leaf, does not work for multiple strings in the
fully-online setting. To overcome difficulty, Takagi et al. proved the three following
statements: (1) By using σ nearest marked ancestor (NMA) structures [22], one can
skip the last part of the climbing process; (2) All the σ NMA data structures can be
stored in O(n) space; (3) The number of nodes explicitly visited in the remaining part
of each climbing process can be amortized to O(1) per new added character. This led
to their O(N log σ)-time and O(N)-space fully-online right-to-left construction of the
suffix tree for multiple strings.

Takagi et al. [17] also showed that Blumer et al.’s algorithm [2,3] applied to a fully-

online left-to-right DAWG construction requires at least Θ(N min(K,
√
N)) work as

well. They also showed how to maintain an implicit representation of the DAWG
of O(N) space which supports fully-online updates and simulates a DAWG edge
traversal in O(log σ) time each. The key here was again the non-trivial use of the
aforementioned σ NMA data structures over the suffix tree of the reversed strings.

As states above, Takagi et al.’s construction heavily relies on the use of the NMA
data structures [22]. Although NMA data structures are useful and powerful, all
known NMA data structures for (static and dynamic) trees that support O(1) (amor-
tized) time queries and updates [9,12,22] are quite involved, and they are valid only
on the word RAM model as they use look-up tables that explicitly store the answers
for small sub-problems. Hence, in general, it would be preferable if one could achieve
similar efficiency without NMA data structures.

1.3 Our contribution

In this paper, we show how to maintain the suffix tree for a right-to-left fully-online
string collection in O(N(log σ+log d)) time and O(N) space, where d is the maximum
number of in-coming Weiner links to a node of the suffix tree. Our construction does
not use NMA data structures and works in the pointer-machine model [19,20], which
is a simple computational model without address arithmetics. We note that d is
bounded by the height of the suffix tree. Clearly, the height of the suffix tree is at
most the maximum length of the strings. Hence, the d term can be dominated by the
σ term when the strings are over integer alphabets of polynomial size in N , or when a

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 113

large number of strings of similar lengths are treated. To achieve the aforementioned
bounds on the pointer-machine model, we reduce the problem of maintaining in-
coming Weiner links of nodes to the ordered split-insert-find problem, which maintains
dynamic sets of sorted elements allowing for split and insert operations, and find
queries, which can be solved in a total of O(N log d) time and O(N) space.

As a byproduct of the above result, we also obtain the first non-trivial algorithm
that maintains an explicit representation of the DAWG for fully-online left-to-right
multiple strings, which runs in O(N(log σ + log d)) time and O(N) space. By an
explicit representation, we mean that every edge of the DAWG is implemented as a
pointer. This DAWG construction does not require complicated table look-ups and
thus also works on the pointer machine model.

2 Preliminaries

2.1 String notations

Let Σ be a general ordered alphabet. Any element of Σ∗ is called a string. For any
string T , let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. Let
Σ+ = Σ \ {ε}. If T = XY Z, then X, Y , and Z are called a prefix, a substring, and a
suffix of T , respectively. For any 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of
T that begins at position i and ends at position j in T . For any 1 ≤ i ≤ |T |, let T [i]
denote the ith character of T . For any string T , let Suffix(T) denote the set of suffixes
of T , and for any set T of strings, let Suffix(T) denote the set of suffixes of all strings
in T . Namely, Suffix(T) =

⋃
T∈T Suffix(T). For any string T , let T denote the reversed

string of T , i.e., T = T [|T |] · · ·T [1]. For any set T of strings, let T = {T | T ∈ T }.

2.2 Suffix trees and DAWGs for multiple strings

For ease of description, we assume that each string Ti in the collection T termi-
nates with a unique character $i that does not appear elsewhere in T . However, our
algorithms work without $i symbols at the right end of strings as well.

A compacted trie is a rooted tree such that (1) each edge is labeled by a non-empty
string, (2) each internal node is branching, and (3) the string labels of the out-going
edges of each node begin with mutually distinct characters. The suffix tree [21] for a
text collection T , denoted STree(T), is a compacted trie which represents Suffix(T).
The string depth of a node v of Suffix(T) is the length of the substring that is rep-
resented by v. We sometimes identify node v with the substring it represents. The
suffix tree for a single string T is denoted STree(T).

STree(T) has at most 2N − 1 nodes and thus 2N − 2 nodes, since every internal
node of STree(T) is branching and there are N leaves in STree(T). By representing
each edge label x with a triple 〈k, i, j〉 of integers such that x = Tk[i..j], STree(T)
can be stored in O(N) space.

We define the suffix link of each non-root node av of STree(T) with a ∈ Σ and
v ∈ Σ∗, by slink(av) = v. For each explicit node v and a ∈ Σ, we also define the
reversed suffix link (a.k.a. Weiner link) by W linka(v) = avx, where x ∈ Σ∗ is the
shortest string such that avx is a node of STree(T). W linka(v) is undefined if av is
not a substring of strings in T . A Weiner link W linka(v) = avx is said to be hard if
x = ε, and soft if x ∈ Σ+.

See the left diagram of Figure 1 for an example of STree(T) and Weiner links.

114 Proceedings of the Prague Stringology Conference 2020

a

$2

$1

a

b

a

b

$2

a

b
$2

$1

b

$1

aa

b
$2

$1

bc

c

c

c

a

c
$2

$2
$1

a
b

a
a

c

$1 a
b

a
a

c

$1c a

a

b
a

c

c b

b

a

c

$2

b

a

a

a

b

a

Figure 1. Left: STree(T) for T = {cabaa$1, abaab$2}. The bold dashed arrows represent hard
Weiner links, while the narrow dashed arrows represent soft Weiner links. Not all Weiner links
are shown for simplicity. Right: DAWG(S) for S = T = {$1aabac, $2baaba}. The dashed arrow
represents a suffix link. Not all suffix links are shown for simplicity.

The directed acyclic word graph (DAWG for short) [2,3] of a text collection S,
denoted DAWG(S), is a (partial) DFA which represents Suffix(S). It is proven in [3]
that DAWG(S) has at most 2N − 1 nodes and 3N − 4 edges for N ≥ 3. Since each
DAWG edge is labeled by a single character, DAWG(S) can be stored with O(N)
space. The DAWG for a single string S is denoted DAWG(S).

A node of DAWG(S) corresponds to the substrings in S which share the same
set of ending positions in S. Thus, for each node, there is a unique longest string
represented by that node. For any node v of DAWG(S), let long(v) denote the longest
string represented by v. An edge (u, a, v) in the DAWG is called primary if |long(u)|+
1 = |long(v)|, and is called secondary otherwise. For each node v of DAWG(S) with
|long(v)| ≥ 1, let slink(v) = y, where y is the longest suffix of long(v) which is not
represented by v.

Suppose S = T . It is known (c.f. [2,3,5]) that there is a node v in STree(T) iff
there is a node x in DAWG(S) such that long(x) = v. Also, the hard Weiner links and
the soft Weiner links of STree(T) coincide with the primary edges and the secondary
edges of DAWG(S), respectively. In a symmetric view, the reversed suffix links of
DAWG(S) coincide with the suffix tree STree(T) for T .

See Figure 1 for some concrete examples of the aforementioned symmetry. For
instance, the nodes abaa and baa of STree(T) correspond to the nodes of DAWG(S)
whose longest strings are abaa = aaba and baa = aab, respectively. Observe that
both STree(T) and DAWG(S) have 19 nodes each. The Weiner links of STree(T)
labeled by character c correspond to the out-going edges of DAWG(S) labeled by c.
To see another example, the three Weiner links from node a in STree(T) labeled a,
b, and c correspond to the three out-going edges of node {a} of DAWG(S) labeled
a, b, and c, respectively. For the symmetric view, focus on the suffix link of the
node {$2baab, baab} of DAWG(S) to the node {aab, ab}. This suffix link reversed
corresponds to the edge labeled b$2 from the node baa to the node baab$2 in STree(T).

We now see that the two following tasks are essentially equivalent:

(A) Building STree(T) for a fully-online right-to-left text collection T , using hard and
soft Weiner links.

(B) Building DAWG(S) for a fully-online left-to-right text collection S, using suffix
links.

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 115

2.3 Pointer machines

A pointer machine [19,20] is an abstract model of computation such that the state
of computation is stored as a directed graph, where each node can contain a con-
stant amount of data (e.g. integers, symbols) and a constant number of pointers (i.e.
out-going edges to other nodes). The instructions supported by the pointer machine
model are basically creating new nodes and pointers, manipulating data, and per-
forming comparisons. The crucial restriction in the pointer machine model, which
distinguishes it from the word RAM model, is that pointer machines cannot perform
address arithmetics, namely, memory access must be performed only by an explicit
reference to a pointer. While the pointer machine model is apparently weaker than the
word RAM model that supports address arithmetics and unit-cost bit-wise operations,
the pointer machine model serves as a good basis for modeling linked structures such
as trees and graphs, which are exactly our targets in this paper. In addition, pointer-
machines are powerful enough to simulate list-processing based languages such as
LISP and Prolog (and their variants), which have recurrently gained attention.

3 Brief reviews on previous algorithms

To understand why and how our new algorithms to be presented in Section 4 work
efficiently, let us briefly recall the previous related algorithms.

3.1 Weiner’s algorithm and Blumer et al.’s algorithm for a single string

First, we briefly review how Weiner’s algorithm for a single string T adds a new
leaf to the suffix tree when a new character a is prepended to T . Our description of
Weiner’s algorithm slightly differs from the original one, in that we use both hard and
soft Weiner links while Weiner’s original algorithm uses hard Weiner links only and
it instead maintains Boolean vectors indicating the existence of soft Weiner links.

Suppose we have already constructed STree(T) with hard and soft Weiner links.
Let ` be the leaf that represents T . Given a new character a, Weiner’s algorithm climbs
up the path from the leaf ` until encountering the deepest ancestor v of ` that has a
Weiner link W linka(v) defined. If there is no such ancestor of ` above, then a new leaf
representing aT is inserted from the root r of the suffix tree. Otherwise, the algorithm
follows the Weiner link W linka(v) and arrives at its target node u = W linka(v). There
are two sub-cases:

(1) If W linka(v) is a hard Weiner link, then a new leaf ˆ̀ representing aT is inserted
from u.

(2) If W linka(v) is a soft Weiner link, then the algorithm splits the incoming edge
of u into two edges by inserting a new node y as a new parent of u such that
|y| = |v| + 1 (See also Figure 2). A new leaf representing aT is inserted from
this new internal node y. We also copy each out-going Weiner link W linkc(u)
from u with a character c as an out-going Weiner link W linkc(y) from y so that
their target nodes are the same (i.e. W linkc(u) = W linkc(y)). See also Figure 3.
Then, a new hard Weiner link is created from v to y with label a, in other words,
an old soft Weiner link W linka(v) = u is redirected to a new hard Weiner link
W linka(v) = y. In addition, all the old soft Weiner links of ancestors z of v such
that W linka(z) = u in STree(T) have to be redirected to new soft Weiner links
W linka(z) = y in STree(aT). These redirections can be done by keeping climbing

116 Proceedings of the Prague Stringology Conference 2020

y

u

x

v

u’

T

aT

z}

a

a

a

a

a

a

a
}

T

aT

y

u

x

v

u’

z

Figure 2. Left: Illustration for STree(T) of Case (2) before inserting the new leaf representing aT .
Right: Illustration for STree(aT) of Case (2) after inserting the new leaf representing aT . In both
diagrams, thick dashed arrows represent hard Winer links, and narrow dashed arrows represent soft
Weiner links. All these Winer links are labeled by a. Also, new Weiner links labeled a are created
from the nodes between the leaf for T and v to the new leaf for aT (not shown in this diagram).

u

c

c

c

c’

c’

c’

y

u

c

c

c

c

c’

c’

c’

c’

Figure 3. Illustration of the copy process of the out-going Weiner links of u to its new parent y in
Case (2). Left: Out-going Weiner links of node u before the update. Right: Each out-going Winer
link of node u is copied to its new parent y, represented by a red dashed arrow.

up the path from v until finding the deepest node x that has a hard Weiner link
with character a pointing to the parent of u in STree(T).

In both Cases (1) and (2) above, new soft Weiner links W linka(x) = ˆ̀ are created
from every node x in the path from ` to the child of v.

The running time analysis of the above algorithm has three phases.

(a) In both Cases (1) and (2), the number of nodes from leaf ` for T to v is bounded
by the number of newly created soft Weiner links. This is amortized O(1) per new
character since the resulting suffix tree has a total of O(n) soft Weiner links [2],
where n = |T |.

(b) In Case (2), the number of out-going Weiner links copied from u to y is bounded
by the number of newly created Weiner links, which is also amortized O(1) per
new character by the same argument as (a).

(c) In Case (2), the number redirected soft Weiner links is bounded by the number of
nodes from v to x. The analysis by Weiner [21] shows that this number of nodes
from v to x can be amortized O(1).

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 117

Wrapping up (a), (b), and (c), the total numbers of visited nodes, created Weiner
links, and redirected Weiner links through constructing STree(T) by prepending n
characters are O(n). Thus Weiner’s algorithm constructs STree(T) in a right-to-left
online manner in O(n log σ) time with O(n) space, where the log σ term comes from
the cost of maintaining Weiner links of each node in the lexicographically sorted order
by e.g. a standard balanced binary search tree.

Since this algorithm correctly maintains all (hard and soft) Weiner links, it builds
DAWG(S) for the reversed string S = T in a left-to-right manner, in O(n log σ) time
with O(n) space. In other words, this version of Weiner’s algorithm is equivalent to
Blumer et al.’s DAWG online construction algorithm.

We remark that the aforementioned version of Weiner’s algorithm, and equiva-
lently Blumer et al.’s algorithm, work on the pointer machine model as they do not
use address arithmetics nor table look-ups.

3.2 Takagi et al.’s algorithm for multiple strings on the word RAM

When Weiner’s algorithm is applied to fully-online right-to-left construction of
STree(T), the amortization in Analysis (c) does not work. Namely, it was shown by

Takagi et al. [17] that the number of redirected soft Weiner links is Θ(N min(K,
√
N))

in the fully-online setting for multiple K strings. A simpler upper bound O(NK)
immediately follows from an observation that the insertion of a new leaf for a string
Ti in T may also increase the depths of the leaves for all the other K − 1 strings
T1, . . . , Ti−1, Ti+1, . . . , TK in T . Takagi et al. then obtained the aforementioned im-
proved O(N min(K,

√
N)) upper bound, and presented a lower bound instance that

indeed requires Ω(N min(K,
√
N)) work. It should also be noted that the original

version of Weiner’s algorithm that only maintains Boolean indicators for the existence
of soft Weiner links, must also visit Θ(N min(K,

√
N)) nodes [17].

Takagi et al. gave a neat way to overcome this difficulty by using the nearest
marked ancestor (NMA) data structure [22] for a rooted tree. This NMA data struc-
ture allows for making unmarked nodes, splitting edges, inserting new leaves, and
answering NMA queries in O(1) amortized time each, in the word RAM model of
machine word size Ω(logN). Takagi et al. showed how to skip the nodes between v
to x in O(1) amortized time using a single NMA query on the NMA data structure
associated to a given character a that is prepended to T . They also showed how to
store σ NMA data structures for all σ distinct characters in O(N) total space. Since
the amortization argument (c) is no more needed by the use of the NMA data struc-
tures, and since the analyses (a) and (b) still hold for fully-online multiple strings,
the total number of visited nodes was reduced to O(N) in their algorithm. This led
to their construction in O(N log σ) time and O(N) space, in the word RAM model.

Takagi et al.’s Θ(N min(K,
√
N)) bound also applies to the number of visited

nodes and that of redirected secondary edges of DAWG(S) for multiple strings in the
fully-online setting. Instead, they showed how to simulate secondary edge traversals of
DAWG(S) inO(log σ) amortized time each, using the aforementioned NMA structures.
We remark that their data structure is only an implicit representation of DAWG(S)
in the sense that the secondary edges are not explicitly stored.

118 Proceedings of the Prague Stringology Conference 2020

4 Simple fully-online constructions of suffix trees and
DAWGs on the pointer-machine model

In this section, we present our new algorithms for fully-online construction of suffix
trees and DAWGs for multiple strings, which work on the pointer-machine model.

4.1 Right-to-left suffix tree construction

In this section, we present our new algorithm that constructs the suffix tree for a
fully-online right-to-left string collection.

Consider a collection T ′ = {T1, . . . , TK} of K strings. Suppose that we have built
STree(T ′) and that for each string Ti ∈ T ′ we know the leaf `i that represents Ti.

In our fully-online setting, any new character from Σ can be prepended to any
string in the current string collection T . Suppose that a new character a ∈ Σ is
prepended to a string T in the collection T ′, and let T = (T ′ \ {T}) ∪ {aT} be the
collection after the update. Our task is to update STree(T ′) to STree(T).

Our approach is to reduce the sub-problem of redirecting Weiner links to the
ordered split-insert-find problem that operates on ordered sets over dynamic universe
of elements, and supports the following operations and queries efficiently:

– Make-set, which creates a new list that consists only of a single element;
– Split, which splits a given set into two disjoint sets, such that the elements in one

set are all smaller than those in the other set;
– Insert, which inserts a new single element into a given set;
– Find, which reports the name of the set that a given element belongs to.

Recall our description of Weiner’s algorithm in Section 3.1 and see Figure 2.
Consider the set of in-coming Weiner links of node u before updates (the left diagram
of Figure 2), and assume that these Weiner links are sorted by the length of the origin
nodes. After arriving at the node v in the climbing up process from the leaf for T , we
take the Weiner link with character a and arrive at node u. Then we access the set of
in-coming Weiner-links of u by a find query. When we create a new internal node y
as the parent of the new leaf for aT , we split this set into two sets, one as the set of
in-coming Weiner links of y, and the other as the set of in-coming Weiner links of u
(see the right diagram of Figure 2). This can be maintained by a single call of a split
operation.

Now we pay our attention to the copying process of Weiner links described in
Figure 3. Observe that each newly copied Weiner link can be inserted by a single
find operation and a single insert operation into the set of in-coming Weiner links of
W linku(c) for each character c where W linku(c) is defined.

Now we prove the next lemma:

Lemma 1. Let f denote the operation and query time of a linear-space algorithm for
the ordered split-insert-find problem. Then, we can build the suffix tree for a fully-
online right-to-left string collection of total length N in a total of O(N(f + log σ))
time and O(N) space.

Proof. The number of split operations is clearly bounded by the number of leaves,
which is N . Since the number of Weiner links is at most 3N −4, the number of insert
operations is also bounded by 3N − 4. The number of find queries is thus bounded
by N + 3N − 4 = 4N − 4. By using a linear-space split-insert-find data structure, we

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 119

can maintain the set of in-coming Weiner links for all nodes in a total of O(Nf) time
with O(N) space.

Given a new character a to prepend to a string T , we climb up the path from the
leaf for T and find the deepest ancestor v of the leaf for which W linka(v) is defined.
This can be checked in O(log σ) time at each visited node, by using a balanced search
tree. Since we do not climb up the nodes z (see Figure 2) for which the soft Weiner
links with a are redirected, we can use the same analysis (a) as in the case of a single
string. This results in that the number of visited nodes in our algorithm is O(N).
Hence we use O(N log σ) total time for finding the deepest node which has a Weiner
link for the prepended character a.

Overall, our algorithm uses O(N(f + log σ)) time and O(N) space. ut

Our ordered split-insert-find problem is a special case of the union-split-find prob-
lem on ordered sets, since each insert operation can be trivially simulated by make-set
and union operations. Link-cut trees of Sleator and Tarjan [15] for a dynamic forest
support make-tree, link, cut operations and find-root queries in O(log d) time each.
Since link-cut trees can be used to path-trees, make-set, insert, split, and find in
the ordered split-insert-find problem can be supported in O(log d) time each. Since
link-cut trees work on the pointer machine model, this leads to a pointer-machine
algorithm for our fully-online right-to-left construction of the suffix tree for multiple
strings with f = O(log d). Here, in our context, d denotes the maximum number of
in-coming Weiner links to a node of the suffix tree.

A potential drawback of using link-cut trees is that in order to achieve O(log d)-
time operations and queries, link-cut trees use some auxiliary data structures such as
splay trees [16] as its building block. Yet, in what follows, we show that our ordered
split-insert-find problem can be solved by a simpler balanced tree, AVL-trees [1],
retaining O(N(log σ + log d))-time and O(N)-space complexities.

Theorem 2. There is an AVL-tree based pointer-machine algorithm that builds
the suffix tree for a fully-online right-to-left multiple strings of total length N in
O(N(log σ + log d)) time with O(N) space, where d is the maximum number of
in-coming Weiner links to a suffix tree node and σ is the alphabet size.

Proof. For each node u of the suffix tree STree(T ′) before update, let S(u) = {|x| |
W linka(x) = u} where a = u[1], namely, S(u) is the set of the string depths of the
origin nodes of the in-coming Weiner links of u. We maintain an AVL tree for S(u)
with the node u, so that each in-coming Weiner link for u points to the corresponding
node in the AVL tree for S(u). The root of the AVL tree is always linked to the suffix
tree node u, and each time another node in the AVL tree becomes the new root as a
result of node rotations, we adjust the link so that it points to u from the new root
of the AVL tree.

This way, a find query for a given Weiner link is reduced to accessing the root of
the AVL tree that contains the given Weiner link, which can be done in O(logS(u)) ⊆
O(log d) time.

Inserting a new element to S(u) can also be done in O(logS(u)) ⊆ O(log d) time.
Given an integer k, let S1 and S2 denote the subset of S(u) such that any element

in S1 is not larger than k, any element in S2 is larger than k, and S1 ∪ S2 = S(u). It
is well known that we can split the AVL tree for S(u) into two AVL trees for S1 and
for S2 in O(logS(u)) ⊆ O(log d) time (c.f. [13]). In our context, k is the string depth
of the deepest node v that is a Weiner link with character a in the upward path from

120 Proceedings of the Prague Stringology Conference 2020

the leaf for T . This allows us to maintain S1 = S(y) and S2 = S(u) in O(log d) time
in the updated suffix tree STree(T).

When we create the in-coming Weiner links labeled a to the new leaf ˆ̀ for aT , we
first perform a make-set operation which builds an AVL tree consisting only of the
root. If we näıvely insert each in-coming Weiner link to the AVL tree one by one, then
it takes a total of O(N log d) time. However, we can actually perform this process in
O(N) total time even on the pointer machine model: Since we climb up the path from
the leaf ` for T , the in-coming Weiner links are already sorted in decreasing order of
the string depths of the origin nodes. We create a family of maximal complete binary
trees of size 2h−1 each, arranged in decreasing order of h. This can be done as follows:
Initially set r ← |S(ˆ̀)|. We then greedily take the largest h such that 2h− 1 ≤ r, and
then update r ← r− (2h− 1) and search for the next largest h and so on. These trees

can be easily created in O(|S(ˆ̀)|) total time by a simple linear scan over the sorted
list of the in-coming Weiner links. Since the heights h of these complete binary search
trees are monotonically decreasing, and since all of these binary search trees are AVL
trees, one can merge all of them into a single AVL tree in time linear in the height
of the final AVL tree (c.f. [13]), which is bounded by O(h) = O(logS(ˆ̀)). Thus, we

can construct the initial AVL tree for the in-coming Weiner links of each new leaf ˆ̀

in O(|S(ˆ̀)|) time. Since the total number of Weiner links is O(N), we can construct
the initial AVL trees for the in-coming Weiner links of all new leaves in O(N) total
time.

Overall, our algorithm works in O(N(log σ + log d)) time with O(N) space. ut

4.2 Left-to-right DAWG construction

The next theorem immediately follows from Theorem 2.

Theorem 3. There is an AVL-tree based pointer-machine algorithm that builds an
explicit representation of the DAWG for a fully-online left-to-right multiple strings
of total length N in O(N(log σ + log d)) time with O(N) space, where d is the max-
imum number of in-coming edges of a DAWG node and σ is the alphabet size. This
representation of the DAWG allows each edge traversal in O(log σ + log d) time.

Proof. The correctness and the complexity of construction are immediate from The-
orem 2.

Given a character a and a node v in the DAWG, we first find the out-going edge
of v labeled a in O(log σ) time. If it does not exist, we terminate. Otherwise, we take
this a-edge and arrive at the corresponding node in the AVL tree for the destination
node u for this a-edge. We then perform a find query on the AVL tree and obtain u
in O(log d) time. ut

We emphasize that Theorem 3 gives the first non-trivial algorithm that builds an
explicit representation of the DAWG for fully-online multiple strings. Recall that a
direct application of Blumer et al.’s algorithm to the case of fully-online K multi-
ple strings requires to visit Θ(N min(K,

√
N)) nodes in the DAWG, which leads to

O(N min(K,
√
N) log σ) = O(N1.5 log σ)-time construction for K = Θ(

√
N).

It should be noted that after all the N characters have been processed, it is easy
to modify, in O(N) time in an offline manner, this representation of the DAWG so
that each edge traversal takes O(log σ) time.

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 121

4.3 On optimality of our algorithms

It is known that sorting a length-N sequence of σ distinct characters is an obvious
lower bound for building the suffix tree [7] or alternatively the DAWG. This is because,
when we build the suffix tree or the DAWG where the out-going edges of each node are
sorted in the lexicographical order, then we can obtain a sorted list of characters at
their root. Thus, Ω(N log σ) is a comparison-based model lower bound for building
the suffix tree or the DAWG. Since Takagi et al.’s O(N log σ)-time algorithm [17]
works only on the word RAM model, in which faster integer sorting algorithms exist,
it would be interesting to explore some cases where our O(N(log σ + log d))-time
algorithms for a weaker model of computation can perform in optimal O(N log σ)
time.

It is clear that the maximum number d of in-coming Weiner links to a node is
bounded by the total length N of the strings. Hence, in case of integer alphabets of
size σ = NO(1), our algorithms run in optimal O(N log σ) = O(N logN) time.

For the case of smaller alphabet size σ = polylog(N), the next lemma can be
useful:

Lemma 4. The maximum number d of in-coming Weiner links is less than the height
of the suffix tree.

Proof. For any node u in the suffix tree, all in-coming Weiner links to u is labeled by
the same character a, which is the first character of the substring represented by u.
Therefore, all in-coming Weiner links to u are from the nodes in the path between
the root and the node u[2..|u|]. ut

We note that the height of the suffix tree for multiple strings is bounded by the
length of the longest string in the collection. In many applications such as time series
from sensor data, it would be natural to assume that all the K strings in the collection
have similar lengths. Hence, when the collection consists of K = N/polylog(N) strings
of length polylog(N) each, we have d = polylog(N). In such cases, our algorithms
run in optimal O(N log σ) = O(N log logN) time.

baaaaaaaaa$1
aaaaaaaa$2
aaaaaaa$3
aaaaaa$4
aaaaa$5

1 /2

a

a

a

a

a

a

a

$1

$4

$5

$3

$2

a

aa
$1

a

a

a
a
a
a
a
a

b

b

b

b

b

b

b

b

b

b

Figure 4. Left: The K−1 = d
√
N/2e strings where character b has been prepended only to the first

string T1. Right: The corresponding part of the suffix tree. Dashed arrows represent Weiner links
with character b.

The next lemma shows some instance over a binary alphabet of size σ = 2, which
requires a certain amount of work for the splitting process.

122 Proceedings of the Prague Stringology Conference 2020

baaaaaaaaa$1
baaaaaaaa$2
baaaaaaa$3
baaaaaa$4
baaaaa$5

1 /2 a

a

a

a

a

a

a

a

a

a

a

$1

$4

$5

$3

$2

a

a
a

$1

a

a
a
a

b
b

b

b

b

b

b

b

b

b

$2

$3

$4

$5

Figure 5. Left: The K − 1 = d
√
N/2e strings where character b has been prepended to all of them.

Right: The corresponding part of the suffix tree after the updates. Each time a new leaf is created,
Θ(
√
N) in-coming Weiner links were involved in a split operation on the AVL tree and it takes

O(logN) time.

Lemma 5. There exist a set of fully-online multiple strings over a binary alphabet
such that the node split procedure of our algorithms takes O(

√
N logN) time.

Proof. Let K = 1 + d
√
N/2e.

For the time being, we assume that each string Ti is terminated with a unique
symbol $i. Consider a subset {T1, . . . , TK−1} of K−1 = d

√
N/2e strings such that for

each 1 ≤ i ≤ K−1, Ti = a
√
N−i+1$i. We then prepend the other character b from the

binary alphabet {a, b} to each Ti in increasing order of i = 1, . . . , K − 1. For i = 1,√
N Weiner links to the new leaf for bT1 = ba

√
N$1, each labeled b, are created. See

Figure 4 for illustration of this step.
Then, for each i = 2, . . . , K − 1, inserting a new leaf for bTi requires an insertion

of a new internal node as the parent of the new leaf. This splits the set of in-coming
Weiner links into two sets: one is a singleton consisting of the Winer link from node

a
√
N−i+1, and the other consists of the Weiner links from the shallower nodes. Each

of these K − 2 split operations can be done by a simple deletion operation on the
corresponding AVL tree, using O(log

√
N) = O(logN) time each. See Figure 5 for

illustration.
Observe also that the same analysis holds even if we remove the terminal symbol

$i from each string Ti (in this case, there is a non-branching internal node for each
Ti and we start the climbing up process from this internal node).

The total length of these K−1 strings is approximately 3N/8. We can arbitrarily
choose the last string TK of length approximately 5N/8 so that it does not affect the
above split operations (e.g., a unary string a5N/8 or b5N/8 would suffice).

Thus, there exists an instance over a binary alphabet for which the node split
operations require O(

√
N logN) total time. ut

Since
√
N logN = o(N), the

√
N logN term is always dominated by the N log σ

term. It is left open whether there exists a set of strings with Θ(N) character ad-
ditions, each of which requires splitting a set that involves NO(1) in-coming Weiner
links. If such an instance exists, then our algorithm must take Θ(N logN) time in
the worst case.

S. Inenaga: Pointer-Machine Algorithms for Fully-Online Construction of Suffix. . . 123

5 Conclusions and future work

In this paper we considered the problem of maintaining the suffix tree and the DAWG
indexing structures for a collection of multiple strings that are updated in a fully-
online manner, where a new character can be added to the left end or the right end
of any string in the collection, respectively. Our contributions are simple pointer-
machine algorithms that work in O(N(log σ+ log d)) time and O(N) space, where N
is the total length of the strings, σ is the alphabet size, and d is the maximum number
of in-coming Weiner links of a node in the suffix tree. The key idea was to reduce
the sub-problem of re-directing in-coming Weiner links to the ordered split-insert-find
problem, which we solved in O(log d) time by AVL trees. We also discussed the cases
where our O(N(log σ + log d))-time solution is optimal.

A major open question regarding the proposed algorithms is whether there exists
an instance over a small alphabet which contains Θ(N) positions each of which re-
quires Θ(logN) time for the split operation, or requires Θ(N) insertions each taking
Θ(logN) time. If such instances exist, then the running time of our algorithms may be
worse than the optimal O(N log σ) for small σ. So far, we have only found an instance

with σ = 2 that takes sub-linear O(
√
N logN) total time for split operations.

Acknowledgements

This work is supported by JSPS KAKENHI Grant Number JP17H01697 and JST
PRESTO Grant Number JPMJPR1922.

References

1. G. Adelson-Velsky and E. Landis: An algorithm for the organization of information.
Proceedings of the USSR Academy of Sciences (in Russian), 146 1962, pp. 263–266, English
translation by Myron J. Ricci in Soviet Mathematics - Doklady, 3:1259–1263, 1962.

2. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theoretical Computer Science, 40
1985, pp. 31–55.

3. A. Blumer, J. Blumer, D. Haussler, R. Mcconnell, and A. Ehrenfeucht: Complete
inverted files for efficient text retrieval and analysis. J. ACM, 34(3) 1987, pp. 578–595.

4. M. T. Chen and J. Seiferas: Efficient and elegant subword-tree construction, in Combina-
torial Algorithms on Words, vol. 12 of NATO ASI Series, 1985, pp. 97–107.

5. M. Crochemore and W. Rytter: Text Algorithms, Oxford University Press, 1994.
6. H. H. Do and W. Sung: Compressed directed acyclic word graph with application in local

alignment. Algorithmica, 67(2) 2013, pp. 125–141.
7. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity

of suffix tree construction. J. ACM, 47(6) 2000, pp. 987–1011.
8. Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda: Computing

DAWGs and minimal absent words in linear time for integer alphabets, in MFCS 2016, 2016,
pp. 38:1–38:14.

9. H. N. Gabow and R. E. Tarjan: A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30 1985, pp. 209–221.

10. D. Gusfield and J. Stoye: Linear time algorithms for finding and representing all the tandem
repeats in a string. J. Comput. Syst. Sci., 69(4) 2004, pp. 525–546.

11. D. Hendrian, S. Inenaga, R. Yoshinaka, and A. Shinohara: Efficient dynamic dictionary
matching with DAWGs and AC-automata. Theor. Comput. Sci., 792 2019, pp. 161–172.

12. H. Imai and T. Asano: Dynamic orthogonal segment intersection search. J. Algorithms, 8(1)
1987, pp. 1–18.

124 Proceedings of the Prague Stringology Conference 2020

13. D. Knuth: The Art Of Computer Programming, vol. 3: Sorting And Searching, Second Edition,
Addison-Wesley, 1998.

14. G. Kucherov and M. Rusinowitch: Matching a set of strings with variable length don’t
cares. Theor. Comput. Sci., 178(1-2) 1997, pp. 129–154.

15. D. D. Sleator and R. E. Tarjan: A data structure for dynamic trees. J. Comput. Syst.
Sci., 26(3) 1983, pp. 362–391.

16. D. D. Sleator and R. E. Tarjan: Self-adjusting binary search trees. J. ACM, 32(3) 1985,
pp. 652–686.

17. T. Takagi, S. Inenaga, H. Arimura, D. Breslauer, and D. Hendrian: Fully-online
suffix tree and directed acyclic word graph construction for multiple texts. Algorithmica, 82(5)
2020, pp. 1346–1377.

18. Y. Tanimura, Y. Fujishige, T. I, S. Inenaga, H. Bannai, and M. Takeda: A faster
algorithm for computing maximal α-gapped repeats in a string, in SPIRE 2015, 2015, pp. 124–
136.

19. R. E. Tarjan: A class of algorithms which require nonlinear time to maintain disjoint sets. J.
Comput. Syst. Sci., 18(2) 1979, pp. 110–127.

20. R. E. Tarjan: Data structures and network algorithms, vol. 44 of CBMS-NSF regional confer-
ence series in applied mathematics, SIAM, 1983.

21. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-
ing and Automata Theory, 1973, pp. 1–11.

22. J. Westbrook: Fast incremental planarity testing, in ICALP 1992, 1992, pp. 342–353.
23. J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda: Faster compact on-line

Lempel-Ziv factorization, in STACS 2014, 2014, pp. 675–686.

Simple KMP Pattern-Matching

on Indeterminate Strings⋆

Neerja Mhaskar1 and W. F. Smyth1,2

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Canada

pophlin@mcmaster.ca, smyth@mcmaster.ca
2 School of Engineering & Information Technology

Murdoch University, Western Australia

Abstract. In this paper we describe a simple, fast, space-efficient approach to finding
all matches of an indeterminate pattern p = p[1..m] in an indeterminate string x =
x[1..n], where both p and x are defined on a “small” ordered alphabet Σ — say,
σ = |Σ| ≤ 9. A preprocessing phase replaces Σ by an integer alphabet ΣI of size
σI = σ that (reversibly, in time linear in string length) maps both x and p into
equivalent regular strings y and q, respectively, onΣI , whose maximum (indeterminate)
letter can be expressed in a 32-bit word (for σ ≤ 4, thus for DNA sequences, an 8-
bit representation suffices). We then describe an efficient version KMP Indet of the
venerable Knuth-Morris-Pratt algorithm to find all occurrences of q in y (that is,
of p in x), but, whenever necessary, using the prefix array, rather than the border
array, to control shifts of the transformed pattern q along the transformed string y.
Although requiring O(m2n) time in the theoretical worst case, in cases of practical
interest KMP Indet executes in O(n) time. A noteworthy feature is the very small
additional space requirement: Θ(m) words in all cases. We conjecture that a similar
approach may yield practical and efficient indeterminate equivalents to other well-
known pattern-matching algorithms, especially Boyer-Moore and its variants.

Keywords: indeterminate, degenerate, conservative degenerate, pattern-matching, KMP,
indeterminate encoding

1 Introduction

Given a fixed finite alphabet Σ = {λ1, λ2, . . . , λσ}, a regular letter, also called a
character, is any single element of Σ, while an indeterminate letter is any subset
of Σ of cardinality greater than one. A regular string x = x[1..n] on Σ is an array
of regular letters drawn from Σ. An indeterminate string x[1..n] on Σ is an array
of letters drawn from Σ, of which at least one is indeterminate. Whenever entries x[i]
and x[j], 1 ≤ i, j ≤ n, both contain the same character (possibly other characters as
well), we say that x[i] matches x[j] and write x[i] ≈ x[j].

In this paper we describe a simple transformation of Σ that permits all subsets of
Σ to be replaced by single integer values, while maintaining matches and non-matches
between all transformed entries x[i1] and x[i2], 1 ≤ i1, i2 ≤ n, in x. The method is
effective on small alphabets (say |Σ| = σ ≤ 9), including in particular the important
case of DNA sequences (ΣDNA = {a, c, g, t}). Thus, in many cases, cumbersome
and time-consuming matches of indeterminate letters can be efficiently handled. For
background on pattern-matching in indeterminate strings, see [6,1,8,11,9,2,16,17,4,5].

⋆ Supported by Grant No. 105–36797 from the Natural Sciences & Engineering Research Council of
Canada (NSERC). Also the authors thank anonymous reviewers for several valuable suggestions.

Neerja Mhaskar, W. F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings, pp. 125–133.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

126 Proceedings of the Prague Stringology Conference 2020

We will make use of a mapping µj ← λ(j), j = 1, 2, . . . , σ, of the letters λ(j) of Σ

chosen in some order, where µj is the jth prime number (µ1 = 2, µ2 = 3, and so on).
Then, given x = x[1..n] on Σ (the source string), we can apply the mapping to
compute y = y[1..n] (the mapped string) according to the following rule:

(R) For every x[i] = {λ1, λ2, . . . , λk}, 1 ≤ k ≤ σ, 1 ≤ i ≤ n, where λh ∈ Σ, 1 ≤
h ≤ k, set

y[i]←
k∏

h=1

µλh
.

When k = σ, y achieves the maximum value, which we denote by Pσ =
∏σ

j=1 µj (often

called a hole [2]). More generally, since the mapping π yields all possible products of
the first σ prime numbers, it imposes an order on indeterminate letters drawn from
Σ: x[i1] < x[i2]⇔ y[i1] < y[i2].

For example, consider a DNA source string x = a{a, c}g{a, t}t{c, g}, over ΣDNA.
Then σ = 4, and applying (R) for 1 ≤ k ≤ 4 (based on the mapping µ : 2 ← a, 3 ←
c, g ← 5, 7← t), we compute a mapped string y = 2/6/5/14/7/15, so that

a < g < {a, c} < t < {a, t} < {c, g}.

On the other hand, a different mapping (say, µ : 2 ← t, 3 ← c, 5 ← a, 7 ← g) would
yield y = 5/15/7/10/2/21 and a quite different ordering

t < a < g < {a, t} < {a.c} < {c, g}.

Lemma 1 Let ki denote the number of letters in x[i]. Then Rule (R) computes y in
time Θ(Kx), where Kx =

∑n
i=1 ki.

Note that when the letters in x are strongly indeterminate — that is,Kx ∈ Θ(σn)
—, then the approach proposed here (replacing x by y) has the advantage that
subsequent processing of y requires access only to a single integer at each position.

Lemma 2 If y is computed from x by Rule (R), then for every i1, i2 ∈ 1..n, x[i1] ≈
x[i2] if and only if gcd(y[i1],y[i2]) > 1.

Proof.
(⇒) By contradiction. Suppose x[i1] ≈ x[i2], 1 ≤ i1, i2 ≤ n, but gcd(y[i1],y[i2]) = 1;
that is, y[i1] and y[i2] have no common divisor. Since for every i, the letter y[i]
is a product of the prime numbers assigned to the characters in x[i], we see that
therefore x[i1] and x[i2] can have no character in common; that is, x[i1] 6≈ x[i2], a
contradiction.
(⇐) By the reverse argument.

Two strings x1 and x2 of equal length n are said to be isomorphic if and only
if for every i, j ∈ {1, . . . , n},

x1[i] ≈ x1[j]⇐⇒ x2[i] ≈ x2[j]. (1)

We thus have:

Observation 3 If x is an indeterminate string on Σ, and y is the numerical string
constructed by applying Rule (R) to x, then x and y are isomorphic.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 127

Observation 4 By virtue of Lemma 2 and (1), y can overwrite the space required
for x (and vice versa) with no loss of information.

Observation 5 Suppose ℓ1 and ℓ2 are integers representable in at most B bits. Then
gcd(ℓ1, ℓ2) can be computed in time bounded by O(MB logB)1, where MB denotes the
maximum time required to compute ℓ1ℓ2 over all such integers.

Observation 6 For σ = 9 corresponding to the first nine prime numbers

2, 3, 5, 7, 11, 13, 17, 19, 23

Pσ = 223, 092, 870, a number representable in less than B = 32 bits, a single computer
word. Thus by Observation 5, the time required to match any two indeterminate letters
is bounded by O(5M32). When σ = 4, corresponding to ΣDNA, 2× 3× 5× 7 = 210 <
256, and so B = 8 and the matching time reduces to O(3M8).

Observation 7 We assume therefore that, for σ ≤ 9, computing a match between
x[i1] and x[i2] on Σ (that is, between y[i1] and y[i2] computed using Rule (R)) requires
time bounded above by a (small) constant.

Other models to represent indeterminate strings have been proposed [14,10]. For
example, the model proposed in [14] maps all the non-empty letters (both regular and
indeterminate) over the DNA alphabet ΣDNA = {A,C,G, T} to the IUPAC symbols
ΣIUPAC = {A,C,G, T,R, Y, S,W,K,M,B,D,H, V,N}. Then given an indeterminate
string over ΣDNA, it constructs an isomorphic regular string over ΣIUPAC . In [10], the
model proposed maps each symbol in the DNA alphabet to a 4-bit integer power of
2; that is, {A,C,G, T} is mapped to {20, 21, 22, 23}. Then a non-empty indeterminate
letter over ΣDNA is represented as Σ{s∈P(Σ)}s of maximum size 15 = 11112. Also,
instead of using the natural order on integers, [10] uses a Gray code [7] to order
indeterminate letters over ΣDNA. Note that with the Gray code two successive values
differ by only one bit, such as 1100 and 1101, which enables minimizing the number
of separate intervals associated with each of the four symbols of ΣDNA.

2 Pattern Matching Algorithm for Indeterminate Strings

In this section we describe a simple, fast, space-efficient algorithm KMP Indet that,
in order to compute all occurrences of a source pattern p = p[1..m] in a source string
x = x[1..n], computes all the positions at which the corresponding mapped pattern
q = q[1..m] occurs in the mapped string y = y[1..n]. We begin with the following
result:

Lemma 8 For alphabet Σ of size σ ≤ 9, the positions of occurrence of p in x can be
computed in O(mn) time.

Proof. By Lemma 2 and Observation 5, the positions of occurrence of q in y can be
trivially computed in O(mnMB logB) = O(mn) time, with constant of proportional-
ity MB logB.

1 https://en.wikipedia.org/wiki/Greatest common divisor#Complexity

128 Proceedings of the Prague Stringology Conference 2020

As noted earlier, many pattern matching algorithms have been proposed for in-
determinate strings. In [12] Iliopoulos and Radoszewski propose an O(n logm) algo-
rithm for a constant alphabet. This is the best theoretical bound known so far for
pattern matching algorithms on indeterminate strings over a constant alphabet. Re-
cently, pattern matching algorithms for conservative indeterminate strings, where
the number of indeterminate letters in text x and pattern p is bounded above by
a constant k, have been proposed [4,5]. In [4], Crochemore et. al present an O(nk)
algorithm which uses suffix trees and other auxiliary data structures to search for p
in x. In [5], Daykin et. al propose a pattern matching algorithm by first constructing
the Burrows Wheeler Transform (BWT) of x in O(mn) time, and use it to find all
occurrences of p in x in O(km2 + q) time, where q is the number of occurrences of
the pattern in x, and O(km2) is the time required to compute it.

2.1 Definitions

We give here a few essential definitions.
Given x[1..n], then for 1 ≤ i ≤ n and 1 ≤ j ≤ n, u = x[i..j] is called a substring

of x, an empty substring ε if j < i. If i = 1, u is a prefix of x, a suffix if j = n.
A string x has a border u if |u| < |x| and x has both prefix and suffix equal to u.
Note that a border of x may be empty.

A border array βx = βx[1..n] of x is an integer array where for every i ∈ [1..n],
βx[i] is the length of the longest border of x[1..i]. A prefix array πx = πx[1..n]
of x is an integer array where for every i ∈ [1..n], πx[i] is the length of the longest
substring starting at position i that matches a prefix of x. See Figure 1 for an example.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
βx 0 1 0 1 2 3 4 5 6 3 4 5 2

πx 13 1 0 6 1 0 3 5 1 0 2 2 1

Figure 1. Border array βx, and Prefix array πx computed for the string x =
aabaabaa{a, b}baa{a, c}.

In Lemmas 9 and 10, we rephrase earlier results on running times for computing
the border array and prefix array of a string of length n.

Lemma 9 ([15,16]) The border array and prefix array of a regular string of length
m can be computed in O(m) time.

Lemma 10 ([15,16]) The border array and prefix array of an indeterminate string
of length m can be computed in O(m2) time in the worst-case, O(m) in the average
case.

For completeness we give in Figure 2 the KMP algorithm for regular strings
x = x[1..n]. In case of a mismatch or after a full match, KMP computes the shift
of the pattern p = p[1..m] along x by using the border array of p, which as we have
seen is computable in O(m) time. Thus KMP runs in O(n) time.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 129

function KMP(x, n,p,m) : Integer List
i← 0; j ← 0
indexlist← ∅ ⊲ List of indices where p occurs in x
βp ← Border array of pattern p
while i < n do

if p[j + 1] = x[i+ 1] then
j ← j + 1; i← i+ 1
if j = m then

indexlist← indexlist ∪ {i−j+1}
j ← βp[j]

else
if j = 0 then i← i+1
else

j ← βp[j]
return indexlist

Figure 2. KMP checks whether the regular pattern p occurs in the regular text x. If it does, then
it outputs the set of indices at which p occurs in x; otherwise returns an empty set.

2.2 KMP Algorithm for Indeterminate Strings

We now describe KMP Indet (see Figure 3), which searches for pattern q = q[1..m]
in text y = y[1..n], outputting the indices at which q occurs in y (thus, at which
p occurs in x). Thus our algorithm implements the KMP algorithm [13] on inde-
terminate strings that have been transformed using Rule (R). However, note that
this transformation is not necessary for the algorithm to work: we use it to improve
space and time efficiency. The algorithm also works with other indeterminate string
encoding/transformations mentioned in the previous section. While scanning y from
left to right and performing letter comparisons, KMP Indet checks whether the
prefix of q and the substring of y currently being matched are both regular. If so,
then it uses the border array βqℓ

of the longest regular prefix qℓ of q of length ℓ, to
compute the shift; if not, it constructs a new string q′, which is a concatenation of
the longest proper prefix of the matched prefix of q and the longest proper suffix of
the matched substring of y, using the prefix array πq′ of q′ to compute the shift. The

Compute Shift function given in Figure 4 implements this computation.
In order to determine whether or not indeterminate letters are included in any

segment q′ = q[1..j−1]y[i−j+2..i], two variables are employed: indety and the length
ℓ of the longest regular prefix qℓ of q. indety is a Boolean variable that is true if
and only if the current segment y[i−j+2..i] contains an indeterminate letter; ℓ is
pre-computed in O(m) time as a byproduct of the one-time calculation of qℓ.

If y and q are both regular, then KMP Indet reduces to the KMP algorithm
[13]. Otherwise, it checks whether indeterminate letters exist in the matched prefix of
q = q[1..j−1], or the matched substring of y = y[i−j+2..i]. If they do, then the shift
in q is equal to the maximum length of the prefix of q[1..j−1] that matches with a
suffix of y[i−j+2..i]. To compute this length, the algorithm first builds a new string
q′ = q[1..j−1]y[i−j+2..i] and, based on an insight given in [16], computes its prefix
array πq′ rather than its border array. To compute the shift only the last j entries of

πq′ are examined; that is, entries k = j+1 to 2(j− 1). Note that we need to consider

only those entries k in πq′ [j+1..2(j − 1)], where a prefix of q′ matches the suffix at

130 Proceedings of the Prague Stringology Conference 2020

function KMP Indet(y, n, q,m) : Integer List
i← 0; j ← 0; indety ← false

indexlist← ∅ ⊲ List of indices where q occurs in y
qℓ ← longest regular prefix of q of length ℓ
βq ← Compute β(qℓ) ⊲ Border Array of qℓ

while i < n do
if q[j + 1] ≈ y[i+ 1] then

if INDET(y[i + 1]) then indety ← true

j ← j + 1; i← i+ 1
if j = m then

indexlist← indexlist ∪ {i−j+1}
j ← Compute Shift(indety,y, q, i, j, βq, ℓ)
indety ← false

else
if j = 0 then i← i+1
else

j ← Compute Shift(indety,y, q, i, j, βq, ℓ)
indety ← false

return indexlist

Figure 3. KMP Indet checks whether the pattern q occurs in the text y (both possibly indeter-
minate). If it does, then it outputs the set of indices at which q occurs in y; otherwise returns an
empty set.

k (q′[k..2(j − 1)]); that is, the entries where πq′ [k] = 2j−k−1. The shift is simply

the maximum over such entries in πq′ . (Recall that computing the border array for

an indeterminate string is not useful as the matching relation ≈ is not transitive [8].)

function Compute Shift(indety,y, q, i, j, βq, ℓ) : Integer
⊲ ℓ is length of longest regular prefix of q.
if indety or j > ℓ then

q′ = q[1..j−1]y[i−j+2..i]
πq′ ← Compute π(q′) ⊲ Prefix Array of pattern q′

max← 0
for k = j to 2(j − 1)

if max < πq′ [k] and πq′ [k] = 2j−k−1 then

max← πq′ [k]
j ← max

else ⊲ prefix of q & substring of y are regular
j ← βq[j]

return j

Figure 4. Compute Shift computes the shift in the pattern when a mismatch occurs or the end
of pattern is reached.

Figure 5 represents the processing of the text x = aabaabaa{a, b}baa{a, c} and
pattern p = aabaa corresponding to the processing of y and q by KMP Indet.
KMP Indet first computes βp = (0, 1, 0, 1, 2) and ℓ = 5. Initially the pattern is
aligned with x at position 1. Since it matches with the text (j = 5), and indetx =
false and 5 ≤ (ℓ = 5), we compute the shift from βp[5] = 2. Therefore, the pattern

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 131

is then aligned with x at position i = 4. Analogously, the pattern is next aligned
with x at position i = 7. Since a mismatch occurs at i + 1 = 10, j + 1 = 4, and
because indetx = true, we construct p′ = p[1..2]x[8..9] = aba{a, b} and compute
πp′ = (4, 0, 2, 1). Then shift is equal to 2. Therefore the pattern is aligned with x at

8. Since it matches (and because it is the last match), KMP Indet returns the list
{1, 4, 8}.

KMP Indet contains a function INDET that determines whether or not the cur-
rent position y[i+1] is indeterminate. To enable this query to be answered efficiently,
we suppose that an array P = P [1..9] has been created with P [t] equal to the tth

prime number in the range 2..23 (for σ = 9). Then y[i+1] is indeterminate if and
only if it exceeds 23 or else does not occur in P . The worst case time requirement for
INDET is therefore log2 9 times a few microseconds, the time for a binary search.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
a a b a a

a a b a a

a a b x

a a b a a

Figure 5. The figure simulates the execution of KMP Indet on the text x =
aabaabaa{a, b}baa{a, c} and pattern p = aabaa. After execution, KMP Indet returns the list of
positions {1, 4, 8} at which p occurs in x. ‘x’ in the third alignment identifies a mismatch.

Now we discuss the running time of algorithm KMP Indet. It is clear that the
running time of KMP Indet for a regular pattern and regular text is linear. Other-
wise, when a matched prefix of q or a matched substring of y contains an indetermi-
nate letter, then the algorithm constructs the prefix array of a new string q′ which is
a concatenation of the matched strings. In the worst case we might need to construct
the prefix array of q′ for each iteration of the while loop. By Lemma 10 and because
q′ can be of length at most 2(m−1), in the worst case the total time required for the
execution of KMP Indet is O(m2n). Theorem 11 states these conclusions:

Theorem 11 Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of
constant size σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is O(m2n). The
algorithm’s additional space requirement is O(m), for the pattern q′ and corresponding
arrays βq′ and πq′.

An improved theoretical bound to compute the prefix array for a string over a con-
stant alphabet is given in [12], and is summarized in Lemma 12. Using Lemma 12 we
restate Theorem 11 resulting in an improved run time complexity for KMP Indet.

Lemma 12 ([12]) The prefix array of an indeterminate string of length n over a
constant-sized alphabet can be computed in O(n√n) time and O(n) space.

Theorem 13 Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of con-
stant size σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is O(nm√m).

132 Proceedings of the Prague Stringology Conference 2020

The algorithm’s additional space requirement is O(m), for the pattern q′ and corre-
sponding arrays βq′ and πq′.

We provide context for the result given in Theorems 11 and 13 by the following:

Remark 14 One of the features that makes this algorithm truly practical is that,
apart from the O(n) time in-place mapping of x into y and p into q, there is no
preprocessing and no auxiliary data structure requirement. As a result, processing is
direct and immediate, requiring negligible additional storage.

Remark 15 The worst case time requirement is predicated on a requirement for O(n)
(short) shifts of q along y, each requiring a worst-case O(m2) prefix array calculation.
For example, this circumstance could occur with p = {a, b}cm−1 and x = an or with
p = ab and x = {a, c}n.

Remark 16 Indeed, given a regular pattern and a string x containing Q indeter-
minate letters (a case considered in both [4] and [5]), KMP Indet may make as
many as mQ shifts, each requiring O(m2) processing, thus O(m3Q) overall. There-
fore, if m3Q is small with respect to m2n — Q small with respect to n/m — then
KMP Indet will execute in O(n) time.

3 Conclusion

We have described a simple procedure, based on the KMP algorithm, to do pattern-
matching on indeterminate strings that is very time-efficient in cases that arise in
practice and moreover uses negligible Θ(m) space in all cases. We conjecture that
a similar approach is feasible for the Boyer-Moore algorithm [3], together with its
numerous variants (BM-Horspool, BM-Sunday, BM-Galil, Turbo-BM): see [15, Ch.
8] and

https://www-igm.univ-mlv.fr/~lecroq/string/

It would also be of interest to optimize KMP Indet for the conservative in-
determinate strings mentioned in Section 2. And we look forward to experimental
comparison of the running times of existing indeterminate pattern-matching algo-
rithms with those of KMP Indet, assuming various frequencies of indeterminate
letters.

References

1. K. Abrahamson: Generalized string matching. SIAM Journal of Computing, 16(6) 1987,
pp. 1039–1051.

2. F. Blanchet-Sadri: Algorithmic Combinatorics on Partial Words, Chapman & Hall CRC,
2008.

3. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 762–772.

4. M. Crochemore, C. S. Iliopoulis, R. Kundu, M. Mohamed, and F. Vayani: Linear
algorithm for conservative degenerate pattern matching. Eng. Appls. of Artificial Intelligence,
51 2016, pp. 109–114.

5. J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mou-
chard, E. Prieur-Gaston, and B. Watson: Efficient pattern matching in degenerate strings
with the Burrows-Wheeler transform. Information Processing Letters, 147 2019, pp. 82–87.

N.Mhaskar, W.F. Smyth: Simple KMP Pattern-Matching on Indeterminate Strings 133

6. M. Fischer and M. Paterson: String matching and other products, in Complexity of Com-
putation,, R. Karp, ed., American Mathematical Society, 1974, pp. 113–125.

7. F. Gray: Pulse code communication. Hughes Aircraft Company, U.S. Patent no. 2632058, 1953.
8. J. Holub and W. F. Smyth: Algorithms on indeterminate strings. Proc. 14th Australasian

Workshop on Combinatorial Algs. (AWOCA), 2003, pp. 36–45.
9. J. Holub, W. F. Smyth, and S. Wang: Hybrid pattern-matching algorithms on indeterminate

strings, in London Algorithmics and Stringology, J. W. Daykin, M. Mohamed, and K. Steinhofel,
eds., King’s College Texts in Algorithmics, 2006, pp. 115–133.

10. L. Huang, V. Popic, and S. Batzoglou: Short read alignment with populations of genomes.
Bioinformatics, 29(13) 06 2013, pp. i361–i370.

11. C. S. Iliopoulos, M. Mohamed, L. Mouchard, W. F. Smyth, K. G. Perdikuri, and
A. K. Tsakalidis: String regularities with don’t cares. Nordic J. Computing, 10(1) 2003,
pp. 40–51.

12. C. S. Iliopoulos and J. Radoszewski: Truly subquadratic-time extension queries and peri-
odicity detection in strings with uncertainties, in CPM, 2016.

13. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal of Computing, 6(2) 1977, pp. 323–350.

14. P. Procházka and J. Holub: On-line searching in IUPAC nucleotide sequences, in Proceed-
ings of the 12th International Joint Conference on Biomedical Engineering Systems and Tech-
nologies (BIOSTEC 2019) - Volume 3: BIOINFORMATICS, Prague, Czech Republic, February
22-24, 2019, E. D. Maria, A. L. N. Fred, and H. Gamboa, eds., SciTePress, 2019, pp. 66–77.

15. B. Smyth: Computing Patterns in Strings, Pearson/Addison–Wesley, 2003.
16. W. F. Smyth and S. Wang: New perspectives on the prefix array. Proc. 15th String Processing

& Inform. Retrieval Symp. (SPIRE), 5280 2008, pp. 133–143.
17. W. F. Smyth and S. Wang: An adaptive hybrid pattern-matching algorithm on indeterminate

strings. Internat. J. Foundations of Computer Science, 20(6) 2009, pp. 985–1004.

Re-Pair in Small Space

Dominik Köppl1, Tomohiro I2, Isamu Furuya3, Yoshimasa Takabatake2, Kensuke
Sakai2, and Keisuke Goto4

1 Kyushu University, Japan Society for Promotion of Science
dominik.koeppl@inf.kyushu-u.ac.jp,
2 Kyushu Institute of Technology, Japan

tomohiro@ai.kyutech.ac.jp, takabatake@ai.kyutech.ac.jp,
k sakai@donald.ai.kyutech.ac.jp

3 Graduate School of IST, Hokkaido University, Japan
furuya@ist.hokudai.ac.jp

4 Fujitsu Laboratories Ltd., Kawasaki, Japan
goto.keisuke@fujitsu.com

Abstract. Re-Pair is a grammar compression scheme with favorably good compression
rates. The computation of Re-Pair comes with the cost of maintaining large frequency
tables, which makes it hard to compute Re-Pair on large scale data sets. As a solution
for this problem we present, given a text of length n whose characters are drawn from
an integer alphabet with size σ = nO(1), an O(n2)∩O(n2 lg logτ n lg lg lg n/ logτ n) time
algorithm computing Re-Pair with max((n/c) lg n, n ⌈lg τ⌉) + O(lg n) bits of working
space including the text space, where c ≥ 1 is a fix user-defined constant and τ is the
sum of σ and the number of non-terminals.

1 Introduction

Re-Pair [16] is a grammar deriving a single string. It is computed by replacing the
most frequent bigram in this string with a new non-terminal, recursing until no bigram
occurs more than once. Despite this simple-looking description, both the merits and
the computational complexity of Re-Pair are intriguing. As a matter of fact, Re-Pair
is currently one of the most well-understood grammar schemes.

Besides the seminal work of Larsson and Moffat [16], there are a couple of articles
devoted to the compression aspects of Re-Pair: Given a text T of length n whose
characters are drawn from an integer alphabet of size σ := nO(1), the output of Re-Pair
applied to T is at most 2nHk(T)+ o(n lg σ) bits with k = o(logσ n) when represented
naively as a list of character pairs [19], where Hk denotes the empirical entropy of
the k-th order. Using the encoding of Kieffer and Yang [12], Ochoa and Navarro [20]
could improve the output size to at most nHk(T)+o(n lg σ) bits. Other encodings were
recently studied by Ganczorz [9]. Since Re-Pair is a so-called irreducible grammar, its
grammar size, i.e., the sum of the symbols on the right hand side of all rules, is upper
bounded by O(n/ logσ n) [12, Lemma 2], which matches the information-theoretic
lower bound on the size of a grammar for a string of length n. Comparing this size
with the size of the smallest grammar, its approximation ratio has O((n/ lg n)2/3) as
an upper bound [5] and Ω(lg n/ lg lg n) as a lower bound [1]. On the practical side,
Yoshida and Kida [26] presented an efficient fixed-length code for compressing the
Re-Pair grammar.

Although conceived as a grammar for compressing texts, Re-Pair has been suc-
cessfully applied for compressing trees [17], matrices [23], or images [7]. For different
settings or for better compression rates, there is a great interest in modifications to

Dominik Köppl, Tomohiro I, Isamu Furuya, Yoshimasa Takabatake, Kensuke Sakai, Keisuke Goto: Re-Pair in Small Space, pp. 134–147.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

D.Köppl et al.: Re-Pair in Small Space 135

Re-Pair. Charikar et al. [5, Sect. G] gave an easy variation to improve the size of
the grammar. Another variant, proposed by Claude and Navarro [6], runs in a user
defined working space (> n lg n bits), and shares with our proposed solution the idea
of a table that (a) is stored with the text in the working space, and (b) grows in
rounds. The variant of González et al. [11] is specialized on compressing an array of
integers delta-encoded (i.e., by the differences of subsequent entries). Sekine et al. [22]
provide an adaptive variant whose algorithm divides the input into blocks, and pro-
cesses each block based on the rules obtained from the grammars of its preceding
blocks. Subsequently, Masaki and Kida [18] gave an online algorithm producing a
grammar mimicking Re-Pair. Ganczorz and Jez [10] modified the Re-Pair grammar
by disfavoring the replacement of bigrams that cross Lempel-Ziv-77 (LZ77) [27] fac-
torization borders, which allowed the authors to achieve practically smaller grammar
sizes. Recently, Furuya et al. [8] presented a variant, called MR-Re-Pair, in which a
most frequent maximal repeat is replaced instead of a most frequent bigram.

1.1 Related Work

Re-Pair is a grammar proposed by Larsson and Moffat [16], who presented an algo-
rithm computing it in expected linear time with 5n+4σ2+4σ′+

√
n words of working

space, where σ′ is the number of non-terminals (produced by Re-Pair). González et
al. [11, Sect. 4.1] gave another linear time algorithm using 12n+O(p) bytes of work-
ing space, where p is the maximum number of distinct bigrams considered at any
time. The large space requirements got significantly improved by Bille et al. [3], who
presented a randomized linear time algorithm taking (1 + ǫ)n +

√
n words on top

of the rewriteable text space for a constant ǫ with 0 < ǫ ≤ 1. Subsequently, they
improved their algorithm in [2] to include the text space within the (1 + ǫ)n +

√
n

words of working space. However, they assume that the alphabet size σ is constant
and ⌈lg σ⌉ ≤ w/2, where w is the machine word size. They also provide a solution
for ǫ = 0 running in expected linear time. Recently, Sakai et al. [21] showed how
to convert an arbitrary grammar (representing a text) into the Re-Pair grammar in
compressed space, i.e., without decompressing the text. Combined with a grammar
compression that can process the text in compressed space in a streaming fashion,
this result leads to the first Re-Pair computation in compressed space.

1.2 Our Contribution

In this article,1 we propose an algorithm that computes the Re-Pair grammar in
O(n2) ∩ O(n2 lg logτ n lg lg lg n/ logτ n) time (cf. Theorem 3 and Theorem 5) with
max((n/c) lg n, n ⌈lg τ⌉) + O(lg n) bits of working space including the text space,
where c ≥ 1 is a fix user-defined constant and τ is the sum of the alphabet size σ and
the number of non-terminals σ′.

Given that the characters of the text are drawn from a large integer alphabet
with size σ = Ω(n),2 the algorithm works in-place. In this setting, we obtain the first
non-trivial in-place algorithm, as a trivial approach on a text T of length n would

1 Parts of this work have already been presented as a poster [15] at the Data Compression Conference
2020 (https://sigport.org/documents/re-pair-small-space).

2 We consider the alphabet as not effective, i.e., a character does not have to appear in the text, as
this is a common setting in Unicode texts such as Japanese text. For instance, n2 = Ω(n)∩nO(1) 6=
∅ could be such an alphabet size.

136 Proceedings of the Prague Stringology Conference 2020

compute the most frequent bigram in Θ(n2) time by computing the frequency of each
bigram T [i]T [i + 1] for every integer i with 1 ≤ i ≤ n − 1, keeping only the most
frequent bigram in memory. This sums up to O(n3) total time, since there can be
Θ(n) different bigrams considered for replacement by Re-Pair.

To achieve our goal of O(n2) total time, we first provide a trade-off algorithm (cf.
Lemma 2) finding the d most frequent bigrams in O(n2 lg d/d) time for a trade-off
parameter d. We subsequently run this algorithm for increasing values of d, and show
that we need to run it O(lg n) times, which gives us O(n2) time if d is increasing
sufficiently fast. Our major tools are appropriate text partitioning, elementary scans,
and sorting steps, which we visualize in Section 2.5 by an example, and practically
evaluate in Section 2.6. When τ = o(n), a different approach using word-packing and
bit-parallel techniques becomes attractive, leading to anO(n lg logτ n lg lg lg n/ logτ n)
time algorithm, which we explain in Section 3.

1.3 Preliminaries

We use the word RAM model with a word size of Ω(lg n) for an integer n ≥ 1. We
work in the restore model [4], in which algorithms are allowed to overwrite the input,
as long as they can restore the input to its original form.

Strings. Let T be a text of length n whose characters are drawn from an integer
alphabet Σ of size σ = nO(1). A bigram is an element of Σ2. The frequency of a
bigram B in T is the number of non-overlapping occurrences of B in T , which is at
most |T | /2. For instance, the frequency of the bigram aa ∈ Σ2 in the text T = a · · · a
consisting of n a’s is ⌊n/2⌋.

Re-Pair. We reformulate the recursive description in the introduction by dividing a
Re-Pair construction algorithm into turns. Stipulating that Ti is the text after the
i-th turn with i ≥ 1 and T0 := T ∈ Σ+

0 with Σ0 := Σ, Re-Pair replaces one of the
most frequent bigrams (ties are broken arbitrarily) in Ti−1 with a non-terminal in the
i-th turn. Given this bigram is bc ∈ Σ2

i−1, Re-Pair replaces all occurrences of bc with
a new non-terminal Xi in Ti−1, and sets Σi := Σi−1∪{Xi} with σi := |Σi| to produce
Ti ∈ Σ+

i . Since |Ti| ≤ |Ti−1| − 2, Re-Pair terminates after m < n/2 turns such that
Tm ∈ Σ+

m contains no bigram occurring more than once.

2 Algorithm

A major task for producing the Re-Pair grammar is to count the frequencies of the
most frequent bigrams. Our work horse for this task is a frequency table. A frequency
table in Ti of length f stores pairs of the form (bc, x), where bc is a bigram and x
the frequency of bc in Ti. It uses f ⌈lg(σ2

i ni/2)⌉ bits of space since an entry stores
a bigram consisting of two characters from Σi and its respective frequency, which
can be at most ni/2. Throughout this paper, we use an elementary in-place sorting
algorithm like heapsort:

Lemma 1 ([25]). An array of length n can be sorted in-place in O(n lg n) time.

2.1 Trade-Off Computation

By embracing the frequency tables, we present a solution with a trade-off parameter:

D.Köppl et al.: Re-Pair in Small Space 137

Lemma 2. Given an integer d with d ≥ 1, we can compute the frequencies of the
d most frequent bigrams in a text of length n whose characters are drawn from an
alphabet of size σ in O(max(n, d)n lg d/d) time using 2d ⌈lg(σ2n/2)⌉+O(lg n) bits.
Proof. Our idea is to partition the set of all bigrams appearing in T into ⌈n/d⌉
subsets, compute the frequencies for each subset, and finally merge these frequencies.
In detail, we partition the text T = S1 · · ·S⌈n/d⌉ into ⌈n/d⌉ substrings such that
each substring has length d (the last one has a length of at most d). Subsequently,
we extend Sj to the left (only if j > 1) such that Sj and Sj+1 overlap by one text
position, for 1 ≤ j < ⌈n/d⌉. By doing so, we take the bigram on the border of two
adjacent substrings Sj and Sj+1 for each j < ⌈n/d⌉ into account. Next, we create two
frequency tables F and F ′, each of length d for storing the frequencies of d bigrams.
These tables are at the beginning empty. In what follows, we fill F such that after
processing Si, F stores the most frequent d bigrams among those bigrams occurring
in S1, . . . , Si while F ′ acts as a temporary space for storing candidate bigrams that
can enter F .

With F and F ′, we process each of the n/d substrings Sj as follows: Let us fix an
integer j with 1 ≤ j ≤ ⌈n/d⌉. We first put all bigrams of Sj into F ′ in lexicographic
order. We can perform this within the space of F ′ in O(d lg d) time since there are at
most d different bigrams in Sj. We compute the frequencies of all these bigrams in the
complete text T in O(n lg d) time by scanning the text from left to right while locating
a bigram in F ′ in O(lg d) time with a binary search. Subsequently, we interpret F and
F ′ as one large frequency table, sort it with respect to the frequencies while discarding
duplicates such that F stores the d most frequent bigrams in T [1..jd]. This sorting
step can be done in O(d lg d) time. Finally, we clear F ′ and are done with Sj. After
the final merge step, we obtain the d most frequent bigrams of T stored in F .

Since each of the O(n/d) merge steps takes O(d lg d + n lg d) time, we need
O(max(d, n) · (n lg d)/d) time. For d ≥ n, we can build a large frequency table and
perform one scan to count the frequencies of all bigrams in T . This scan and the final
sorting with respect to the counted frequencies can be done in O(n lg n) time.

2.2 Algorithmic Ideas

With Lemma 2, we can compute Tm in O(mn2 lg d/d) time with additional 2d
⌈lg(σ2

mn/2)⌉ bits3 of working space on top of the text for a parameter d with
1 ≤ d ≤ n. In the following, we show how this leads us to our first algorithm
computing Re-Pair:

Theorem 3. We can compute Re-Pair on a string of length n in O(n2) time with
max((n/c) lg n, n ⌈lg τ⌉) +O(lg n) bits of working space including the text space as a
rewriteable part in the working space, where c ≥ 1 is a fixed constant and τ = σm is
the sum of the alphabet size σ and the number of non-terminal symbols.

In our model, we assume that we can enlarge the text Ti from ni ⌈lg σi⌉ bits to
ni ⌈lg σi+1⌉ bits without additional extra memory. Our main idea is to store a growing
frequency table using the space freed up by replacing bigrams with non-terminals. In
detail, we maintain a frequency table F in Ti of length fk for a growing variable fk,
which is set to f0 := O(1) in the beginning. The table F takes fk ⌈lg(σ2

i n/2)⌉ bits,
3 The variable τ used in the abstract and in the introduction is interchangeable with σm, i.e.,
τ = σm.

138 Proceedings of the Prague Stringology Conference 2020

which is O(lg(σ2n)) = O(lg n) bits for k = 0. When we want to query it for a most
frequent bigram, we linearly scan F in O(fk) = O(n) time, which is not a problem
since (a) the number of queries is m ≤ n, and (b) we aim for O(n2) overall running
time. A consequence is that there is no need to sort the bigrams in F according to
their frequencies, which simplifies the following discussion.

Frequency Table F . With Lemma 2, we can compute F in O(nmax(n, fk) lg fk/fk)
time. Instead of recomputing F on every turn i, we want to recompute it only when it
no longer stores a most frequent bigram. However, it is not obvious when this happens
as replacing a most frequent bigram during a turn (a) removes this entry in F and (b)
can reduce the frequencies of other bigrams in F , making them possibly less frequent
than other bigrams not tracked by F . Hence, the variable i for the i-th turn (creating
the i-th non-terminal) and the variable k for recomputing the frequency table F the
(k+1)-st time are loosely connected. We group together all turns with the same fk and
call this group the k-th round of the algorithm. At the beginning of each round, we
enlarge fk and create a new F with a capacity for fk bigrams. Since a recomputation
of F takes much time, we want to end a round only if F is no longer useful, i.e.,
when we no longer can guarantee that F stores a most frequent bigram. To achieve
our claimed time bounds, we want to assign all m turns to O(lg n) different rounds,
which can only be done if fk grows sufficiently fast.

Algorithm Outline. At the beginning of the k-th round and the i-th turn, we compute
the frequency table F storing fk bigrams, and keep additionally the lowest frequency
of F as a threshold tk, which is treated as a constant during this round. During the
computation of the i-th turn, we replace the most frequent bigram (say, bc ∈ Σ2

i)
in the text Ti with a non-terminal Xi+1 to produce Ti+1. Thereafter, we remove bc

from F and update those frequencies in F which got decreased by the replacement of
bc with Xi+1, and add each bigram containing the new character Xi+1 into F if its
frequency is at least tk. Whenever a frequency in F drops below tk, we discard it. If
F becomes empty, we move to the (k + 1)-st round, and create a new F for storing
fk+1 frequencies. Otherwise (F still stores an entry), we can be sure that F stores a
most frequent bigram. In both cases, we recurse with the (i+ 1)-st turn by selecting
the bigram with the highest frequency stored in F . We show in Algorithm 1 a pseudo
code of this outlined algorithm. We describe in the following how we update F and
how large fk+1 can become at least.

2.3 Algorithmic Details

Suppose that we are in the k-th round and in the i-th turn. Let tk be the lowest
frequency in F computed at the beginning of the k-th round. We keep tk as a constant
threshold for the invariant that all frequencies in F are at least tk during the k-th
round. With this threshold we can assure in the following that F is either empty
or stores a most frequent bigram. Now suppose that the most frequent bigram of Ti

is bc ∈ Σ2
i , which is stored in F . To produce Ti+1 (and hence advancing to the

(i+ 1)-st turn), we enlarge the space of Ti from ni ⌈lg σi⌉ to ni ⌈lg σi+1⌉, and replace
all occurrences of bc in Ti with a new non-terminal Xi+1. Subsequently, we would
like to take the next bigram of F . For that, however, we need to update the stored
frequencies in F . To see this necessity, suppose that there is an occurrence of abcd
with two characters a, d ∈ Σi in Ti. By replacing bc with Xi+1,

D.Köppl et al.: Re-Pair in Small Space 139

Algorithm 1: Algorithmic outline of our proposed algorithm working on
a text T with a growing frequency table F . The constants αi and βi are
explained in Section 2.3. The same section shows that the outer while loop
is executed O(lg n) times.

1 k ← 0, i← 0
2 f0 ← O(1)
3 T0 ← T
4 while highest frequency of a bigram in T is greater than one do ⊲ during the k-th

round

5 F ← frequency table of Lemma 2 with d := fk
6 tk ← minimum frequency stored in F
7 while F 6= ∅ do ⊲ during the i-th turn

8 bc← most frequent bigram stored in F
9 Ti+1 ← Ti.replace(bc, Xi+1) ⊲ create rule Xi+1 → bc

10 i← i+ 1 ⊲ introduce the (i+ 1)-th turn

11 remove all bigrams with frequency lower than tk from F
12 add new bigrams to F having Xi as left or right character and a frequency of at

least tk

13 fk+1 ← fk +max(2/βi, (fk − 1)/(2βi))/αi

14 k ← k + 1 ⊲ introduce the (k + 1)-th round

15 Invariant: i = m (the number of non-terminals)

1. the frequencies of ab and cd decrease by one4, and
2. the frequencies of aXi+1 and Xi+1d increase by one.

Updating F . We can take care of the former changes (1) by decreasing the respective
bigram in F (in case that it is present). If the frequency of this bigram drops below the
threshold tk, we remove it from F as there may be bigrams with a higher frequency
that are not present in F . To cope with the latter changes (2), we track the characters
adjacent to Xi+1 after the replacement, count their numbers, and add their respective
bigrams to F if their frequencies are sufficiently high. In detail, suppose that we have
substituted bc with Xi+1 exactly h times. Consequently, with the new text Ti+1

we have additionally h lg σi+1 bits of free space5, which we call D in the following.
Subsequently, we scan the text and put the characters of Σi+1 appearing to the
left of each of the h occurrences of Xi+1 into D. After sorting the characters in D
lexicographically, we can count the frequency of aXi+1 for each character a ∈ Σi+1

preceding an occurrence ofXi+1 in the text Ti+1 by scanningD linearly. If the obtained
frequency of such a bigram aXi+1 is at least as high as the threshold tk, we insert aXi+1

into F , and subsequently discard a bigram with the currently lowest frequency in F if
the size of F has become fk+1. In case that we visit a run ofXi+1’s during the creation
of D, we must take care of not counting the overlapping occurrences of Xi+1Xi+1.
Finally, we can count analogously the occurrences of Xi+1d for all characters d ∈ Σi

succeeding an occurrence of Xi+1.

Capacity of F . After the above procedure we have updated the frequencies of F . When
F becomes empty, all bigrams stored in F have been replaced or have a frequency

4 For the border case a = b = c (resp. b = c = d), there is no need to decrement the frequency of
ab (resp. cd).

5 The free space is consecutive after shifting all characters to the left.

140 Proceedings of the Prague Stringology Conference 2020

that became less than tk. Subsequently, we end the k-th round and continue with the
(k + 1)-st round by (a) creating a new frequency table F with capacity fk+1, and
(b) setting the new threshold tk+1 to the minimal frequency in F . In what follows,
we (a) analyze in detail when F becomes empty (as this determines the sizes fk
and fk+1), and (b) show that we can compensate the number of discarded bigrams
with an enlargement of F ’s capacity from fk bigrams to fk+1 bigrams for the sake of
our aimed total running time.

Next, we analyze how many characters we have to free up (i.e., how many bi-
gram occurrences we have to replace) to gain enough space for storing an additional
frequency. Let δi := lg(σ2

i+1ni/2) be the number of bits needed to store one entry
in F , and let βi := min(δi/ lg σi+1, cδi/ lg n) be the minimum number of charac-
ters that need to be freed to store one frequency in this space. To understand the
value of βi, we look at the arguments of the minimum function in the definition
of βi and simultaneously at the maximum function in our aimed working space of
max(n ⌈lg σm⌉ , (n/c) lg n) +O(lg n) bits (cf. Theorem 3):

1. The first item in this maximum function allows us to spend lg σi+1 bits for each
freed character such that we obtain space for one additional entry in F after
freeing δi/ lg σi+1 characters.

2. The second item allows us to use lg n additional bits after freeing up c characters.6

Hence, after freeing up cδi/ lg n characters, we have space to store one additional
entry in F .

With βi = min(δi/ lg σi+1, cδi/ lg n) = O(logσ n) ∩ O(logn σ) = O(1) we have the
sufficient condition that replacing a constant number of characters gives us enough
space for storing an additional frequency.

If we assume that replacing the occurrences of a bigram stored in F does not
decrease the other frequencies stored in F , the analysis is now simple: Since each
bigram in F has a frequency of at least two, fk+1 ≥ fk + fk/βi. Since βi = O(1), this
lets fk grow exponentially, meaning that we need O(lg n) rounds. In what follows, we
show that this is also true in the general case.

Lemma 4. Given the frequency of all bigrams in F drop below the threshold tk after
replacing the most frequent bigram bc, then its frequency has to be at least max(2, |F |−
1/2), where |F | ≤ fk is the number of frequencies stored in F .

Proof. If the frequency of bc in Ti is x, then we can reduce at most 2x frequencies of
other bigrams (both the left character and the right character of each occurrence of bc
can contribute to an occurrence of another bigram). Since a bigram must occur at least
twice in Ti to be present in F , the frequency of bc has to be at least max(2, (fk−1)/2)
for discarding all bigrams of F .

Suppose that we have enough space available for storing the frequencies of αifk
bigrams, where αi is a constant (depending on σi and ni) such that F and the working
space of Lemma 2 with d = fk can be stored within this space. With βi and Lemma 4

6 This additional treatment helps us to let fk grow sufficiently fast in the first steps to save ourO(n2)
time bound, as for sufficiently small alphabets and large text sizes, lg(σ2n/2)/ lg σ = O(lg n),
which means that we might run the first O(lg n) turns with fk = O(1), and therefore already
spend O(n2 lg n) time.

D.Köppl et al.: Re-Pair in Small Space 141

with |F | = fk, we have

αifk+1 = αifk +max(2/βi, (fk − 1)/(2βi))

= αifk max(1 + 2/(αiβifk), 1 + 1/(2αiβi)− 1/(2αiβifk))

≥ αifk(1 + 2/(5αiβi)) =: γiαifk with γi := 1 + 2/(5αiβi),

where we used the equivalence 1+2/(αiβifk) = 1+1/(2αiβi)−1/(2αiβifk)⇔ 5 = fk
to estimate the two arguments of the maximum function.

Since we let fk grow by a factor of at least γ := min1≤i≤m γi > 1 for each recom-
putation of F , fk = Ω(γk), and therefore fk = Θ(n) after k = O(lg n) steps. Conse-
quently, after reaching k = O(lg n), we can iterate the above procedure a constant
number of times to compute the non-terminals of the remaining bigrams occurring
at least twice.

Time Analysis. In total we have O(lg n) rounds. At the start of the k-th round, we
compute F with the algorithm of Lemma 2 with d = fk on a text of length at most
n− fk in O(n(n− fk) · lg fk/fk) time with fk ≤ n. Summing this up, we yield

O

O(lgn)∑

k=0

n− fk
fk

n lg fk

 = O

(
n2

lgn∑

k

k

γk

)
= O

(
n2
)
time. (1)

In the i-th turn, we update F by decreasing the frequencies of the bigrams affected
by the substitution of the most frequent bigram bc with Xi+1. For decreasing such
a frequency, we look up its respective bigram with a linear scan in F , which takes
fk = O(n) time. However, since this decrease is accompanied with a replacement
of an occurrence of bc, we obtain O(n2) total time by charging each text position
with O(n) time for a linear search in F . With the same argument, we can bound
the total time for sorting the characters in D to O(n2) overall time: Since we spend
O(h lg h) time on sorting h characters preceding or succeeding a replaced character,
and O(fk) = O(n) time on swapping a sufficiently large new bigram composed ofXi+1

and a character of Σi+1 with a bigram with the lowest frequency in F , we charge each
text position again with O(n) time. Putting all time bounds together gives the claim
of Theorem 3.

2.4 Storing the Output In-Place

Finally, we show that we can store the computed grammar in text space. More pre-
cisely, we want to store the grammar in an auxiliary array A packed at the end of
the working space such that the entry A[i] stores the right hand side of the non-
terminal Xi, which is a bigram. Thus the non-terminals are represented implicitly as
indices of the array A. We therefore need to subtract 2 lg σi bits of space from our
working space αifk after the i-th turn. By adjusting αi in the above equations, we can
deal with this additional space requirement as long as the frequencies of the replaced
bigrams are at least three (we charge two occurrences for growing the space of A).

When only bigrams with frequencies of at most two remain, we switch to a simpler
algorithm, discarding the idea of maintaining the frequency table F : Suppose that we
work with the text Ti. Let λ be a text position, which is 1 in the beginning, but will
be incremented in the following turns while holding the invariant that T [1..λ] does
not contain a bigram of frequency two. We scan Ti[λ..n] linearly from left to right

142 Proceedings of the Prague Stringology Conference 2020

and check, for each text position j, whether the bigram Ti[j]Ti[j + 1] has another
occurrence Ti[j

′]Ti[j
′ + 1] = Ti[j]Ti[j + 1] with j′ > j + 1, and if so,

(a) append Ti[j]Ti[j + 1] to A,
(b) replace Ti[j]Ti[j+1] and Ti[j

′]Ti[j
′+1] with a new non-terminal Xi+1 to transform

Ti to Ti+1, and
(c) recurse on Ti+1 with λ := j until no bigram with frequency two is left.

The position λ, which we never decrement, helps us to skip over all text positions
starting with bigrams with a frequency of one. Thus, the algorithm spends O(n) time
for each such text position, and O(n) time for each bigram with frequency two. Since
there are at most n such bigrams, the overall running time of this algorithm is O(n2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 c a b a a c a b c a b a a c a a a b c a b ab:5 ca:5 aa:3

2 c X1 a a c X1 c X1 a a c a a X1 c X1 ab:0 ca:1 aa:3

3 c X1 a a c X1 c X1 a a c a a X1 c X1 aa:3

4 c X1 a a c X1 c X1 a a c a a X1 c X1 c c c a c aa:3

5 c X1 a a c X1 c X1 a a c a a X1 c X1 a c c c c aa:3

6 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

7 c X1 a a c X1 c X1 a a c a a X1 c X1 a c a c cX1:4 aa:3

8 c X1 a a c X1 c X1 a a c a a X1 c X1 a a c c cX1:4 aa:3

9 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

D

F

Figure 1. Step-by-step execution of the first turn of our algorithm on the string T =
cabaacabcabaacaaabcab. The turn starts with the memory configuration given in Row 1. Posi-
tions 1 to 21 are text positions, positions 22 to 24 belong to F (f0 = 3, and it is assumed that a
frequency fits into a text entry). Subsequent rows depict the memory configuration during Turn 1.
A comment to each row is given in Section 2.5.

2.5 Step-by-Step Execution

Here, we present an exemplary execution of the first turn (of the first round) on the
input T = cabaacabcabaacaaabcab. We visualize each step of this turn as a row in
Fig. 1. A detailed description of each row follows:

Row 1: Suppose that we have computed F , which has the constant number of en-
tries f0 = 3.7 The highest frequency is five achieved by ab and ca. The lowest
frequency represented in F is three, which becomes the threshold t0 for a bigram
to be present in F such that bigrams whose frequencies drop below t0 are removed
from F . This threshold is a constant for all later turns until F is rebuilt (in the
following round). During Turn 1, the algorithm proceeds now as follows:

Row 2: Choose ab as a bigram to replace with a new non-terminal X1 (break ties ar-
bitrarily). Replace every occurrence of ab with X1 while decrementing frequencies
in F accordingly to the neighboring characters of the replaced occurrence.

7 In the later turns when the size fk becomes larger, F will be put in the text space.

D.Köppl et al.: Re-Pair in Small Space 143

Prefix Size in KiB

Data Set 64 128 256 512 1024

Escherichia Coli 20.68 130.47 516.67 1708.02 10112.47
cere 13.69 90.83 443.17 2125.17 9185.58
coreutils 12.88 75.64 325.51 1502.89 5144.18
einstein.de.txt 19.55 88.34 181.84 805.81 4559.79
einstein.en.txt 21.11 78.57 160.41 900.79 4353.81
influenza 41.01 160.68 667.58 2630.65 10526.23
kernel 20.53 101.84 208.08 1575.48 5067.80
para 20.90 175.93 370.72 2826.76 9462.74
world leaders 11.92 21.82 167.52 661.52 1718.36

aa · · · a 0.35 0.92 3.90 14.16 61.74

Table 1. Experimental evaluation of our implementation described in Section 2.6. Table entries are
running times in seconds. The last line is the benchmark on the unary string aa · · · a.

Row 3: Remove from F every bigram whose frequency falls below the threshold.
Obtain space for D by aligning the compressed text T1. (The process of Row 2
and Row 3 can be done simultaneously.)

Row 4: Scan the text and copy each character preceding an occurrence of X1 in T1

to D.

Row 5: Sort characters in D lexicographically.

Row 6: Insert new bigrams (consisting of a character ofD andX1) whose frequencies
are at least as large as the threshold.

Row 7: Scan the text again and copy each character succeeding an occurrence of X1

in T1 to D (symmetric to Row 4).

Row 8: Sort all characters in D lexicographically (symmetric to Row 5).

Row 9: Insert new bigrams whose frequencies are at least as large as the threshold
(symmetric to Row 6).

2.6 Implementation

At https://github.com/koeppl/repair-inplace, we provide a simplified imple-
mentation in C++17. The simplification is that we (a) fix the bit width of the text
space to 16 bit, and (b) assume that Σ is the byte alphabet. We further skip the step
increasing the bit width of the text from lg σi to lg σi+1. This means that the program
works as long as the characters of Σm fit into 16 bits. The benchmark, whose results
are displayed in Table 1, was conducted on a Mac Pro Server with an Intel Xeon CPU
X5670 clocked at 2.93GHz running Arch Linux. The implementation was compiled
with gcc-8.2.1 in the highest optimization mode -O3. Looking at Table 1, we observe
that the running time is super-linear to the input size on all text instances, which
we obtained from the Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl/).
Table 2 gives some characteristics about the used data sets. We see that the number
of rounds is the number of turns plus one for every unary string a2

k
with an integer

k ≥ 1 since the text contains only one bigram with a frequency larger than two in
each round. Replacing this bigram in the text makes F empty such that the algorithm
recomputes F after each turn. Note that the number of rounds can drop while scaling
the prefix length based on the choice of the bigrams stored in F .

144 Proceedings of the Prague Stringology Conference 2020

Turns /1000 Rounds
Prefix Size in KiB Prefix Size in KiB

Data Set σ 26 27 28 29 210 26 27 28 29 210

Escherichia Coli 4 1.8 3.2 5.6 10.3 18.1 6 9 9 12 12
cere 5 1.4 2.8 5.0 9.2 15.1 13 14 14 14 14
coreutils 113 4.7 6.7 10.2 16.1 26.5 15 15 15 14 14
einstein.de.txt 95 1.7 2.8 3.7 5.2 9.7 14 14 15 16 16
einstein.en.txt 87 3.3 3.5 3.8 4.5 8.6 16 15 15 15 17
influenza 7 2.5 3.7 9.5 13.4 22.1 11 12 14 13 15
kernel 160 4.5 8.0 13.9 24.5 43.7 10 11 14 14 13
para 5 1.8 3.2 5.8 10.1 17.6 12 12 13 13 14
world leaders 87 2.6 4.3 6.1 10.0 42.1 11 11 11 11 14

aa · · · a 1 15 16 17 18 19 16 17 18 19 20

Table 2. Characteristics of our data sets used in Section 2.6. The number of turns and rounds are
given for each of the prefix sizes 128, 256, 512, and 1024 KiB of the respective data sets. The number
of turns reflecting the number of non-terminals is given in units of thousands. The turns of the unary
string aa · · · a are in plain units (not divided by thousand).

3 Bit-Parallel Algorithm

In the case that τ = σm is o(n) (and therefore σ = o(n)), a word-packing approach
becomes interesting. We present techniques speeding up previously introduced oper-
ations on chunks of O(logτ n) characters from O(logτ n) time to O(lg lg lg n) time. In
the end, these techniques allow us to speed up the sequential algorithm of Theorem 3
from O(n2) time to the following:

Theorem 5. We can compute Re-Pair on a string of length n in O(n2 lg logτ n
lg lg lg n/ logτ n) time with max((n/c) lg n, n ⌈lg τ⌉) + O(lg n) bits of working space
including the text space, where c ≥ 1 is a fixed constant and τ = σm is the sum of the
alphabet size σ and the number of non-terminal symbols.

Note that the O(lg lg lg n) time factor is due to the popcount function [24, Algo. 1],
which has been optimized to a single instruction on modern computer architectures.

3.1 Broadword Search

First, we deal with accelerating the computation of the frequency of a bigram in T
by exploiting broadword search thanks to the word RAM model. We start with the
search of single characters and subsequently extend this result to bigrams:

Lemma 6. We can count the occurrences of a character c ∈ Σ in a string of length
O(logσ n) in O(lg lg lg n) time.

See the full version [14] for a proof, which is a variation of broadword searching zero
bytes [13, Sect. 7.1.3]. Having Lemma 6, we show that we can compute the frequency
of a bigram in T in O(n lg lg lg n/ logσ n) time. For that, we interpret T ∈ Σn of
length n as a text T ∈ (Σ2)⌈n/2⌉ of length ⌈n/2⌉. Then we partition T into strings
fitting into a computer word, and call each string of this partition a chunk . For each
chunk, we can apply Lemma 6 by treating a bigram c ∈ Σ2 as a single character. The
result is, however, not the frequency of the bigram c in general. For computing the
frequency a bigram bc ∈ Σ2, we distinguish the cases b 6= c and b = c.

D.Köppl et al.: Re-Pair in Small Space 145

Case b 6= c. By applying Lemma 6 to find the character bc ∈ Σ2 in a chunk S
(interpreted as a string of length ⌊q/2⌋ on the alphabet Σ2), we obtain the number
of occurrences of bc starting at odd positions in S. To obtain this number for all
even positions, we apply the procedure to dS with d ∈ Σ \{b, c}. Additional care has
to be taken at the borders of each chunk matching the last character of the current
chunk and the first character of the subsequent chunk with b and c, respectively.

Case b = c. This case is more involving as overlapping occurrences of bb can occur
in S, which we must not count. To this end, we watch out for runs of b’s, i.e.,
substrings of maximal lengths consisting of the character b (here, we consider also
maximal substrings of b with length 1 as a run). We separate these runs into runs
ending either at even or at odd positions. We do this because the frequency of bb

in a run of b’s ending at an even (resp. odd) position is the number of occurrences
of bb within this run ending at an even (resp. odd) position. We can compute these
positions similarly to the approach for b 6= c by first (a) hiding runs ending at even
(resp. odd) positions, and then (b) counting all bigrams ending at even (resp. odd)
positions. Runs of b’s that are a prefix or a suffix of S are handled individually if S is
neither the first nor the last chunk of T , respectively. That is because a run passing
a chunk border starts and ends in different chunks. To take care of those runs, we
remember the number of b’s of the longest suffix of every chunk, and accumulate this
number until we find the end of this run, which is a prefix of a subsequent chunk.
With the aforementioned analysis of the runs crossing chunk borders, we can extend
this procedure to count the frequency of bb in T . We conclude:

Lemma 7. We can compute the frequency of a bigram in a string T of length n whose
characters are drawn from an alphabet of size σ in O(n lg lg lg n/ logσ n) time.

3.2 Bit-Parallel Adaption

Similarly to Lemma 2, we present an algorithm computing the d most frequent bi-
grams, but now with the word-packed search of Lemma 7.

Lemma 8. Given an integer d with d ≥ 1, we can compute the frequencies of the
d most frequent bigrams in a text of length n whose characters are drawn from an
alphabet of size σ in O(n2 lg lg lg n/ logσ n) time using d ⌈lg(σ2n/2)⌉+O(lg n) bits.

Proof. We allocate a frequency table F of length d. For each text position i with
1 ≤ i ≤ n − 1, we compute the frequency of T [i]T [i + 1] in O(n lg lg lg n/ logσ n)
time with Lemma 7. After computing a frequency, we insert it into F if it is one of
the d most frequent bigrams among the bigrams we have already computed. We can
perform the insertion in O(lg d) time if we sort the entries of F by their frequencies,
yielding O((n lg lg lg n/ logσ n+ lg d)n) total time.

Studying the final time bounds of Eq. (1) for the sequential algorithm of Section 2,
we see that we spend O(n2) time in the first turn, but spend less time in later turns.
Hence, we want to run the bit-parallel algorithm only in the first few turns until fk
becomes so large that the benefits of running Lemma 2 outweigh the benefits of the
bit-parallel approach of Lemma 8. In detail, for the k-th round, we set d := fk and run
the algorithm of Lemma 8 on the current text if d is sufficiently small, or otherwise

146 Proceedings of the Prague Stringology Conference 2020

the algorithm of Lemma 2. In total, we yield

O

O(lgn)∑

k=0

min

(
n− fk
fk

n lg fk,
(n− fk)

2 lg lg lg n

logτ n

)
 = O

(
n2

lgn∑

k=0

min

(
k

γk
,
lg lg lg n

logτ n

))

= O
(
n2 lg logτ n lg lg lg n

logτ n

)
time in total,

(2)

where τ = σm is the sum of the alphabet size σ and the number of non-terminals,
and k/γk > lg lg lg n/ logτ n⇔ k = O(lg(lg n/(lg τ lg lg lg n))).

To obtain the claim of Theorem 5, it is left to show that the k-th round with
the bit-parallel approach uses O(n2 lg lg lg n/ logτ n) time, as we now want to charge
each text position with O(n/ logτ n) time with the same amortized analysis as after
Eq. (1). We target O(n/ logτ n) time for

(1) replacing all occurrences of a bigram,
(2) shifting freed up text space to the right,
(3) finding the bigram with the highest or lowest frequency in F ,
(4) updating or exchanging an entry in F , and
(5) looking up the frequency of a bigram in F .

Items (1) and (2) can be solved by applying elementary bit-parallel techniques.8

For the remaining points, our trick is to represent F by a minimum and a maxi-
mum heap, both realized as array heaps. For the space increase, we have to lower αi

(and γi) adequately. Each element of an array heap stores a frequency and a pointer
to a bigram stored in a separate array B storing all bigrams consecutively. A pointer
array P stores pointers to the respective frequencies in both heaps for each bigram
of B. The total data structure can be constructed at the beginning of the k-th round
in O(fk) time, and hence does not worsen the time bounds. While B solves Item (5),
the two heaps with P solve Items (3) and (4) even in O(lg fk) time.

In case that we want to store the output in working space, we follow the description
of Section 2.4, where we now use word-packing to find the second occurrence of a
bigram in Ti in O(n/ logσi

n) time.

4 Conclusion

In this article, we proposed an algorithm computing Re-Pair in-place in sub-quadratic
time for small alphabet sizes. Our major tools are simple, which allowed us to paral-
lelize our algorithm or adapt it in the external memory model.

Acknowledgments

This work is funded by the JSPS KAKENHI Grant Numbers JP18F18120 (Do-
minik Köppl), 19K20213 (Tomohiro I) and 18K18111 (Yoshimasa Takabatake), and
the JST CREST Grant Number JPMJCR1402 including AIP challenge program
(Keisuke Goto).

8 A detailed description is found in the full version of this paper [14].

D.Köppl et al.: Re-Pair in Small Space 147

References

1. H. Bannai, M. Hirayama, D. Hucke, S. Inenaga, A. Jez, M. Lohrey, and C. P. Reh:
The smallest grammar problem revisited. arXiv 1908.06428, 2019.

2. P. Bille, I. L. Gørtz, and N. Prezza: Practical and effective Re-Pair compression. arXiv
1704.08558, 2017.

3. P. Bille, I. L. Gørtz, and N. Prezza: Space-efficient Re-Pair compression, in Proc. DCC,
2017, pp. 171–180.

4. T. M. Chan, J. I. Munro, and V. Raman: Selection and sorting in the “restore” model.
ACM Trans. Algorithms, 14(2) 2018, pp. 11:1–11:18.

5. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat: The smallest grammar problem. IEEE Trans. Information Theory, 51(7) 2005,
pp. 2554–2576.

6. F. Claude and G. Navarro: Fast and compact web graph representations. TWEB, 4(4) 2010,
pp. 16:1–16:31.

7. P. De Luca, V. M. Russiello, R. Ciro Sannino, and L. Valente: A study for image
compression using Re-Pair algorithm. arXiv 1901.10744, 2019.

8. I. Furuya, T. Takagi, Y. Nakashima, S. Inenaga, H. Bannai, and T. Kida: MR-RePair:
Grammar compression based on maximal repeats, in Proc. DCC, 2019, pp. 508–517.

9. M. Ganczorz: Entropy lower bounds for dictionary compression, in Proc. CPM, vol. 128 of
LIPIcs, 2019, pp. 11:1–11:18.

10. M. Ganczorz and A. Jez: Improvements on Re-Pair grammar compressor, in Proc. DCC,
2017, pp. 181–190.

11. R. González, G. Navarro, and H. Ferrada: Locally compressed suffix arrays. ACM
Journal of Experimental Algorithmics, 19(1) 2014.

12. J. C. Kieffer and E. Yang: Grammar-based codes: A new class of universal lossless source
codes. IEEE Trans. Information Theory, 46(3) 2000, pp. 737–754.

13. D. E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams, Addison-Wesley, 12th ed., 2009.

14. D. Köppl, T. I, I. Furuya, Y. Takabatake, K. Sakai, and K. Goto: Re-pair in-place.
arXiv 1908.04933, 2019.

15. D. Köppl, T. I, I. Furuya, Y. Takabatake, K. Sakai, and K. Goto: Re-pair in small
space, in Proc. DCC, 2020, p. 377.

16. N. J. Larsson and A. Moffat: Offline dictionary-based compression, in Proc. DCC, 1999,
pp. 296–305.

17. M. Lohrey, S. Maneth, and R. Mennicke: XML tree structure compression using RePair.
Inf. Syst., 38(8) 2013, pp. 1150–1167.

18. T. Masaki and T. Kida: Online grammar transformation based on Re-Pair algorithm, in
Proc. DCC, 2016, pp. 349–358.

19. G. Navarro and L. M. S. Russo: Re-Pair achieves high-order entropy, in Proc. DCC, 2008,
p. 537.

20. C. Ochoa and G. Navarro: RePair and all irreducible grammars are upper bounded by
high-order empirical entropy. IEEE Trans. Information Theory, 65(5) 2019, pp. 3160–3164.

21. K. Sakai, T. Ohno, K. Goto, Y. Takabatake, T. I, and H. Sakamoto: RePair in
compressed space and time, in Proc. DCC, 2019, pp. 518–527.

22. K. Sekine, H. Sasakawa, S. Yoshida, and T. Kida: Adaptive dictionary sharing method
for Re-Pair algorithm, in Proc. DCC, 2014, p. 425.

23. Y. Tabei, H. Saigo, Y. Yamanishi, and S. J. Puglisi: Scalable partial least squares regres-
sion on grammar-compressed data matrices, in Proc. SIGKDD, 2016, pp. 1875–1884.

24. S. Vigna: Broadword implementation of rank/select queries, in Proc. WEA, vol. 5038 of LNCS,
2008, pp. 154–168.

25. J. W. J. Williams: Algorithm 232 - heapsort. Communications of the ACM, 7(6) 1964,
pp. 347–348.

26. S. Yoshida and T. Kida: Effective variable-length-to-fixed-length coding via a Re-Pair algo-
rithm, in Proc. DCC, 2013, p. 532.

27. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans.
Information Theory, 23(3) 1977, pp. 337–343.

Reducing Time and Space in Indexed String

Matching by Characters Distance Text Sampling

Simone Faro and Francesco Pio Marino

Dipartimento di Matematica e Informatica,
Università di Catania, viale A.Doria n.6, 95125, Catania, Italia

faro@dmi.unict.it

Abstract. Sampled string matching is an efficient approach to the string matching
problem which tries to overcome the prohibitive space requirements of indexed match-
ing, on the one hand, and drastically reduce searching time for the online solutions,
on the other hand. Sampled string matching dates back to 1991, however practical
solutions to the problem only appeared more recently. They are able to speed up the
online searching up to 9 times while using less than 5% of the text size. In this paper
we take into account the problem of indexing sampled texts in order to reduce the
space requirements of indexed matching and maintaining its very high practical and
theoretical performances. Specifically we present a new efficient indexed string match-
ing approach based on a characters distance sampling. The main idea is to sample the
distances between consecutive occurrences of a given set of pivot characters and then
to create a suffix array of the sampled text. From our experimental results it turns out
that the newly presented approach is able to obtain a searching time gain up to 91%,
when compared to the standard indexed approach, while using less than 15% of the
space needed for the standard suffix array.

Keywords: string matching, ext processing, efficient searching, text indexing

1 Introduction

Searching for all occurrences of a pattern in a text is a fundamental problem in com-
puter science with applications in many other fields, like natural language processing,
information retrieval and computational biology. In literature such problem is called
String Matching, and formally consists in finding all occurrences of a given pattern
x, of length m, in a large text y, of length n, where both sequences are composed by
characters drawn from an alphabet Σ of size σ.

Although data are memorized in different ways, textual data remain the main
form to store information. This is particularly evident in literature and in linguistics
where data are in the form of huge corpora and dictionaries. But this applies as well
to computer science where large amounts of data are stored in linear files. And this is
also the case, for instance, in molecular biology where biological molecules are often
approximated as sequences of nucleotides or amino acids. Thus the need for more and
more faster solutions to text searching problems.

Applications require two kinds of solutions: online and offline string matching. So-
lutions based on the first approach assume that the text is not preprocessed and thus
they need to scan the text online, when searching. Their worst case time complexity
is Θ(n), and was achieved for the first time by the well known Knuth-Morris-Pratt
(KMP) algorithm [15], while the optimal average time complexity of the problem is

Θ(n logσ m
m

) [22], achieved for example by the Backward-Dawg-Matching (BDM) al-
gorithm [6]. Many string matching algorithms have been also developed to obtain

Simone Faro, Francesco Pio Marino: Reducing Time and Space in Indexed String Matching by Characters Distance Text Sampling, pp. 148–159.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 149

sub-linear performance in practice [7]. Among them the Boyer-Moore-Horspool algo-
rithm [2,12] deserves a special mention, since it has been particularly successful and
has inspired much work.

Memory requirements of this class of algorithms are very low and generally limited
to a precomputed table of size O(mσ) or O(σ2) [7]. However their performances may
stay poor in many practical cases, especially when used for processing huge input
texts and short patterns.1

Solutions based on the second approach tries to drastically speed up searching by
preprocessing the text and building a data structure that allows searching in time
proportional to the length of the pattern. For this reason such kind of problem is
known as indexed searching. Among the most efficient solutions to such problem we
mention those based on suffix trees [1], which find all occurrences in O(m + occ)-
worst case time, those based on suffix arrays [18], which solve the problem in O(m+
log n + occ) [18], where occ is the number of occurrences of x in y, and those based
on the FM-index [10] (Full-text index in Minute space), which is a compressed full-
text substring index based on the Burrows-Wheeler transform allowing compression
of the input text while still permitting fast substring queries. However, despite their
optimal time performance2, space requirements of full-index data structures, as suffix-
trees and suffix-arrays, are from 4 to 20 times the size of the text, while the size of
a compressed index, as the FM-Index, is typically less than the size of the text, but
its construction may require almost the same space as that required by a full-index.
Such space requirement is too large for many practical applications.

A different solution to the problem is to compress the input text and search online
directly the compressed data in order to speed-up the searching process using reduced
extra space. Such problem, known in literature as compressed string matching, has
been widely investigated in the last few years. Although efficient solutions exist for
searching on standard compressions schemes, as Ziv-Lempel [20] and Huffman [3],
the best practical behaviour are achieved by ad-hoc schemes designed for allowing
fast searching [17,19,14,21,11]. These latter solutions use less than 70% of text size
extra space (achieving a compression rate over 30%) and are twice as fast in searching
as standard online string matching algorithms. A drawback of such solutions is that
most of them still require significant implementation efforts and a high time for each
reported occurrence.

A more suitable solution to the problem is sampled string matching, introduced in
1991 da Vishkin [23], which consists in the construction of a succint sampled version
of the text and in the application of any online string matching algorithm directly on
the sampled sequence. The drawback of this approach is that any occurrence reported
in the sampled-text may require to be verified in the original text. However a sampled-
text approach may have a lot of good features: it may be easy to implement, may
require little extra space and may allow fast searching. Additionally it may allow fast
updates of the data structure.

Apart the theoretical result of Vishkin, a more practical solution to sampled string
matching has been recently introduced by Claude et al. [5], based on an alphabet

1 Search speed of an online string matching algorithm may depend on the length of the pattern.
Typical search speed of a fast solution, on a modern laptop computer, goes from 1 GB/s (in the
case of short patterns) to 5GB/s (in the case of very long patterns) [4].

2 Search speed of a fast offline solution do not depend on the length of the text and is typically
under 1 millisecond per query.

150 Proceedings of the Prague Stringology Conference 2020

reduction. Their algorithm has an extra space requirement which is only 14% of text
size and is up to 5 times faster than standard online string matching on English texts.
Thus it turns out to be one of the most effective and flexible solution for this kind of
searching problems.

They also consider indexing the sampled text. They build a suffix array indexing
the sampled positions of the text, and get a sampled suffix array. This approach is
similar to the sparse suffix array [13] as both index a subset of the suffixes, but the dif-
ferent sampling properties induce rather different search algorithms and performance
characteristics.

In this paper we present a new approach to the indexed string matching problem
based on a different text sampling approach. The main idea behind our new text
sampling approach is to sample the distances between consecutive occurrences of
a given set of pivot characters and then to create a suffix array of the sampled
text. For this reason we call this approach characters distance sampling (Cds). From
our experimental results it turns out that our indexed solution based on such new
sampling approach is able to obtain a searching time gain up to 91%, when compared
to the standard indexed approach, while using less than 15% of the space needed for
the standard suffix array.

The paper is organized as follows. In Section 2 we introduce in details the sampled
string matching problem and present the first indexed approach to the problem pro-
posed by Claude et al. [5]. Then, in Section 3, we present the new Cds approach to
text sampling and propose an alternative indexed algorithm based on the suffix array.
In Section 4 we present experimental results in order to compare our new solution
against that proposed by Claude et al. and against the standard suffix array solution,
in terms of both space and time.

2 Sampled String Matching

The task of the sampled string matching problem is to find all occurrences of a given
pattern x, of length m, in a given text y, of length n, assuming that a fast and
succint preprocessing of the text is allowed in order to build a data-structure, which
is used to speed-up the searching phase. For its features we call such data structure
a partial-index of the text.

In order to be of any practical and theoretical interest a partial-index of the text
should:

(1) be succint : since it must be maintained together with the original text, it should
require few additional spaces to be constructed;

(2) be fast to build : it should be constructed using few computational resources, also
in terms of time. This should allow the data structure to be easily built online
when a set of queries is required;

(3) allow fast search: it should drastically increase the searching time of the underlying
string matching algorithm. This is one of the main features required by this kind
of solutions;

(4) allow fast update: it should be possible to easily and quickly update the data struc-
ture if modifications have been applied on the original text. A desirable update
procedure should be at least as fast as the modification procedure on the original
text.

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 151

Sampled string matching has been introduced for the first time by Claude et al.
in [5] where the author presented an online and an offline solution to the problem.
More recently Faro et al. presented in an unpublished paper [13] an alternative so-
lution for the online problem which turns out to be more efficient both in terms of
space consumption and running times.

In this section we briefly describe the efficient indexed text-sampling approach
proposed by Claude et al.. We will refer to this solution as the Occurrence-Text-
Sampling approcah (Ots). To the best of our knowledge it is the only effective and
flexible solution known in literature for the indexed sampled matching problem.

2.1 The Occurrence Text Sampling algorithm

Let y be the input text, of length n, and let x be the input pattern, of length m, both
over an alphabet Σ of size σ. The main idea of their sampling approach is to select
a subset of the alphabet, Σ̂ ⊂ Σ (the sampled alphabet), and then to construct
a partial-index as the subsequence of the text (the sampled text) ŷ, of length n̂,

containing all (and only) the characters of the sampled alphabet Σ̂. More formally

ŷ[i] ∈ Σ̂, for all 1 ≤ i ≤ n̂.
During the searching phase of the algorithm a sampled version of the input pat-

tern, x̂, of length m̂, is constructed and searched in the sampled text. Since ŷ contains
partial information, for each candidate position i returned by the search procedure
on the sampled text, the algorithm has to verify the corresponding occurrence of x in
the original text. For this reason a table ρ is maintained in order to map, at regular
intervals, positions of the sampled text to their corresponding positions in the original
text. The position mapping ρ has size ⌊n̂/q⌋, where q is the interval factor, and is
such that ρ[i] = j if character y[j] corresponds to character ŷ[q× i]. The value of ρ[0]
is set to 0. In their paper, on the basis of an accurate experimentation, the authors
suggest to use values of q in the set {8, 16, 32}

Then, if the candidate occurrence position j is stored in the mapping table, i.e
if ρ[i] = j for some 1 ≤ i ≤ ⌊n̂/q⌋, the algorithm directly checks the corresponding
position in y for the whole occurrence of x. Otherwise, if the sampled pattern is found
in a position r of ŷ, which is not mapped in ρ, the algorithm has to check the substring
of the original text which goes from position ρ[r/q] + (r mod q)− α+ 1 to position
ρ[r/q + 1] − (q − (r mod q)) − α + 1, where α is the first position in x such that

x[α] ∈ Σ̂.
Notice that, if the input pattern does not contain characters of the sampled al-

phabet, i.e. id m̄ = 0, the algorithm merely reduces to search for x in the original
text y.

Example 1. Suppose y = “abaacabdaacabcc” is a text of length 15 over the alphabet
Σ = {a,b,c,d}. Let Σ̂ = {b,c,d} be the sampled alphabet, by omitting character “a”.
Thus the sampled text is ŷ = “bcbdcbcc”. If we map every q = 2 positions in the
sampled text, the position mapping ρ is 〈5, 8, 12, 14〉. To search for the pattern x =
“acab” the algorithm constructs the sampled pattern x̂ = “cb” and search for it in
the sampled text, finding two occurrences at position 2 and 5, respectively. We note
that ŷ[2] is mapped and thus it suffices to verify for an occurrence starting at position
4, finding a match. However position ŷ[5] is not mapped, thus we have to search in
the substring y[ρ(2) + 3− 1..ρ(3)], finding no matches.

152 Proceedings of the Prague Stringology Conference 2020

The above algorithm works well with most of the known pattern matching al-
gorithms. However, since the sampled patterns tend to be short, the authors imple-
mented the search phase using the Horspool algorithm, which has been found to be
fast in such setting.

The real challenge in their algorithm is how to choose the best alphabet subset to
sample. Based on some analytical results, supported by an experimental evaluation,
they showed that it suffices in practice to sample the least frequent characters up to
some limit.3 Under this assumption their algorithm has an extra space requirement
which is only 14% of text size and is up to 5 times faster than standard online string
matching on English texts.

In [5] the authors also consider indexing the sampled text. Specifically they build
a suffix array for the sampled text in order to index the sampled positions of the
text. This approach is similar to the sparse suffix array [13] as both index a subset
of the suffixes, but the different sampling properties induce rather different search
algorithms and performance characteristics.

To optimize the entire process when constructing the suffix array their algorithm
stores only suffixes starting with a sampled character. As a consequence, this approach
can only be used for patterns which contain at least one character of the sampled
alphabet.

The searching phase can be summarised as follows: the pattern is divided into two
parts, the unsampled prefix, and the suffix starting with a sampled character. First
of all the algorithm searches the sampled suffix of the pattern using the suffix array.
Each candidate occurrence retrieved by this preliminary search will then be verified
by comparing the unsampled prefix against the original text.

This approach turns out to perform very well for moderate to long patterns. Specif-
ically according to their experimental evaluation it turns out that, when searching
on an English text, the best performance are obtained when the number of removed
characters from the original alphabet ranges between 13 and 16.

3 An Approach Based on Characters Distance Sampling

In this section we present a new efficient approach to the sampled string matching
problem, introducing a new method4 for the construction of the partial-index, which
turns out to require limited additional space, still maintaining the same performance
of the algorithm recently introduced by Claude et al. [5]. In the next subsections we
illustrate in details our idea and describe the algorithms for the construction of the
sampled text.

3.1 Characters Distance Sampling

Let y be the input text, of length n, and let x be the input pattern, of length m, both
over an alphabet Σ of size σ. We assume that all strings can be treated as vectors

3 According to their theoretical evaluation and their experimental results it turns out that, when
searching on an English text, the best performance are obtained when the least 13 characters are
removed from the original alphabet.

4 The Charcaters Distance Sampling approach presented in this section has been previously in-
troduced by the authors in [9] where the online string matching problem has been taken into
account.

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 153

starting at position 1. Thus we refer to x[i] as the i-th character of the string x, for
1 ≤ i ≤ m, where m is the size of x.

We elect a set C ⊆ Σ to be the set of pivot characters. Given this set of charac-
ters we sample the text y by taking into account the distances between consecutive
positions of any character of C in y. More formally our sampling approach is based
on the following definition of position sampling of a text.

Definition 2 (Position Sampling). Let y be a text of length n, let C ⊆ Σ be the
set of pivot characters and let nc be the number of occurrences of any c ∈ C in the
input text y.

First we define the position function, δ : {1, .., nc} → {1, .., n}, where δ(i) is the
position of the i-th occurrence of any character of C in y. Formally we have

(i) 1 ≤ δ(i) < δ(i+ 1) ≤ n for each 1 ≤ i ≤ nc − 1
(ii) y[δ(i)] ∈ C for each 1 ≤ i ≤ nc

(iii) y[δ(i) + 1..δ(i+ 1)− 1] contains no character of C for each 0 ≤ i ≤ nc

where in (iii) we assume that δ(0) = 0 and δ(nc + 1) = n+ 1.
Then the position sampled version of y, indicated by ẏ, is a numeric sequence, of

length nc, defined as
ẏ = 〈δ(1), δ(2), .., δ(nc)〉. (1)

Example 3. Suppose y = “agaacgcagtata” is a dna sequence of length 13, over the
alphabet Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the posi-
tion sampled version of y is ẏ = 〈1, 3, 4, 8, 11, 13〉. Specifically the first occurrence of
character c is at position 1 (y[1] = a), its second occurrence is at position 3 (y[3] =
a), and so on.

Definition 4 (Characters Distance Sampling). Let C ⊆ Σ be the set of pivot
characters, let nc ≤ n be the number of occurrences of any pivot character in the text
y and let δ be the position function of y. We define the characters distance function
∆(i) = δ(i + 1) − δ(i), for 1 ≤ i ≤ nc − 1, as the distance between two consecutive
occurrences of any pivot character in y.

Then the characters-distance sampled version of the text y is a numeric sequence,
indicated by ȳ, of length nc − 1 defined as

ȳ = 〈∆(1), ∆(2), .., ∆(nc − 1)〉 = 〈δ(2)− δ(1), δ(3)− δ(2), .., δ(nc)− δ(nc − 1)〉 (2)

Plainly we have
nc−1∑

i=1

∆(i) ≤ n− 1.

Example 5. Let y = “agaacgcagtata” be a text of length 13, over the alphabet Σ =
{a,c,g,t}. Let C = {a} be the pivot character. Thus the character distance sampling
version of y is ȳ = 〈2, 1, 4, 3, 2〉. Specifically ȳ[1] = ∆(1) = δ(2) − δ(1) = 3 − 1 = 2,
while ȳ[3] = ∆(3) = δ(4)− δ(3) = 8− 4 = 4, and so on.

Definition 6 (Rank of a character). Let x be a pattern of length m, and let
c ∈ Σ. We define φ : Σ → {0..m} as the function which associates any character
of the text with the number of its occurrences in x. The rank of the character c is
the position of c in the alphabet Σ, if we assume that all characters are sorted by
their φ(c) values. More formally the rank of c is given by the cardinality of the set
{k ∈ Σ | φ(k) < φ(c)}+ 1

154 Proceedings of the Prague Stringology Conference 2020

3.2 String Matching with the Suffix Array of the Sampled Text

In this section we describe an approach to indexed searching which makes use of a
suffix array constructed over the sampled version of the text.

We remember that a suffix array is a sorted array of all suffixes of a string. Such
data structure has been introduced by Manber and Myers in 1990 [18] as a simple,
space efficient alternative to suffix trees. It has been extensively studied in the last
three decades and in 2016 Li, Li and Huo [16] gave the first in-place O(n)-time
construction algorithm that is optimal both in time and space, where in-place means
that the algorithm only needs O(1) additional space beyond the input string and the
output suffix array.

Formally, given a text y of length n, the suffix array sy of y is defined to be an
array of integers providing the starting positions of suffixes of y in lexicographical
order. This means that sy[i] contains the starting positions of the i-th smallest suffix
in y and thus for all 1 ≤ i ≤ n, we have y[sy[i− 1]..n] < y[sy[i]..n].

The algorithm proposed in this section is divided into two phases: a first pre-
processing phase which consists in the construction of a suffix array of the sampled
version of the text and a searching phase which is used to search any pattern x of
length m in y making use of the suffix array sȳ and the sampled text ẏ. We notice
that the preprocessing phase is performed only once for the construction of the partial
index, while the searching phase can be run an indeterminate number of times. We
notice also that the algorithm must maintain the original text y, the sampled version
of the text ẏ and the corresponding suffix array sȳ.

In this paper we do not go into the way for a correct selection of the set of pivot
characters, and even we leave the details of an analysis about what is the best subset
to be chosen. However in our experimental evaluation (see Section 4) we will show
how it is enough to put a single character in the set of pivot characters to obtain very
good and competitive results. We select such character on the basis of its rank value,
where we remember that the rank of a character c corresponds to its position in the
alphabet Σ when we assume that all characters are sorted by their frequencies inside
the text (see Definition 6).

We are now ready to describe the preprocessing and the searching phase of our
new proposed algorithm.

Let y be an input text of length n over an alphabet Σ of size σ and let C ⊆ Σ be
the set of pivot characters. During the preprocessing phase the algorithm builds and
stores the position sampled text ẏ of y. This requires O(n)-time and O(nc)-space,
where nc is the number of occurrences of any pivot character in y. Subsequently a
suffix array of ȳ is constructed.

However when constructing the suffix array of ȳ, the algorithm takes into account
only suffixes beginning with a pivot character in the original text, drastically reducing
the space requirement for maintaining the whole index. Apart from this detail, all
other features of the data structure remain unchanged.

Example 7. Let y = “agaacgcagtata” be a text of length 13, over the alphabet Σ =
{a,c,g,t}. Let C = {a} be the pivot character. Thus the character distance sampling
version of y is ȳ = 〈2, 1, 4, 3, 2〉.

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 155

sȳ[0] = 1→ 〈1, 4, 3, 2〉
sȳ[1] = 0→ 〈2〉
sȳ[2] = 4→ 〈2, 1, 4, 3, 2〉
sȳ[3] = 3→ 〈3, 2〉
sȳ[4] = 2→ 〈4, 3, 2〉

During the searching phase the algorithm uses the suffix array of the sampled text
sȳ as an index to quickly locate every occurrence of a sampled pattern x̄ in ȳ. Each
of these occurrences is treated as a candidate occurrence of x in y, and as such it will
be verified by a comparison procedure.

The searching algorithm works as a standard search on a suffix array. It is based
of the fact that finding every occurrence of the pattern x̄ is equivalent to finding every
suffix in ȳ that begins with the x̄. Thanks to the lexicographical ordering of the suffix
array, all such suffixes are grouped together and can be found efficiently with a single
binary search, which locates the starting position of the interval. All other occurrence
are then grouped together close the first one.

Finding the first position of a sampled pattern x̄ of length mc in a suffix array sȳ
of length nc takes O(log nc)-time [18] while finding the set set of all ρ occurrences of
x̄ in ȳ takes O(ρ)-time. Since each occurrence must be verified in the original text we
need O(mρ) additional time for the verification phase. The overall time complexity
of the searching algorithm is then O(log(nc) +mρ).

4 Experimental Evaluation

In this section we report the results of an extensive evaluation of the new presented
indexed algorithm based on Character Distance Sampling (Cds) in comparison with
the standard searching algorithm based on the suffix array and the indexed algorithm
based on the Occurrence Text Sampling (Ots) approach by Claude et al. [5].

The algorithms have been implemented in C, and have been tested using a variant
of the Smart tool [8], properly tuned for testing string matching algorithms based
on the indexed text-sampling approach, and executed locally on a MacBook Pro with
4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM 1600MHz DDR3, 256KB of
L2 Cache and 6MB of Cache L3.5

Comparisons have been performed in terms of space consumption and searching
times. For our tests, we used the English text of size 5MB provided by the research
tool Smart, available online for download.6

In the context of text-sampling string-matching space requirement is one of the
most significant parameter to take into account. It indicates how much additional
space, with regard to the size of the text, is required by a given solution to solve the
problem.

Figure 1 shows the space consumption of the newly proposed text-sampling algo-
rithms for different values of the rank r of the pivot character, whose value ranges
from 2 to 20. Specifically it shows the size of the additional space (the size of the

5 The Smart tool is available online for download at http://www.dmi.unict.it/~faro/smart/

or at https://github.com/smart-tool/smart.
6 Specifically, the text buffer is the concatenation of two different texts: The King James version of
the bible (3.9MB) and The CIA world fact book (2.4MB). The first 5MB of the resulting text
buffer have been used in our experimental results.

156 Proceedings of the Prague Stringology Conference 2020

2 4 6 8 10 12 14 16 18 20

0

0.5

1

·104

Value of r

K
B
y
te
s

Standard SA

SA based on Ots

SA based on Cds

Figure 1. Size of the additional space (the size of the suffix array plus the size of the sampled text)
consumed using the three compared approaches and specifically: the standard suffix array, the suffix
array of a sampled text using an Ots approach and the suffix array of a sampled text using an Cds
approach. Sizes are represented in KBytes. The x axis represents the rank of the pivot character in
the case of the Cds approach, while represents the number of removed characters in the case of the
Ots approach. We used a natural language text of size 5Mb.

suffix array plus the size of the sampled text) consumed using the three compared
approaches: the standard suffix array, the suffix array of a sampled text using an Ots
approach and the suffix array of a sampled text using an Cds approach. Notice that
sizes are represented in KBytes. The x axis represents the rank of the pivot character
in the case of the Cds approach, while represents the number of removed characters
in the case of the Ots approach. We used a natural language text of size 5Mb.

As expected, the function which describes memory requirements follows a decreas-
ing trend while the value of r decreases. Specifically the benefit in space consumption
obtained by the algorithms based on character distance sampling ranges from 70% to
80% when compared with the Ots approach.

Figure 2 and Figure 3 show the experimental results obtained by comparing the
three approaches to indexed searching in terms of running times, in a graphic and in a
tabular representation, respectively. In the experimental evaluation, patterns of length
m were randomly extracted from the text (thus the number of reported occurrences is
always greater than 0), with m ranging over the set of values {8, 16, 32, 64, 128, 256}.
In all cases, the sum over the running times (expressed in milliseconds) of 1000 runs
has been reported.

From such experimental results it turns out that the indexed searching approach
based on Ots reaches a speed-up between 61% and 74%, while our new proposed
solution reaches a speed-up between 80% and 91%. In addition the best results are
obtained in all cased by the approach based on character distance sampling. In general
the behaviour of text-sampling algorithms follow an increasing trend for increasing
rank values. Thus in most cases the better choice is to use the most frequent element
as the pivot character.

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 157

2 4 6 8 10 12 14 16
0

0.5

1

1.5

m = 8

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

m = 16

2 4 6 8 10 12 14 16

0.2

0.4

0.6

m = 32

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

m = 64

2 4 6 8 10 12 14 16

0.2

0.4

0.6

m = 128

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

m = 256

SA standard

SA and Ots

SA and Cds

Figure 2. Running times of the text sampling algorithms in the case of long patterns (8 ≤ m ≤ 256).
The dashed red line represent the Searching time of the standard Suffix array. Running times (in the
y axis) are represented in thousands of seconds. The x axis represents the rank of the pivot character
in the case of the new algorithm, while represents the number of removed characters in the case of
the Ots algorithms. The searching time represented is the sum of all the 1000 tests executed for
each length of the pattern. We are using a text of size 5Mb.

158 Proceedings of the Prague Stringology Conference 2020

m
=

8

r 1 2 4 6 8 10 12 14 16

SA standard 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
SA and Ots 0.48 0.49 0.37 0.38 0.32 0.32 0.29 0.29 0.28
SA and Cds 0.48 0.49 0.47 0.19 0.16 0.22 0.33 0.21 0.21

m
=

16
r 1 2 4 6 8 10 12 14 16

SA standard 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
SA and Ots 0.48 0.49 0.37 0.38 0.32 0.32 0.29 0.29 0.28
SA and Cds 0.21 0.19 0.17 0.14 0.13 0.26 0.14 0.18 0.15

m
=

32

r 1 2 4 6 8 10 12 14 16

SA standard 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
SA and Ots 0.38 0.37 0.37 0.33 0.29 0.29 0.26 0.28 0.25
SA and Cds 0.16 0.12 0.12 0.11 0.12 0.10 0.11 0.10 0.13

m
=

64

r 1 2 4 6 8 10 12 14 16

SA standard 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
SA and Ots 0.36 0.37 0.37 0.30 0.26 0.26 0.24 0.22 0.16
SA and Cds 0.10 0.08 0.08 0.08 0.08 0.08 0.10 0.09 0.09

m
=

12
8 r 1 2 4 6 8 10 12 14 16

SA standard 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59
SA and Ots 0.37 0.38 0.33 0.32 0.32 0.28 0.23 0.20 0.18
SA and Cds 0.11 0.07 0.08 0.09 0.10 0.10 0.09 0.09 0.10

m
=

25
6 r 1 2 4 6 8 10 12 14 16

SA standard 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
SA and Ots 0.37 0.34 0.36 0.34 0.32 0.26 0.24 0.21 0.16
SA and Cds 0.09 0.1 0.09 0.07 0.08 0.08 0.08 0.07 0.07

Figure 3. Running times of the text sampling algorithms in the case of long patterns (8 ≤ m ≤ 256).
The dashed red line represent the Searching time of the standard Suffix array. Running times (in the
y axis) are represented in thousands of seconds. The x axis represents the rank of the pivot character
in the case of the new algorithm, while represents the number of removed characters in the case of
the Ots algorithms. The searching time represented is the sum of all the 1000 tests executed for
each length of the pattern. We are using a text of size 5Mb.

References

1. A. Apostolico: The myriad virtues of suffix trees. In: A. Apostolico, Z. Galil (Eds.), Combinato-
rial Algorithms on Words, Vol. 12 of NATO Advanced Science Institutes, Series F, Springer-Verlag,
pp. 85–96 (1985).

2. R.S. Boyer and J.S. Moore: A fast string searching algorithm. Commun. ACM 20(10), 762-
772 (1977).

3. D. Cantone, S. Faro, and E. Giaquinta: Adapting Boyer-Moore-like Algorithms for Search-
ing Huffman Encoded Texts. Int. J. Found. Comput. Sci. 23(2), pp. 343–356 (2012).

4. D. Cantone, S. Faro, A. Pavone: Speeding Up String Matching by Weak Factor Recognition.
Stringology 2017, pp. 42–50 (2017).

5. F. Claude, G. Navarro, H. Peltola, L. Salmela, and J. Tarhio: String matching with
alphabet sampling. Journal of Discrete Algorithms, vol. 11, pp. 37–50 (2012).

6. M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
W. Rytter: Speeding up two string-matching algorithms. Algorithmica 12 (4), pp. 247–267 (1994).

7. S. Faro and T. Lecroq: The Exact Online String Matching Problem: a Review of the Most
Recent Results. ACM Computing Surveys (CSUR) vol. 45 (2), pp. 13 (2013).

S. Faro et al.: Reducing Time and Space in Indexed String Matching by Characters. . . 159

8. S. Faro, T. Lecroq, S. Borz̀ı, S. Di Mauro, and A. Maggio: The String Matching
Algorithms Research Tool. In Proc. of Stringology, pages 99–111, 2016.

9. S. Faro, F.P. Marino, and A. Pavone: Efficient Online String Matching Based on Characters
Distance Text Sampling. arXiv:1908.05930, 2018.

10. P. Ferragina and G. Manzini: Indexing compressed text. Journal of the ACM, 52 (4), pp.
552–581, 2005.

11. K. Fredriksson and S. Grabowski: A general compression algorithm that supports fast
searching. Information Processing Letters, vol. 100 (6), pp. 226–232 (2006).

12. R. N. Horspool: Practical fast searching in strings. Software: Practice & Experience 10 (6),
pp. 501–506 (1980).

13. J. Karkkainen and E. Ukkonen: Sparse suffix trees. In: Proc. 2nd Annual International
Conference on Computing and Combinatorics (COCOON), LNCS 1090, pp. 219–230 (1996).

14. S.T.Klein and D. Shapira: A new compression method for compressed matching. In: Data
Compression Conference, IEEE. pp. 400–409 (2000).

15. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM J.
Comput. 6 (2), pp. 323–350 (1977).

16. Z. Li, J. Li, and H. Huo:Optimal In-Place Suffix Sorting. Proceedings of the 25th International
Symposium on String Processing and Information Retrieval (SPIRE). Lecture Notes in Computer
Science. 11147. Springer. pp. 268–284 (2016).

17. U. Manber: A text compression scheme that allows fast searching directly in the compressed
file. ACM Trans. Inform. Syst., 15(2), pp.124–136 (1997).

18. U. Manber and G. Myers: Suffix arrays: A new method for online string searches. SIAM J.
Comput. 22 (5), pp. 935–948 (1993).

19. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates: Fast and flexible word searching
on compressed text. ACM Transactions on Information Systems (TOIS), 18(2), pp.113–139 (2000).

20. G. Navarro and J. Tarhio: LZgrep: A Boyer-Moore string matching tool for Ziv-Lempel
compressed text. Software Practice & Experience, vol. 35, pp. 1107–1130 (2005).

21. Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S.
Arikawa: Speeding Up Pattern Matching by Text Compression. CIAC 2000: pp. 306–315.

22. A. C. Yao: The complexity of pattern matching for a random string. SIAM J. Comput. 8 (3),
pp. 368–387 (1979).

23. U. Vishkin: Deterministic sampling – A new technique for fast pattern matching. In Proc. of
the ACM Symposium on Theory of Computing (STOC), pp.170-180 (1990).

Tune-up for the Dead-Zone Algorithm

Jorma Tarhio1 and Bruce W. Watson2

1 Department of Computer Science
Aalto University, Finland
jorma.tarhio@aalto.fi

2 Department of Information Science
Stellenbosch University, South Africa

bruce@fastar.org

Abstract. We present a number of performance tuning techniques as applied to the
Dead-Zone algorithm for exact single (keyword) pattern matching in strings in sequen-
tial processing. The tuning techniques presented here are focused on the algorithm
skeleton as well as how the shifters are used, and include: removal of some redundant
computation, and shifting using 2-grams, among others. Benchmarking results are given
for the C implementation in a modern processor without penalties for misaligned mem-
ory access.

1 Introduction

String searching is a common task in any software which processes text. The task can
be implemented either as an index search, like in web search engines, or as a local
search—as in a web browser showing a loaded web page. Here we consider only the
latter one where the text to be searched has not been processed beforehand. Formally,
the exact string matching problem is defined as follows: given a pattern P = p0 · · · pm−1

and a text T = t0 · · · tn−1 both in an alphabet Σ, find all the occurrences (including
overlapping ones) of P in T . So far, dozens of algorithms have been developed for
this problem, see e.g. [5].

We present a number of performance tuning techniques as applied to the Dead-
Zone algorithms for exact single pattern matching in strings in sequential processing.
The original algorithm is actually a family of algorithms, accommodating numerous
possible shifters in a way similar to what the Boyer-Moore family does. Because the
Dead-Zone algorithm applies two-way shifting, it is possible to construct inputs for
which the algorithm makes fewer comparisons than other comparison-based algo-
rithms.

The tuning techniques presented here are focused on the algorithm skeleton as
well as how the shifters are used, and include: removal of some redundant computa-
tion (surprisingly, not caught by the optimising compiler), and shifting using 2-grams,
among others. Benchmarking results are given for the C implementation. The exper-
iments show that tuning triples the speed of the algorithm.

The rest of the paper is organised as follows. Section 2 present principles of the
Dead-Zone algorithms and introduces the base algorithm. Section 3 shows how we
optimised the base algorithm. Section 4 gives the results of our practical experiments,
and the discussion of Section 5 concludes the article.

2 Background

Here, we only give a brief introduction to the functioning of the Dead-Zone, while some
other papers [3,12,16,17] provide a broader picture. Some of the performance details

Jorma Tarhio, Bruce W. Watson: Tune-up for the Dead-Zone Algorithm, pp. 160–167.
Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

Jorma Tarhio and Bruce W. Watson: Tune-up for the Dead-Zone Algorithm 161

are discussed in [12], which also offers more pointers to various Dead-Zone versions
as well as correctness proofs. In particular, that paper gives some simple recursive
versions of Dead-Zone before presenting a loop-based (non-recursive) implementation
which explicitly maintains a stack for efficiency. That loop-based version, known as
DZ(iter,sh) in [12], is slightly improved and presented here as Algorithm DZ0—with
an explanation below.

Algorithm DZ0 (Dead-Zone)
1 lo← 0;hi← n− (m− 1)
2 count ← 0
3 push(0,max)
4 while true do
5 probe ← ⌊(lo+ hi)/2⌋
6 i← 0
7 while i < m and pi = tprobe+i do i← i+ 1
8 if i = m then count ← count + 1
9 kdleft ← probe − shl [tprobe] + 1
10 kdright ← probe + shr [tprobe+m−1]
11 if lo < kdleft then
12 push(kdright , hi)
13 hi← kdleft
14 else
15 lo ← kdright
16 if lo ≥ hi then
17 while top.first ≥ top.second do pop
18 if top.second = max then return count
19 else
20 lo ← top.first
21 hi← top.second
22 pop

As mentioned earlier, rather than recursion, this version of Dead-Zone maintains
a stack of ‘live-zones’—substrings of the text T still to be considered for matches;
each such substring is represented by its beginning index ‘lo’ (inclusive) and end
index ‘hi’ (not inclusive) [12]. Line 3 pushes a sentinel live-zone onto the stack to
make empty-stack detection more efficient, and initialises the lo and hi variables to
indicate that the entire string is still a live-zone, keeping in mind that the upper
bound is n− (m− 1) because matches cannot occur in the last m− 1 symbols.

The outer while loop introduced in line 4 has no guard and is exited when the
sentinel element of the stack is popped, indicating there are no more live-zones to
consider.

In general, Dead-Zone algorithm variants are divide-and-conquer style—with a
resemblance to Quick Sort. Lines 5–8 determines the mid-point/probe of the current
live-zone (line 5), then uses a small inner loop (called a match loop) to make a match
attempt at that position (lines 6 and 7), and notes any match by incrementing a
counter (line 8); as with the SMART framework1, only the number of matches is
tracked as opposed to the positions of all matches.

Line 10 (we return to line 9 shortly) uses a (precomputed) lookup table shr giving a
right shift used to split the current live-zone and compute the new lo of the right-hand
portion. In this particular version, the lookup table is indexed by the character aligned

1 https://www.dmi.unict.it/∼faro/smart/

162 Proceedings of the Prague Stringology Conference 2020

with the end of P , namely tprobe+m−1; this is known as the Horspool shifter [7], and its
precomputation is not discussed here. In fact, any Boyer-Moore style shift function
could have been used, and this is one of the optimisation opportunities discussed in
the next section. Line 9 similarly uses a symmetrical left shift table shl 2 to give the
new hi of the left-hand split of the current live-zone. Again, precomputation of that
shift table is not discussed here.

Because shifters are symmetrical and kdleft is a lower bound pointing to the first
dead position, one must be added to it in line 9. Alternatively, this addition could be
incorporated into the table shl.

Lines 11–13 evaluate whether the newly-determined left-hand portion is empty
(test, line 11)—if not, it needs to be explored, and the newly-determined right-hand
portion is pushed onto the stack (line 12) for later consideration before proceeding
with the left-hand portion (line 13).

Lines 14 onwards are for the case where the left-hand portion is empty, meaning
that we proceed only with the newly-determined right-hand portion, starting with
line 15. Line 16 onwards considers the possibility that this newly-determined right-
hand portion is also empty, in which case elements are repeatedly popped from the
stack (loop on line 17) until the top-of-stack contains a non-empty live-zone. If the
top-of-stack is the sentinel pushed in line 3, the algorithm has fully explored T and
it returns (line 18). If not, the top-of-stack contains the live-zone to use and lo and
hi are appropriately updated and that element popped.

Execution then continues (in the live-zone just determined in lines 11–22) at the
top of the loop in line 4.

3 Development

Our aim was to develop a faster version of the Dead-Zone algorithm. We tried several
local changes to Algorithm DZ0 and evaluated experimentally how they affected the
performance. As a result, we ended up suggesting three local optimisations to the
Dead-Zone algorithm.

3.1 Elimination of Dead-Zones in the Stack

We noticed that Algorithm DZ0 may sometimes push dead-zones onto the stack. This
can be eliminated by adding the test kdright < hi to line 12 before pushing. After
this change, the stack contains only live-zones and popping of dead-zones in line 17
can be removed. These changes make the algorithm a bit faster on average. Let us
call the modified version Algorithm DZ1. The pseudocode of DZ1 given below shows
the changes to Algorithm DZ0.

3.2 Shifting with 2-Grams

Shifting in Algorithms DZ0 and DZ1 is based on single characters according to
Horspool’s shift [7]. We tried several alternatives for Horspool’s shift. It would be
possible to apply a different strategy to left shift than to right shift but we decided
to use the same strategy to the both directions in order to reduce the number of
alternatives.

2 Usually this is literally a mirror image of the right shift table, Horspool in this case. That is not
a requirement and other left shifters may be used.

Jorma Tarhio and Bruce W. Watson: Tune-up for the Dead-Zone Algorithm 163

Algorithm DZ1 (Changes to DZ0)
11 if lo < kdleft then
12 if kdright < hi then push(kdright , hi)
13 hi← kdleft
14 else
15 lo ← kdright
16 if lo ≥ hi then
17
18 if top.second = max then return count

Sunday’s shift [14] is a natural choice for the Dead-Zone algorithm, because it is
applied after exiting the match loop testing an alignment window tprobe · · · tprobe+m−1

in the text against the pattern. The test characters of shift tprobe−1 and tprobe+m are
outside the alignment window, whereas the test character is the first/last character of
the alignment window in Horspool’s shift. Thus the maximal shift of Sunday is m+1
to the both directions, i.e. one more than Horspool’s maximal shift. On average, DZ1
with Sunday’s shift runs slightly faster than DZ1.

Shifting based on 2-grams is a better choice for making the algorithm more
efficient. The original lookup tables shl and shr of DZ1 are replaced by new two-
dimensional lookup tables shl2 and shr2, respectively. We tried three 2-gram shifters,
in which the locations of the test 2-grams are different as well as the preprocessing
of the lookup tables.

First we tried the Zhu–Takaoka shift [18]. The original method consists of two
shift functions like the Boyer–Moore algorithm [2]. We applied only the 2-gram shift
based on the occurrence heuristic (a.k.a. the bad character heuristic). We denote this
shifter by ZT. The test 2-grams are the first and last 2-gram of the alignment window.
The maximal shift of ZT is m.

Next we tested the Berry–Ravindran (BR) shift3 [1] which is an extension of
Sunday’s shift. The tested 2-grams tj−2tj−1 and tj+mtj+m+1 (j = probe) are outside
the alignment window. The maximal shift of BR is m+ 2.

The third 2-gram shifter is BRX introduced by Kalsi et al. [9]. BRX is an interme-
diate approach of ZT and BR. The test 2-grams are tj−1tj and tj+m−1tj+m, j = probe.
The maximal shift of BRX is m+1. Figure 1 shows the locations of the test 2-grams
of ZT, BRX, and BR in an alignment of a pattern.

In our experiments (see Section 4), the three 2-gram shifters gave a significant
speed-up over Algorithm DZ1. BR was the slowest. ZT and BRX were almost equally
good, but BRX was the winner in case of short DNA patterns. We selected BRX for
further development.

3 Mauch [11] (and related publications) was the first to apply the BR shift to the Dead-Zone
algorithm.

P: acctcg

T: acccgtatgactta

ZT: xx xx

BRX: xx xx

BR: xx xx

Figure 1. Locations of test 2-grams of ZT, BRX, and BR in an alignment.

164 Proceedings of the Prague Stringology Conference 2020

Let us consider detailed conditions for the shift tables of BRX. The test 2-qram
y = y1y2 of the right-hand shift is tprobe+m−1tprobe+m. If y is present in P , then

shr2 [y] = m−max(i | y = pipi+1)− 1

Otherwise shr2 [y] is m + 1 if y2 6= p0 and m if y2 = p0. The left-hand shift is
symmetrical to the right-hand shift. The test 2-qram x = x1x2 is tprobe−1tprobe . If x is
present in P , then

shl2 [x] = min(i | x = pipi+1) + 1

Otherwise shl2 [x] ism+1 if x1 6= pm−1 andm if x1 = pm−1. Based on these conditions,
it is straightforward to program the preprocessing of shr2 and shl2 .

We modified the BRX shifter further. Instead of two-dimensional shift tables, we
implemented the handling of 2-grams as 16-bit entities. This version is called Algo-
rithm DZ2. Notation q(x, h) refers to a h-gram starting at x. At the implementation
level q(x, 2) is *((uint16_t*)x). The pseudocode of DZ2 given below shows the
changes to Algorithm DZ1.

Algorithm DZ2 (Changes to DZ1)
9 kdleft ← probe − shl2 [q(tprobe−1, 2)] + 1
10 kdright ← probe + shr2 [q(tprobe+m−1, 2)]

3.3 Guard Test

Guard test [7,13] is a widely used technique to speed-up string matching. The idea
is to test certain pattern positions before entering a match loop. Guard test is a
representative of a general optimisation technique called loop peeling, where a number
of iterations are moved in front of the loop. As a result, the computation becomes
faster because of fewer loop tests.

We decided to try such a guard test where the first q-gram try of an alignment
in the text is compared with prefix, the first q-gram of the pattern. As a result, the
match loop is entered more seldom. We tried values q = 2 and 4. We decided to apply
the latter, because it performed better. Let us call the modified version Algorithm
DZ3. The pseudocode of DZ3 given below shows the changes to Algorithm DZ2.

Algorithm DZ3 (Changes to DZ2)
5b try ← q(tprobe , 4)
5c if try = prefix then
6 i← 4
7 while i < m and pi = tprobe+i do i← i+ 1
8 if i = m then count ← count + 1

Algorithm DZ3 in the present form does not work for patterns shorter than four
characters. However, it is trivial to add separate code for them if necessary.

Beyond the Dead-Zone algorithm, the guard test with a q-gram might improve
the performance of some other algorithms as well. Testing of q-grams as entities has
been earlier used by Faro and Külekci [4] and Khan [10]. If wider q-grams than four
characters are applied to long patterns, separate code is necessary for short patterns.

Jorma Tarhio and Bruce W. Watson: Tune-up for the Dead-Zone Algorithm 165

With old processors, there is a performance penalty for reading q-grams at mis-
aligned memory locations, i.e. the q-gram does not start at a word boundary. This
penalty decrease the benefit of processing q-grams as entities for shifting or guarding.
However, for newer processor microarchitectures of Intel starting from Sandy Bridge
and Nehalem, there is no such penalty [6].

4 Experiments

The experiments were run on Intel Core i7-4578U with 4MB L3 cache and 16 GB
RAM; this CPU has a Haswell microarchitecture which is subsequent to Sandy Bridge
and therefore has none of the misaligned access performance penalties mentioned
above. Algorithms were written in the C programming language and compiled with
gcc 5.4.0 using the O3 optimisation level. Testing was done in the framework of Hume
and Sunday [8]. We used two texts: English (four concatenated copies of the KJV
Bible, totaling 16.2MB) and DNA (four concatenated copies of the genome of E. Coli,
totaling 18.6MB) for testing. The base texts were taken from the SMART corpus.
Because of the irregular scanning order, the Dead-Zone algorithms benefit from cache
more than other algorithms. This was noticeable for texts shorter than 6MB in our
test setting, and therefore we decided to use longer texts. Sets of patterns of lengths 5,
10, and 20 were randomly taken from the both texts. Each set contains 200 patterns.
The running times of 200 patterns in Table 1 are averages of 100 runs excluding
the preprocessing time. For the 2-gram shifters, preprocessing took about 10 ms per
200 patterns. We used Horspool’s algorithm (Hor) [7] and Sbndm4b [15] as reference
methods. Hor is a representative of classical algorithms and Sbndm4b is an example
of a fairly efficient algorithm. The code of Hor was taken from the SMART repository.

Table 1. Running times (in seconds) of algorithms.

English, m DNA, m
Alg. 5 10 20 5 10 20
DZ0 5.25 3.64 2.77 13.43 10.74 10.27
DZ1 4.99 3.56 2.73 12.76 10.26 9.83
DZ1s 4.39 3.20 2.47 12.38 10.99 10.55
DZ1br 3.67 2.19 1.43 8.96 6.62 5.30
DZ1zt 3.19 1.97 1.33 9.24 5.26 3.63
DZ1brx 2.98 1.87 1.26 6.97 4.81 3.57
DZ2 2.71 1.72 1.16 6.47 4.50 3.38
DZ3 2.12 1.41 0.99 4.09 3.02 2.37
Hor 4.17 2.41 1.49 10.30 7.39 7.10
Sbndm4b 1.18 0.42 0.30 1.50 0.63 0.45

For Algorithm DZ1 using Horspool’s shift we tried four alternative shifters:

1. DZ1s: Sunday [14]
2. DZ1br: Berry–Ravindran [1]
3. DZ1zt: Zhu–Takaoka [18] (occurrence shift)
4. DZ1brx: Kalsi et al. [9]

Algorithm DZ1s ran slightly faster than DZ1 for English data. Although the av-
erage shift of DZ1s is longer than that of DZ1, DZ1s was slower than DZ1 for DNA
patterns of 10 and 20 characters. All the 2-gram approaches DZ1br, DZ1zt, and
DZ1brx were significantly faster than the single character shifters DZ1 and DZ1s.

166 Proceedings of the Prague Stringology Conference 2020

Algorithm DZ1br was the slowest of the 2-gram shifters. This is obvious for DNA
because the average shift of DZ1br is shorter than that of DZ1zt for m > 7. The rea-
son for the poor performance of DZ1br for English data is partly due to appearances
of common characters like space as p0 or pm−1 which decreases the average length
of shift (see justification in [9]). DZ1brx was slightly better than DZ1zt for English
data, but the former was a clear winner in the case of short DNA patterns.

Algorithm DZ3 was clearly faster than Hor but left noticeably behind Sbndm4b.
Comparison of Dead-Zone algorithms and efficient left-to-right algorithms is some-
what unfair in sequential processing, because the former algorithms contain more
bookkeeping and they do not benefit from locality as much as the latter ones.

Table 2. Speed-ups of algorithms (Alg. DZ0 is one).

English, m DNA, m
Alg. 5 10 20 5 10 20 Avg.
DZ0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DZ1 1.05 1.02 1.01 1.05 1.05 1.04 1.04
DZ1s 1.20 1.14 1.12 1.08 0.98 0.97 1.08
DZ1br 1.43 1.66 1.93 1.50 1.62 1.94 1.68
DZ1zt 1.64 1.85 2.08 1.45 2.04 2.83 1.98
DZ1brx 1.76 1.95 2.20 1.93 2.23 2.88 2.16
DZ2 1.94 2.11 2.38 2.08 2.38 3.03 2.32
DZ3 2.48 2.59 2.79 3.28 3.56 4.34 3.17

Table 2 shows speed-ups of the developed Dead-Zone versions against Algorithm
DZ0. Algorithm DZ3 clearly tripled the speed of the original algorithm DZ0 on aver-
age. The gain was larger for DNA than for English.

5 Concluding Remarks

Although the Dead-Zone algorithm is clearly oriented to parallel processing, we man-
aged to substantially improve its performance in sequential processing. Only some of
the optimisations are unique to the Dead-Zone algorithm, and the others could be
used to benefit many of the other well-known algorithms when they are not already
used. In particular, multi-gram shifting is an interesting tradeoff of memory (for shift
tables) against performance, while the guard test optimisation could be applied in
most Boyer-Moore style algorithms. It is somewhat surprising that the guard test
optimisation is not automatically part of gcc’s O3 level, as such optimisations are
well known in the compiler literature. In short, despite continuous compiler and algo-
rithmic improvement, there remain interesting opportunities for skilled programmers
to manually tune implementations.

Some optimisations may be sensitive to misaligned memory accesses—though this
was not the case on the benchmarking system used for this paper. This indicates that
future work could include optimisations on other architectures where misalignment
gives a performance penalty, or on alternative architectures such as the Arm. Ad-
ditional future work includes using this paper’s optimisations on multiple-keyword
Dead-Zone.

Jorma Tarhio and Bruce W. Watson: Tune-up for the Dead-Zone Algorithm 167

References

1. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results, in
Proceedings of the Prague Stringology Club Workshop 1999, Prague, Czech Republic, July 8-9,
1999, 1999, pp. 16–28.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

3. J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mou-
chard, É. Prieur-Gaston, and B. W. Watson: Three strategies for the dead-zone string
matching algorithm, in Prague Stringology Conference 2018, Prague, Czech Republic, August
27-28, 2018, J. Holub and J. Zdárek, eds., Czech Technical University in Prague, Faculty of
Information Technology, Department of Theoretical Computer Science, 2018, pp. 117–128.

4. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, 2013, pp. 113–121.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

6. A. Fog: The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers, tech. rep., Technical University of Denmark,
www.agner.org/optimize/microarchitecture.pdf, 2020.

7. R. N. Horspool: Practical fast searching in strings. Softw., Pract. Exper., 10(6) 1980, pp. 501–
506.

8. A. Hume and D. Sunday: Fast string searching. Softw., Pract. Exper., 21(11) 1991, pp. 1221–
1248.

9. P. Kalsi, H. Peltola, and J. Tarhio: Comparison of exact string matching algorithms for
biological sequences, in Bioinformatics Research and Development, Second International Confer-
ence, BIRD 2008, Vienna, Austria, July 7-9, 2008, Proceedings, 2008, pp. 417–426.

10. M. A. Khan: A transformation for optimizing string-matching algorithms for long patterns.
Comput. J., 59(12) 2016, pp. 1749–1759.

11. M. Mauch: An Investigation of Dead-Zone Pattern Matching Algorithms, Master’s thesis,
Stellenbosch University, South Africa, 2016.

12. M. Mauch, D. G. Kourie, B. W. Watson, and T. Strauss: Performance assessment of
dead-zone single keyword pattern matching, in 2012 South African Institute of Computer Scien-
tists and Information Technologists Conference, SAICSIT ’12, Pretoria, South Africa, October
1-3, 2012, J. H. Kroeze and R. de Villiers, eds., ACM, 2012, pp. 59–68.

13. T. Raita: On guards and symbol dependencies in substring search. Softw., Pract. Exper., 29(11)
1999, pp. 931–941.

14. D. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–142.
15. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-

ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.
16. B. W. Watson, L. G. Cleophas, and D. G. Kourie: Using correctness-by-construction to

derive dead-zone algorithms, in Proceedings of the Prague Stringology Conference 2014, Prague,
Czech Republic, September 1-3, 2014, J. Holub and J. Zdárek, eds., Department of Theoretical
Computer Science, Faculty of Information Technology, Czech Technical University in Prague,
2014, pp. 84–95.

17. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation
of dead-zone single keyword pattern matching, in Combinatorial Algorithms, 23rd International
Workshop, IWOCA 2012, Tamil Nadu, India, July 19-21, 2012, Revised Selected Papers, S. Aru-
mugam and W. F. Smyth, eds., vol. 7643 of Lecture Notes in Computer Science, Springer, 2012,
pp. 236–248.

18. R. F. Zhu and T. Takaoka: A technique for two-dimensional pattern matching. Commun.
ACM, 32(9) 1989, pp. 1110–1120.

Author Index

Altıniğne, Can Yılmaz, 23
Altunok, Elif, 23
Asraf, Sapir, 1

Badkobeh, Golnaz, 84

Crochemore, Maxime, 84

Daykin, Jacqueline W., 96
De Agostino, Sergio, 74

Faro, Simone, 48, 148
Furuya, Isamu, 134

Goto, Keisuke, 134

I, Tomohiro, 134
Inenaga, Shunsuke, 111

Janoušek, Jan, 11, 61

Klein, Shmuel T., 1
Köppl, Dominik, 96, 134
Kübel, David, 96
Külekci, M. Oğuzhan, 23

Lecroq, Thierry, 48

Marino, Francesco Pio, 148
Mhaskar, Neerja, 125

Ob̊urka, Robin, 61
Öztürk, Yasin, 23

Park, Kunsoo, 48
Pecka, Tomáš, 11, 61

Sakai, Kensuke, 134
Shapira, Dana, 1
Smyth, William F., 125
Stober, Florian, 96

Takabatake, Yoshimasa, 134
Tarhio, Jorma, 160
Trávńıček, Jan, 11, 61

Watson, Bruce W., 160

Zavadskyi, Igor O., 33

169

Proceedings of the Prague Stringology Conference 2020
Edited by Jan Holub and Jan Žd’́arek
Published by: Czech Technical University in Prague

Faculty of Information Technology
Department of Theoretical Computer Science
Prague Stringology Club
Thákurova 9, Praha 6, 160 00, Czech Republic.

First edition.

ISBN 978-80-01-06749-9

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by powerprint s.r.o.
Brandejsovo nám. 1219/1, Praha 6 Suchdol, 165 00, Czech Republic

© Czech Technical University in Prague, Czech Republic, 2020

http://www.stringology.org/
mailto:psc@stringology.org

	Contributed Talks
	Author Index

