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Preface

In 1996 a group of people solving string problems decided to found the Prague Stringo-
logic Club in order to group people researching in the same field. The founder mem-
bers were M. Bloch, J. Holub, J. Kolar, B. Melichar and P. Muzatko.

The first action of the Prague Stringologic Club was to organize a workshop.
This workshop was called the Prague Stringologic Club Workshop’96 and several re-
searchers working in the field of strings were invited to give their talks. The workshop
was held on August 14, 1996 at the Department of Computer Science and Engineering
of Czech Technical University in Prague.

Here are the proceedings of this workshop.

Jan Holub, editor






An Efficient Multi-Attribute Pattern Matching
Machine

Kazuaki Ando, Masami Shishibori and Jun-ichi Aoe

Department of Information Science & Intelligent Systems
Faculty of Engineering
Tokushima University
2-1 Minami-Josanjima-Cho
Tokushima-Shi 770

Japan

e-mail: {ando, ace}@is.tokushima-u.ac.jp

Abstract. We describe an efficient multi-attribute pattern matching machine
to locate all occurrences of any of a finite number of the sequence of rule struc-
tures (called matching rules) in a sequence of input structures. The proposed al-
gorithm enables us to match set representations containing multiple attributes.
Therefore, in proposed algorithm, confirming transition is decided by the re-
lationship, whether the input structure includes the rule structure or not. It
consists in constructing a finite state pattern matching machine from matching
rules and then using the pattern matching machine to process the sequence of
input structures in a single pass. Finally, the pattern matching algorithm is
evaluated by theoretical analysis and the evaluation is supported by the simu-
lation results with rules for the extraction of keywords.

Key words: string pattern matching, set representation, multi-attribute pat-
tern matching, finite state pattern matching machine, matching algorithm

1 Introduction

String pattern matching [Aho75, Aho90, Knut77, Aoe84, Fan93, Boye77] is an im-
portant component of many areas in science and information processing. A string
pattern matching machine has been applied to various fields such as the lexical anal-
ysis of a compiler [Aho86], voice recognition [Take93], bibliographic search [Aho75],
spelling checking [Pete80], text editing and so on. Aho and Corasick describe a sim-
ple, efficient string pattern matching machine [Aho75] (hereafter called C machine)
to locate all occurrences of finite number of keywords in a text string in a single
pass. However, in the AC machine, the input is restricted to characters. In addition,
a multi-attribute input is very useful for many applications, such as, extraction of
keywords [Kimo91, Ogaw93], document processing [Ikeh93], and so on. Moreover,
the multi-attribute pattern matching is necessary for the realization of higher pattern
matching.

This paper describes an efficient multi-attribute pattern matching machine (here-
after called MAPM machine) to locate all occurrences of any of a finite number of
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matching rules in a sequence of input structures and a method for constructing the
multi-attribute pattern matching machine. The proposed algorithm enables us to
match set representations containing multiple attributes.

In the following chapters, the multi-attribute pattern matching scheme is described
in detail. Chapter 2 explains an efficient string pattern matching machine based on
Aho and Corasick. Chapter 3 describes the multi-attribute matching rules for the
MAPM machine and an efficient algorithm for these matching rules. Chapter 4
explains the construction of the goto, output and failure functions for the MAPM
machine. Chapter 5 shows the theoretical estimations and experimental evaluations
for the MAPM machine. Finally, in Chapter 6 the future research is discussed.

2 The Aho-Corasick Algorithm

This chapter explains an efficient string pattern matching machine, where a finite
state string pattern matching machine based on Aho and Corasick [Aho75] locates
all occurrences of any of a finite number of keywords in a text string.

Let K_SET be a finite set of strings which we shall call keywords and let T'X be
an arbitrary string which we shall call the text string. The AC machine is a program
which takes as input the text string 7'X and produces as output the locations in T'X
at which the keywords (elements of K_SFET) appear as substrings. The AC machine
is constructed as a set of states. Each state is represented by a number. The state
number 0 represents an initial state.

With [ as the set of input symbols, the behavior of the AC machine is defined by

next three functions:

goto function g : S x I — S U{fail},
failure function f: 5 — 5,
output function output : S — A, subset of K_SET.

Figure 1 shows the functions, from Aho ef. al., used by the machine AC for the
set of keywords K _SET = {“another”, “other”, “to”, “he”, “with”}. Here, ={‘a’, ‘0’,
‘t7, ‘h’, ‘w’} denotes all input symbols other than ‘a’; ‘o’, ‘t’, ‘h’ or ‘w’.

The directed graph in Figure 1 (a) represents the goto function. For example, the
transition labeled ‘a’ from state 0 to state 1 indicates that ¢(0,'a’) = 1. The absence
of the arc indicates fail. The AC machine has the property that g(0,'c’) # fail for
all input symbols o. The behavior of the AC machine is summarized below.
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(a) The goto function.

s|1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fs)J0 0 8 9 101112 0 13 15 16 0 0 8 O O O O 1315

(b) The failure function.

S output (s)

6 {he}

8 | { another, other}
11 {he}

12 { other}

14 {to}

16 {he}

20 { with }

(c) The output function.

Figure 1: The function of the AC machine.

Algorithm 1: The AC machine.
[Input]: A target text TX = ¢i¢y...c,, where each ¢;, for 1 < i < n, is an input
symbol and an AC machine with goto function g, failure function f, and output

function output.

[Output]: Locations at which the keywords occur in T'X.

[Method]:
begin
s « 0;

for 7 « 1 until » do

begin

while g(s,¢;) = fail do s « f(s);
S g(s,c;,);
if output(s) # ¢ then

end
end

print i, output(s);

(Example 1) Consider the behavior of the AC machine that uses the functions in
Figure 1 to process the text string “stothe”. Since ¢(0,s’) = 0, the machine enters
the state 0. Since ¢(0,t") = 13, ¢g(13,'0") = 14, the AC machine enters state 14,
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advances to the next input symbol and emits output(14), indicating that it has found
the keywords “to” at the end of position 3 in the text string. In state 14 with the
input symbol ‘t’, the AC machine makes two state transitions in its operating cycle.
Since g(14,t’) = fail, the AC machine enters the state 8 = f(14). At this point, since
9(8,'t") = 9, the AC machine enters state 9. Hereafter since g(9,'h’) = 10, ¢(10,¢’)
= 11, the AC machine enters state 11 and computes the matching operation after

detecting keyword “he”. (END)

The AC algorithm consists in constructing a finite state pattern matching machine
from the keywords and then using the machine to process the text string in a single
pass. Construction of the AC machine takes a time proportional to the sum of the
lengths of the keywords.

3 A Multi-Attribute Pattern Matching Algorithm

This chapter explains an algorithm of an efficient multi-attribute pattern matching
machine (called MAPM machine). The MAPM machine is a extension of the Aho-
Corasick Algorithm. Section 3.1 describes the multi-attribute matching rules for the
MAPM machine. In Section 3.2, an efficient algorithm of these matching rules is
presented.

3.1 Matching rules for the MAPM machine

Let ATTR be the attribute name and let VALUFE be the attribute value. Let R be
a finite set of pairs (ATTR,VALUE), then we shall call R a rule structure. For

example, the following attributes are considered.

STR : string, that is, word spelling.
C'AT : category, or, a part of speech.
SEM : semantic information such as concepts and categories.

For example, the rule structure R of “doctor” is defined using the above attributes
as follows:

R = {(STR, “doctor”), (CAT, Noun),(SEM, Human)}

If RULFE is the matching rule consisting of a sequence of rule structures, RULE
is defined as follows:

RULE = RiRy...R,(1 <n)
Let R_.SET be aset of RULFE.

(Example 2) Consider the following example of a R_.SET.

R SET ={RULFE:, RULE,}

RULE] = R] Rg, RULE2 = RQR'%

Ry = {(STR, “male”)}

Ry = {(STR, “female”)}

Rs = {(SEM1,Male),(SEM2, Imago)}
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RULFE; is a rule to detect tautology expressions and RULF; is a rule to detect
contradictory expressions. For example, RULF; can detect the expression of “male
man” or “male bull” and so on, RULFE, can detect the expression of “female ram” or
“female stallion” and so on. By using the multiple attributes for pattern matching,
it is easy to define an abstraction rule. (END)

Input structures to be matched by rule structures are also defined by the same
set representation. NV is used as the notation for input structures to distinguish them
from R. In order to consider the abstraction of the rule structure, matching of the
rule structure R and the input structure N are decided by the relationship such that
N includes R (N 2 R).

3.2 A Matching Algorithm

Let a be a sequence of the input structures. The MAPM machine is a program which
takes as input « and produces as output the locations in a « at which every RULE in
R_SET appears as subsequences of structures. The MAPM machine consists of a set
of states. Each state is represented by a number. One state (usually 0) is designated as
the initial state. The MAPM machine processes a a by successively reading the input
structure N in a «, making state transitions and occasionally emitting an output.

Let S. be a set of states and let J be a set of the rule structure R, then the
behavior of the MAPM machine is defined by next three functions:

goto function g, : S. x J — S, U {fail},
failure function f. : S, — S,
output function output. : S, — A., subset of R_.SET.

Figure 2 shows the functions used by the machine MAPM for a R.SET =
{RULE\, RULE;, RULEs, RULE,}. Here — indicates all input structures except
Rl and Rg.

As the AC machine, the goto function g. maps a pair consisting of a state and an
input structure into a state or the message fail. The directed graph in Figure 2 (a)
represents the goto function. The failure function f. maps a state into a state. The
failure function is constructed whenever the goto function reports fail. Certain states
are designated as output states which indicate that a RULF has been found. The
output function formalizes this concept by associating R_SFET (possible empty) with
every state.

In the MAPM machine, a confirming transition is decided by the relationship,
whether the input structure N includes the rule structure R or not. Therefore, in
order to confirm a transition from certain state to next_state using the relationship,

we define a function CHECK(state, N) as follows:

[Function CHECK(state, N)]

For each transition g¢.(state, R) = next_state in the goto graph, if some transi-
tion labeled R which satisfies the relationship (N O R) exists, then it returns all
next_state, otherwise it returns fail.

(Example 3) Suppose that g.(s1, R1) = s and g.(s1, Ry) = s3 are defined in the goto
graph and R; and R, are defined as follows:
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(a) The goto function.

R_SET ={ RULE1, RULE2, RULE3, RULE4}

s|{1 2 3 45 6 7 8
RULE1=R1R2
fs))0 0 6 9 0 0 O 1 RULE2=R1R3R4Rs
RULE3=R3Rse
(b) The failure function. RULE4=R3ReR1
R1 = { (CAT, Adjective) }
; ?L};tgut;és}) R2 = { (CAT, Noun), (SEM1, Flower) }
5 | {R1 R3' R4, R5} R3 = { (CAT, Noun), (SEM1, Human),
7 {’ R3 ’ R6}] (SEM2, Female) }
8 {R3, R6, R1} R4={ (STR, "like"), (CAT, Verb) }

Rs = { (CAT, Noun) }
Re ={ (STR, "are"), (CAT, Verb) }

(c) The output function.

(d) R_SET = { RULE1, RULE2, RULE3, RULE4 }.

Figure 2: The functions of the MAPM machine for R_SET.

Ry = (SEM, Hurnan)
Ry, = (CAT, Noun))
Consider the behavior of the function CHECK to process the following N; and
Nj.
Ny = (STR, “mother”), (CAT, Noun),(SEM, Human)
Ny = (STR, “beautiful”), (C AT, Adjective)

For N; the function CHECK returns sy and s3 to satisfy By € Ny and Ry C N;.
In the case of Ny , Ry C Ny and R, C N, are not satisfied, therefore the function
CHECK returns fail. (END)

Algorithm 2 summarizes the behavior of the MAPM machine.
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Algorithm 2: A Multi-Attribute Pattern Matching machine (MAPM machine).
[Input]: A sequence of input structures a = Ny, N,, ..., N,, where each N; is an
input structure and a MAPM machine with goto function g, failure function f., and
output function output..
[Output]: Locations at which sequences of structure were extracted.
[Method]:
begin
queuey  0;
for ¢ + 1 until » do
begin
queuey < emply;
while queue; # ¢ do
begin
temp < empty;
let state be the next state in queuey;
queue; — queue, — stale;
while CHECK(state, N;) = fail do state < f.(state);
ternp «+ CHECK(state, N;);
queuey — queuey U temp;
while temp # ¢ do
begin
let element be the next state in temp;
temp < temp — element,;
if output.(element) # ¢ then
begin
print 7;
output.(element)
end
end
end;
queune; ¢ queuey
end
end.

As we have mentioned before, in this algorithm, confirming transitions are decided
by the relationship (N D R). Therefore, it has the possibility that some R such that
N includes R exist among those transitions. In order to solve this problem, Algorithm
2 stores all states returned by the function CHECK in a first-in-first-out list denoted
by the variable queue;, and the MAPM machine continues to process for each state
in queue;.

(Example 4) Figure 2 shows the functions used by the MAPM machine for a R_.SET =
RULFE,,RULFE,, RULEs;, RULFE,. Consider the behavior of the MAPM machine

that uses the functions in Figure 2 to process the sequence of the input structures

o = N1N2N3N4N5N6.

Ny = (STR, “beautiful”), (CAT, Adjective)
Ny = (STR, “rose”), (CAT, Noun), (SEM1, Flower)



Proceedings of the Prague Stringologic Club Workshop ’96

N3 = (STR, “and”), (CAT, Conjunction)

= (STR, “pretty”), (CAT, Adjective)

N = (STR, “gitl”), (CAT, Noun), (SEM1, Human), (SEM?2, Female)
(STR, “are”), (CAT, Verb)

Since Ny includes Ry and N, includes Ry, CHECK(0,N;) = 1 and CHECK(1, N,)
= 2, the MAPM machine enters state 2, advances to the next input structure and
emits the output.(2), indicating that it has found the RULFE; at the end of position
2 in the a. Since N3 doesn’t include R; or R3, CHECK(0, N3) = 0, the MAPM
machine enters the state 0. Since Ny includes R; and N includes R3;, CHECK(O,
N,) =1, CHECK(1, N5) = 3, the MAPM machine enters state 3. In state 3 with the
input structure Ng, the MAPM machine makes two state transitions in this operating
fashion. Since Ng doesn’t include Ry, CHECK(3, Ns) = fail, the MAPM machine
enters the state 6 = f.(3). At this point, since Ny includes Rg, CHECK(6, Ng) = 7,
the MAPM machine enters state 7, emits output.(7), indicating that it has found the
RULE5 at the end of position 6 in the . (END)

The MAPM algorithm consists in constructing a finite state pattern matching
machine from matching rules and then using the machine to process the sequence of
input structures in a single pass.

4 Construction of Goto, Output and Failure Func-
tion for the MAPM Machine

This chapter explains the construction of the goto, output and failure function for
the MAPM machine. Although the construction of the MAPM machine is similar to
the construction of the AC machine [Aho75|, the point which changes a transition
label for the goto function to a set is different from the AC machine. Therefore,
the decision of the same transition when the goto, failure and output functions are
constructed is defined as follows:

[Condition for the equivalency of rule structures]
If the number of elements of rule structure R; and Ry are equal and each of the

elements (ATTR,VALUEFE) of Ry and R, are equal, then we define Ry equal to R,
(Rl — Rg)

In order to examine the equivalency of rule structures, we define a function
ARC(state, R). The function ARC returns a next_stale that satisfies the condition
for the equivalency of rule structures. The following shows the function ARC.

[Function ARC(state, Ry)]
For each transition g.(state, Ry) = next_state in the goto graph, if Ry = R, then
the function ARC returns a next_state, otherwise it returns fail.

(Example 5) Suppose that g.(state;, Ri) = state; is defined in the goto graph and
R, is defined as:
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Ry = (CAT,Noun),(SEM Human)

Consider the behavior of the function ARC to process the following rule structures

R, and Rs:

Ry = (CAT,Noun),(SEM, Human)
Rs = (CAT, Noun)

For Ry, ARC returns states to satisfy the condition for the equivalency of rule
structures Ry = Ry. For Rj, the function CHECK doesn’t satisfy the condition for
the equivalency of rule structures Ry = R3 and therefore returns fail. (END)

Algorithm 3 summarizes the method for the construction of the goto and output
functions for the MAMP machine. Algorithm 4 summarizes the method for the
construction of the failure and output functions for the MAMP machine.

Algorithm 3: Construction of the goto function.
[Input]: Set of RULE R.SET = RULFE,, RULE,, ..., RULE.
[Output]: Goto function g. and a partially computed output function output..
[Method]: We assume output.(s) is empty when state s is first created, and
ge(s, R) = fail if R is undefined or if g.(s, R) has not yet been defined. The procedure
enter(RULE) inserts into the goto graph a path that spells out RULFE.
begin

newstate < 0;

for i « 1 until k do enter(RULE;);

for all R such that ARC(0, R) = fail do ¢.(0, R) + 0;

end

procedure enter(Ry, R, ..., R)
begin

state <+ 0; 7 < 1;

while ARC(state, R;) # fail do

begin
state < ARC(state, R;);
Jjegtl
end
for p < j until m do
begin

newstate < newstate + 1;
ge(state, Ry) + newstate;
state < newstate;
end
oulput.(state) « Ry, Ry, ..., Ry,
end
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Algorithm 4: Construction of the failure function.
[Input]: Goto function g. and output function output, from Algorithm 3.
[Output]: Failure function f, and output function output..
[Method]:
begin
queue < emply;
for each R such that ARC(0, R) = s # 0 do
begin
queue < queue U s;
Je(s) <0
end
while queue # empty do
begin
let r be the next state in queue;
queue < queue — T
for each R such that ARC(r, R) = s # fail do
begin
queue — queue U s;
state < fo(r);
while ARC(state, R) = fail do state < f.(state);
fe(s) < ARC(state, R);
output.(s) < output.(s) U output.(fe(s))
end
end
end

(Example 6) Consider the construction of the MAPM machine for the R.SET =
RULE,, RULE;, RULEs, RULFE, in Figure 2 (d). In the first place, the states and
the goto function are determined according to Algorithm 3. Second, the failure func-
tion is computed according to Algorithm 4. The output function is constructed
according to both Algorithms. The decision of the same transition when the goto,
failure and output functions are constructed is decided by the equivalency of the rule
structures.

Firstly, consider the construction of goto function. Adding the first rule RULF,
to the graph, g.(0, Ry) = 1 and ¢.(1, R2) = 2 are constructed as shown in Figure 3 (a).
At this point, the output “Ry, Ry” is associated with state 2.

Adding the second rule RULF,, Figure 3 (b) is obtained. Since ARC(0, R)
= 1, notice that when the rule structure Ry in RULFE, is added there is already
a transition labeled “R;” from state 0 to state 1. Therefore it is not needed to add
another transition labeled “R;” from state 0 to state 1. After that, ¢.(1, R3) = 3,
9e(3, Ry) = 4 and ¢.(4, Rs) = 5 are constructed as shown Figure 3 (b). The output
“Ri, R3, R4, R5” is associated with state 5.

Adding the third rule RULF3, g.(0, R3) = 6 and g.(6, Rg) = 7 are constructed as
shown in Figure 3 (¢). The output “Rs, R¢” is associated with state 7.

Adding the last rule RULFE,, Figure 3 (d) is obtained. The output “Rs, Re, R;”
is associated with state 8. Here, since ARC(0, R3) = 6 and ARC(6, Rs) = 7, we have

been able to use the existing transition labeled Rj from state 0 to state 6 and the

10
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(a) The graph for RULE:.

R1 Rz e

(b) The graph for RULE1 and RULE-2.

(e) The graph for R_SET.

Figure 3: The construction of the goto graph for R_.SET.

existing transition labeled Rg from state 6 to state 7. To complete the construction
of the goto function, a loop from state 0 to state 0 on all the input structures other
than “Ry” and “Rs”, is added to the graph. Finally, Figure 3 (e) is obtained.

Next, consider the construction of the failure function. To compute the failure
function from Figure 3 (e), fo.(1) = f.(6) = 0 is set since state 1 and 6 are the states
of depth 1. Then the failure function for state 2, 3 and 7, the states of depth 2,
is computed. To compute f.(2), state = f.(1) = 0 is set; and since ARC(0, R,) =
0, fe(2) = 0 is determined. To compute f.(3), state = f.(1) = 0 is set, and since
ARC(0, Rs) = 6, f.(3) = 6 is determined. To compute f.(7), state = f.(6) = 0 is
set; and since ARC(0, Rg) = 0, f.(7) = 0 is determined. Continuing in this fashion,
the failure function shown in Figure 2 (b) is obtained.

Finally, the goto, failure and output functions are constructed as shown in Fig-

ure 2 (b) and (c). (END)

11



Proceedings of the Prague Stringologic Club Workshop ’96

5 Evaluation

In this chapter, the theoretical estimations and experimental evaluations for the
MAPM machine are presented. Section 5.1, describes the theoretical estimations
for the MAPM machine, and in Section 5.2, it is evaluated by applying it to the
extraction of keywords [Kimo91, Ogaw93].

5.1 Theoretical Estimations

Suppose that the time complexity for confirming a transition in the MAPM machine
is O(1). Let m be the length of sequence of input structures . The time complexity
of matching Algorithm 2 by the MAPM machine is O(m), because the matching
cost of the AC machine is independent of the number of matching rules (keywords).
However, the precise complexity for confirming a transition depends on the cost of
the function CHECK and queue; in Algorithm 2.

Consider the time complexity of the function CHECK. By using the order of
attributes names, sets of input and rule structures can be represented as the sorted-
list whose nodes are denoted by (attribute-name, attribute-value, pointer). Similarly,
the goto function is represented by the list structure. Let K be the kinds of attribute
names. In the function CHECK, the time complexity for judging the relationship,
whether the input structure includes the rule structure or not, is similar to the cost
(K + K = 2K) of merging two sorted_lists of maximum length K into one list.
Therefore, the time complexity of judging the relationship is O(K’). Suppose that B
is the maximum number of transitions leaving from certain state s. Then, the time
complexity of the function CHECK is O(K B). Although this cost is more than that
of the AC machine, an expression ability of rules for the MAPM machine is higher
than the rule for the AC machine.

From the above observation, consider the time complexity of confirming a tran-
sition. Let D be the maximum number of the states in queue;. The complexity is
O(K BD), because queue; has all states returned by the function CHECK in Algo-
rithm 2.

The time complexity for constructing the AC machine is proportional to the total
length h of keywords. On the other hand, the time complexity for the construction of
the MAPM machine is O(hK) in the worst-case, because confirming transitions de-
pends on the function ARC and the time complexity for determining the equivalency
of the rule structures in the function ARC is the same cost O(K) as the function

CHECK.

5.2 Experimental Evaluations

The MAPM machine is evaluated by applying it to the extraction of keywords
[Kimo91, Ogaw93]. For experimental evaluations, the MAPM machine has been
implemented on a DELL OptiPlex GXMT5133 and it has been written in the C
language.

In order to evaluate the efficiency of the proposed algorithm, we defined 112 rules
for the extraction of keywords. Table 1 shows the information about the rules for
the extraction of keywords. The information about RULFE are the values for each

12
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Total number of kinds of attribute names )
Information about RULFE
Total number 112
Average length 2.5
Average number of kind of attributes names 1.9
Construction time of the MAPM machine [sec] 0.543

Table 1: Information about RU LFE and construction time.

Textl Text2 Text3 Average
Number of words 411 233 197 280.0
Matching time [ms] 209 103 7.4 12.9
Number of extracted keywords 18 15 15 16.0

Table 2: The results of the simulation.

rule structure. From the average number, 1.9, of kinds of attribute names, it turns
out that the attribute of each structure was abstracted effectively. It seems that the
construction time (CPU time), 0.543 second, is practical.

Table 2 shows the results of the simulation using the above rule. To perform the
simulation of the extraction of keywords, the following three texts were used.

Text1: General document, such as letter, journal, etc.
Text2: Abstract of a paper.
Text3: Document of patents.

From the average matching time in Table 2, the efficiency of the proposed algo-
rithm could be verified. As shown by the theoretical estimations, the time complexity
of the MAPM machine depends on the cost of the function CHECK. In the simula-
tion, the attribute of each structure was abstracted effectively, such that the average
of number of kinds of attribute names is 1.9. Consequently, good results could be
obtained.

6 Conclusions

We have described an efficient method for multi-attribute pattern matching in this
paper. A multi-attribute pattern matching is useful for many applications and the
proposed algorithms enable the realization of higher pattern matching. The presented
algorithm are evaluated by theoretical estimation and the experimental evaluation is
supported by simulation results for the extraction of keywords.

In the proposed algorithms, it takes time to judge whether the input structure
includes the rule structure or not. Therefore, as future extension, we are considering
an efficient data structure and an efficient decision algorithm for the judging of the

We

relationship, whether the input structure includes the rule structure or not.

13
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believe the proposed method is very useful for any existing and future computing

system that would require an efficient multi-attribute pattern matching.
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1 Introduction

Let P be finite set of pattern character strings of the finite length and let T' be
a text, 1.e. string of characters of length ¢. The task is to find all occurrences of
all patterns in the text using an abstract matching machine. We can use different
machines optimizing space or time or cost = spacextime of their run phase. All these
machines are defined by P completely. We can recognize two cases of P or pattern
machines: static or dynamic. In static case set P is constant. In dynamic case
patterns can be included into or deleted from the set P. Let us pay attention to two
machines SNFA (Searching Nondeterministic Finite Automaton) and AC-machine
(Aho-Corasick [ACT75]) only.

Both these machines include G-trie as their basic structure. The G-trie is root
— leaf oriented tree, in which every node is uniquely labeled by prefix € Prefix(P)
and trajectory from root to the node is also labeled by this prefix. The G-depth of
a node is length of trajectory from root to the node. Prefix(P) is set of all prefixes
of all patterns in P. The G-trie represents goto function.

Undoubtedly, AC-machine represents great theoretical leap in stringology proving
linear run time depending just on ¢ and not depending on P. (AC-machine is specific
case of implementation of DFA (Deterministic Finite Automaton) and makes less
than 2¢ transitions after reading text 7). This lovely miracle was obtained by two
ingenious tricks:
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o The G-trie is overlaid by leaf — root oriented fail F-tree containing nonlabeled
fail arrows. (G and F have the same set of nodes and common root.) FEach
node (except common root) is equipped by fail arrow which points to the node
which is labelled by longest suffix of label of the node. The F-tree represents
failure function. The F-depth of a node is length of trajectory to the root.

e The root contains labeled loops for all characters in given alphabet which do
not label any arrows going from the root to another node.

The space complexity of the AC-machine is linear dependent on the number of
nodes in the trie. It can be implemented in different ways (saving the linearity) but
practically requiring more space (say, linked list or direct access table implementa-
tion). Very good practical method designed by [AYS88] is based on the interspersed
direct access tables. (Imagine a set of combs with missing teeth to be somehow as-
sembled in line overlaying such a way that no tooth would mask another one and the
length of this assembly is almost minimal).

This method preserves fast unit time state transition and space linearity with little
space overhead caused by unused slots. The overhead under 5% can be easily reached
in large practical cases [H1a96]. The only severe problem in the implementation of
AC/Aoe is necessity of solving the “teeth conflict” by moving one comb to another
place. Aoe et al. solve this task by moving the smaller comb having smaller number
of teeth (that sounds somehow logically). Hladik moves the newer comb what spares
the time necessary for counting teeth in both combs and allows to use the memory
in a better way. It is not known whether Hladik’s method has higher overhead than
Aoe’s method.

The construction of the goto function, ie. G-trie, is rather simple problem and
moreover 1t can be created dynamically. The construction of fail function is not diffi-
cult for static case when the trie is scanned width-first. It is difficult to maintain the
dynamic AC-machine because after addition or deletion of any pattern the fail func-
tion should be recalculated completely. In order to avoid this tedious recalculation,
inverse arrow for every fail arrows should be implemented but it increases memory
requirements further. The machine equipped with such inverse arrows is denoted as

AC(Ci-machine.

2 Comparison of AC-machine and SNFA

SNFA is a very specific case of NFA and its construction is simpler than AC-machine
but its run is principally slower. SNFA is just the G-trie amended by set of labelled
loops for all characters in given alphabet in its root. Therefore the root is the only
source of nondeterminism.

Let us imagine that the general NFA is a sort of a playboard and its run is a sort
of a game played by team of pawns or dwarfs. At most one pawn can stay at one node
each time. After reading of an input character every pawn goes via all goto arrows
labelled by the read character. If there is no such an arrow the pawn is removed.
When more pawns are encountered in one node they join into one pawn. The game
is over when there is no pawn on the playboard or when the input is exhausted.

SNFA starts with just one pawn in the root node. This root pawn permanently
stays in the root because of the set of root loops and plays the role of a bee queen
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yielding other pawns. Pawns cannot encounter each other at one node (the playboard
is a trie) and therefore no problem arise with the joining operation. Two pawns never
stay at the nodes with the same G-depth. The maximum number of pawns is the
length of the longest pattern in P plus one.

AC-machine is a DFA and therefore just one pawn plays the game starting in the
root node, too. This pawn cannot be removed because he uses the fail arrow to save
his life when the input character does not match any goto arrow. In the worst case
the pawn falls down into the root and the root node provides his immortality.

There is a certain remarkable similarity between SNFA and AC-machine. AC-
machine pawn determines where pawns would stay in equivalent SNFA (having iden-
tical G-trie). This is given by the fail arrow trajectory from any node to the root
which shows where all pawns would stay in SNFA. The number of pawns is given by
the F-depth of such node (plus one for permanent pawn in the root). The maximum
number of pawns is therefore limited by the depth of the F-tree.

3 Experiments
Several tests have been performed on two large practical pattern sets:

CA Queries for SDI retrieval in the Chemical Abstracts data base. Pattern are
chemical terms mainly.

WN Word Net thesaurus of the English language prepared at Princeton University
containing nouns, verbs, adjectives and adverbs.

The following table shows main characteristics of pattern sets, G-tries and F-trees.

Pattern set CA WN
Chem. Abstracts | WordNet

SDI queries | thesaurus

no. of patterns 13872 174678
no. of nodes 70315 882831
avg. G-depth 10.8 10.2
max. G-depth 47 63
avg. F-depth 4.3
max. F-depth 8 9

The following table shows typical branching of the G-trie that can be useful for
its implementation.

Node type | output degree | percentage
fork >1 8
single 1 7
leaf 0 15

In order to estimate the run efficiency of the AC-machine and the SNFA | following
characteristics have been introduced:
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RSR is a relative space requirement given by the ratio of number of arrows to the
number of nodes. For the G-trie is RSR=1, for the AC-machine is RSR=2, for
the ACi-machine RSR=3.

ATC is the arrow transition coefficient defined as the average number of transitions
via G-arrows or F-arrows caused by one input character.

ANP is an average number of pawns taking part in the game.
RRT is a relative run time consumed. RRT = ATC x ANP.
RRC is a relative run cost where RRC = RSR * ATC * ANP.

The following table shows these run characteristics:

Pattern set CA WN

Machine SNFA | AC | SNFA | AC
RSR 1 2 1 2
ATC 11]1.42 1] 1.56
ANP 3.3 1 2.8 1
RRT=ATC*xANP 3.3 1142 2.8 | 1.56
RRC=RSR+«ATC+*ANP 3.3 ] 2.84 2.8 | 3.12

4 Conclusions

It follows from previous table that time ratio RRTsypa/RRT ¢ is 2.32 or 1.79 and
therefore AC is about twice faster. Nevertheless, the cost ratio RRCsypa/RRC ac
varies from 1.16 to 0.90 and therefore SNFA run can be sometimes cheaper than AC
run. This intimates that for some practical cases the SNFA is not so bad. Taking
into account its simpler construction, the lower storage requirements and the dynamic
ability it can be preferred in practical cases where time requirements have not the
absolute priority.
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1 Introduction

Problem of approximate string matching can be described in the following way:
Given a text string T = tyly---1,, a pattern P = pipy---pn, and an integer k,
k < m < n, we are interested in finding all occurrences of a substring X in the text
string 7' such that the distance D(P, X) between the pattern P and the string X is
less than or equal to k. In this article we will consider two types of distances called
Hamming distance and Levenshtein distance.

The Hamming distance, denoted by Dy, between two strings P and X of equal
length is the number of positions with mismatching symbols in the two strings. We
will refer to approximate string matching as string matching with &£ mismatches when-
ever D is the Hamming distance. The Levenshtein distance, denoted by Dy, or edit
distance, between two strings P and X, not necessarily of equal length, is the minimal
number of editing operations insert, delete and replace needed to convert P into X.
We will refer to approximate string matching as string matching with £ differences
whenever D is the Levenshtein distance. Clearly the Hamming distance is a spe-
cial case of the Levenshtein distance in which we submit only replace as an editing
operation.

A nondeterministic finite automaton (NFA) is a quintuple M = (Q, A, d, g0, F'),
where () is a finite set of states, A is a finite set of input symbols, 4 is a state transition
function from @ x (AU{e}) to the power set of Q), go € Q) is the initial state, F¥ C @ is
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Figure 1: NFA for approximate string matching with £ mismatches.

the set of final states. In the following, we will use the alphabet A = {s1,59,---, 54/}
If p € A then p is the complement set A — {p}, in our case. A question mark 7 will
represent any character of the alphabet.

2 String Matching with £ Mismatches

2.1 Nondeterministic Finite Automaton

A NFA for string matching with k& mismatches for pattern P, as it was presented
in [Me95] and [Da92], is shown in Figure 1. In this figure m = 6 and & = 3. The
sequence of states of the level 0 of the NFA contains states that correspond to the
given pattern without any mismatch, the sequence of states of the level 1 contains
states that correspond to the given pattern with one mismatch, ...etc. At the end
of each level there is a final state. This state says that the pattern was found with
0,1,... etc. mismatches, respectively.

There are three kinds of transition:

A transition representing matching character in pattern P and character in the
text T, t; = p;. In Figure 1 this transition is marked by the arrow directed to the
right. It leads to a state with the same number of mismatches as the old state, to
a state of the same level.

A transition representing an editing operation replace, t; = p;. In Figure 1 this
transition is marked by the arrow directed to the right-down, it leads to a state with
a number of mismatches one greater than the former state, to a state on one level
lower.

A transition representing that the NFA always stays in the initial state. In Figure 1
this transition is marked by the self loop in the level 0.

This NFA accepts all strings having a postfix X such that Dy (P, X) < k.

The number of states of NFA for string matching with k& mismatches is

(k+1)(m 41— 5.
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2.2 Reducing the number of states

There can be some situations in which we want to know all occurrences of the given
pattern in the input text with at most & mismatches but we are not interested in
knowing the number of mismatches in the found string. The states that are needed
only to recognize how many mismatches are in the found string, form a right angle
triangle in upper right corner of the NFA, as marked by the dotted line in Figure 1.
On the opposite side of the NFA there is the complement triangle of missing states. If
we omit these two triangles we obtain a simplified NFA with (k+1)(m+1 — k) states.

Now the final states have been changed. If the NFA is in the final state at the
end of level j it means that the pattern P can be found with at least 7 and at most
k mismatches. A problem appears at the end of the input text. If less than & — j
characters remain in the input text then the final state of level 5 in the NFA does not
mean that the pattern can be found with at least 7 and at most k mismatches, because
the transition for either mismatch or replace needs to read one input character. So
if the NFA is in final state at the end of level j and the position in input text 7 is at
most n — k + 1 it means that the pattern P can be found with at least 7 and at most
k mismatches.

2.3 Shift-Or Algorithm

The initial version of this algorithm was presented in [BG92]. There are also modifi-
cations of this algorithm called Shift-Add [BG92] and Shift-And [WM92].

The Shift-Or algorithm uses m bit state vectors R? which represent rows of the
NFA, as it was presented in [Ho96|, and a mask table D that for each character has an
m bit vector in which bits corresponding to positions of the character in the pattern
are set to 0 and other bits are set to 1. This table is used for operation matching. If
the NFA is in a state (i,j), where i, 0 < i < m, is a depth of state in the NFA and j,
0 < j <k, is a level of state, then i-th bit of the vector B/ contains 0. If the NFA is
not in a state (i, ), i-th bit of the vector R/ contains 1. The right angle triangle in
lower left corner of the NFA, as marked by the dotted line in Figure 1, can be defined
as the first j bits of each vector R/ and in the vectors R’ it is represented by Os.

The vector R° is defined by formula R}, = shi(R})or(D[li+1]), where R} is the
old value and R?_I_l is a new value of R corresponding to position 7 in the text T,
and represents exact string matching. or is bitwise operation OR and shl is bitwise
operation left shift, that moves bits of the vector to the left and fills the last bit of the
vector with an 0. Vectors for approximate pattern matching with & mismatches are

defined by the formula Rf-'_H = (shl(Rg)or(D[tH_l]))and(shl(Rg_l)), where j denotes
the number of substitutions. At the beginning of the search the vectors R’ are filled
up by 1Is.

The fact, that the pattern has been found with at most 5 mismatches in position
i, 1s detected by appearing 0 at the end of the vector Rf

The Shift-Or algorithm computes new states of the NFA in a parallel way. It
computes whole sequence of states of one level at once. The bitwise operation shl(Rf-.)
moves all the states of one level to the left and inserts 0 in first position. It represents
the transition of matching, each state moves to the state corresponding to the next
position in the pattern P. This operation is only for matching, so we have to eliminate

states that do not match. That is performed by the bitwise operation or(D[t;+1]),
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that takes the mask vector corresponding to character ;41 in the text T' and replaces
all Os in mismatching positions by 1s. The result of this operation is that only states
in matching positions have been moved to the next states of the same level.

The second item of the above formula is shl(Rf-'_1 ). The item represents the editing
operation replace. It takes the sequence of states of level j —1 corresponding to j — 1
mismatches, moves it one position to the left and makes the bitwise operation and
between result of the first item of the formula and this sequence of states. Here, the
bitwise operation and(shl(Rf:_l)) adds states coming from the level corresponding to
one less mismatches than in level j. It is clear that this item has no meaning for the
states of the sequence of states without mismatches. Thus this item is present only
in formulae for computing vectors B/, where 0 < j < m. To make Shift-Or algorithm
faster this bitwise operation representing replace is performed even in the positions
matching the input character. It simplifies the formula without change of behaviour

of Shift-Or algorithm.

2.4 Simplified Shift-Or Algorithm
The reduced NFA can be described by vectors R’, that are k bit shorter than the

original ones. Of course, the formulae for computation of new vectors R/ have changed
too. The new formulae are R}, = shl(R{)or(D;[t;11]) for exact matching and R}, =
(shi(R?)or(D;[tiy1]))and Rg_l for j mismatches. The mask table D; is a part of mask
table D being m — k bit long and starting at position 7 in D. There are two ways
how to represent mask tables D;. The first way is to compute needed column of this
mask table by shifting the column of the original mask table D whenever it is needed
and another is to store shifted mask tables D;, 0 < j < k. The first way has higher
time complexity and the second has higher space complexity.

A problem similar to the problem that appears at the end of the input text
described above appears at the beginning of the input text. The previous problem
has appeared because of omitting states in a NFA and this problem has appeared
because of omitting first j bits of vector B’. If the input text starts with a string that
is equal to the last m — k characters of the pattern then the vector R* will report
found pattern with at most & mismatches after reading m — k input character, but it
is clear that the pattern can be found after reading at least m input characters.

Because of the problems at the beginning of the input text and at the end of the
input text we can say that the vector Rf can report that the pattern can be found
with at most & mismatches only if m —k+j <:<n—Fk+j.

This simplification reduces the length of the state vectors B/ and simplifies the
formula for computation of the state vectors with one or more mismatches. One
operation shl is omitted, but on the other hand a new operation appears. This
operation is shift of one column of the mask table D. This operation can be omitted
too, if we accept higher space complexity of characteristic vector representation.

3 String Matching with £ Differences

In string matching with & differences there are two new editing operations. The new
editing operations are insert and delete. The operation insert puts some character in
a text and the operation delete removes some character from a text. It is clear that
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level 1

level 2

level 3

Figure 2: NFA for approximate string matching with £ differences.

after adding these two editing operations into the set of editing operations, the string
found with £ differences need not be of the same length as the pattern P.

3.1 Nondeterministic Finite Automaton

A NFA for string matching with £ differences for the pattern P = pipsy - - pn, as it
was presented in [Me96-1], is shown in Figure 2. In this figure m = 6 and k = 3.
The sequence of states of level 0 of the NFA contains states that correspond to the
given pattern without any differences, the sequence of states of level 1 contains states
that correspond to the given pattern with one difference, ...etc. At the end of each
level there is a final state. This state says that the pattern was found with 0.1,...etc.
differences, respectively. There are two new arrows. The first is directed to the down
and represents editing operation insert. The second one is directed to the right-down
and represents ¢ transition of editing operation delete. This NFA accepts all strings
having a postfix X such that Dy (P, X) <k.

The number of states of the NFA for string matching with & differences is
m* (k+1)+ 1.

The initial state of NFA in Figure 2 is state 0, but also, as presented in [HUT79],
all states to which NFA can move from the initial state without reading any input
character are also initial states. So initial state includes all states that are located
on the diagonal starting from the state 0. Since NFA is all the time also in initial
state it is in states 0, 7, 14 and 21. At the beginning of the NFA there are several
states bordered by the dotted line. The NFA moves to all these states after reading
the first & — 1 input characters. Then the NFA stays all the time also in these states
but the NFA can move from these states only in initial states and so these states are
redundant.

The NFA can move to these states by transitions representing editing operation
insert. So these states represent situations that at most £ —1 characters were inserted
before the string and we do not care how many characters were inserted before the
string.

If we denote editing operation replace r, insert i, delete d and matching m we can
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level 0

level 1

level 2 ®
Figure 3: The transitions in NFA for approximate string matching with k£ differences.

describe ways how to move to these states by these four characters. For example we
can move to the state numbered by 13 by following sequences of operations: d + ¢ or
r-+1orm+41i+ ¢ as it is shown in Figure 3.

The sequence of operations delete and insert has the same result as operation
replace so we can write d + ¢ = r. The sequence of operations replace and insert
has the same result as sequence of operations insert and replace so we can write
r 41 =1+ r. The sequence of operations matching and insert leading from some
of initial states has the same result as operations insert and replace so we can write
m-+i1=1+r.

Now we can rewrite the sequences of operations how to move to state numbered
by 13: d+i=r,r4+1=104+r,m+i+it=1+r+i=104+1+r. If welook at
these sequences of operations we can see that all the sequences of operations needed
to move to the state numbered by 13 can be replaced by operation replace because
we do not care about the characters inserted before the string so we do not need the
state numbered by 13.

Such replacing of sequences of operations can be done for all states bordered by the
dotted line so all states inside the bordered area are redundant and can be omitted.

The NFA for approximate string matching with & differences reduced by the way
described above has the same number of states as the NFA for approximate string
matching with £ mismatches and it is (k+1)(m+1— ]%) states, as shown in section 2.1.
It is clear that only reduced NFA for approximate string matching with & differences,
that have & > 1, have less states then nonreduced NFA.

The NFA for approximate string matching with & differences reduced as described
above is shown in Figure 4.

3.2 Reducing the number of states

The simplification described in section 2.2 for approximate string matching with
k mismatches can be applied to approximate string matching with & differences as
well.

The states that are needed only to recognize how many differences are in a found
string, form also a right angle triangle in upper right corner of the NFA, as marked by
the dotted line in Figure 4. On the opposite side of the NFA there is the complement
triangle of states omitted because of the reduction. If we omit these two triangles we
obtain a simplified NFA with (k+ 1)(m + 1 — k) states.

Now final states have also been changed. If the NFA is in final state at the end
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Figure 4: Reduced NFA for approximate string matching with £ differences.

of level j it means that the pattern can be found with at least 7 and at most with
k differences. The problem that appears at the end and at the beginning of the input
text in approximate string matching with & mismatches does not exist in the case of
approximate string matching with k differences. It is due to ¢ transitions that the
NFA, to move from one state to another, does not need to read any input character.
¢ transitions represent editing operation delete so we can delete the first & characters
or the last k characters of the pattern. That is why this simplification does not need
the limits used in case of approximate string matching with k& mismatches.

3.3 Shift-Or Algorithm

The Shift-Or algorithm for string matching with k£ differences has two new items
in formulae for computing vectors R/. The new items of the formula are shl (Rf;: )
representing a transition of the editing operation delete, and Rf-:_] , representing a tran-
sition of editing operation insert. The formula for string matching with & differences
is Rf;_l_] = (shl(Rf)or(D[tH_l]))and(shl(RZ_]))and(shl(Rf;;:))and(Rf_l). It can be
reduced to RZ{+1 = (shl(Rf-j)or(D[th]))and(shl(Rf;_]and Rf;;:))and(Rf;q). At the
beginning of searching the vectors R’ are filled up in such a way, that first j bits from
the left contain 0s and other bits contain 1s.

In the case of approximate string matching with £ differences we do not omit any
0s at the beginning of the table as in the case of approximate string matching with &
mismatches.

The third item, shl(Rg_;ll), represents the editing operation delete. If there is some
character deleted, we have to skip it and continue behind it. In the NFA in Figure 4,
the skipping of the deleted character is marked by e transition and continuation is
marked by transition representing matching. In the Shift-Or algorithm there are those
two operations in an inverted order. At first the operation representing matching is
executed. It was already executed in computing of the vector Rf_:ll By that we got
to the next character in the pattern P. The following operation is ¢ transition. It
is represented by operation shl that gets us to the next character in the pattern P
and to the level of the states corresponding to differences one higher. It seems the
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case of deleting the first character in the pattern P was not involved. But that is
only an illusion. Such a case is covered by an initial setting of the vectors R7. At the
beginning of searching the vectors R? are filled up in such a way that the first j bits
from the left contain Os and other bits contain 1s. The initial filling up by 0Os is given
by the ¢ transitions coming from the initial state with a self loop. It means that at
the beginning of searching there are j deleted characters, 0 < j < k.

The fourth item in the formula is R{f‘l, that represents the editing operation
insert. In Figure 4, the transition representing operation insert is marked by an
arrow directed down. It means that the state in the NFA stays in the same depth
but moves to the level of the states corresponding to one more differences.

3.4 Simplified Shift-Or Algorithm

The new NFA can be described also by vectors Rj? that are k bit shorter then the
original ones. The new formulae are R}, = shi(R})or(D;[ti;1]) for exact matching
and Rf+1 = (shl(Rg)or(Dj[tiH]))and Rg_land Rg;lland(shr Rg_l) for j differences,
where shr is bitwise operation right shift. The mask table D; is also a part of
mask table D being m — k bit long and starting at position 7 in D. The ways how
to represent mask tables D; are the same as for approximate string matching with
k mismatches.

This simplification reduces the length of the state vectors B/ but does not simplify
the formula for computation of the state vectors with one or more differences as in

previous section.

Conclusions

In this article we have shown that in the case that we are not interested in knowing the
number of errors in the found string we can reduce NFA for aproximate string match-
ing. In the case of approximate string matching with k& mismatches this reduction
not only reduces length of vectors of Shift-Or based algorithms but also simplifies
formulae for computing these vectors. In the case of approximate string matching
with k differences it only reduces length of the vectors.

Another way how to use NFA is to transform it into deterministic finite automaton.
Decrease of states in reduced deterministic finite automata is described in [Me96-2].
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Abstract. Approximate string matching is a sequential problem and therefore
it is possible to solve it using finite automata. Nondeterministic finite automata
are constructed for string matching with & mismatches and k differences. The
corresponding deterministic finite automata are base for approximate string
matching in linear time. Then the space complexity of both types of determin-
istic automata is calculated. Moreover, reduced versions of nondeterministic
automata are taken into account and the space complexity of their determinis-
tic equivalents is calculated.
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1 Introduction

Approximate string matching can be described in the following way:

Given a text string T' = {yly---t,, a pattern P = pipy---pm, and an integer k,
k < m < n, we are interested in finding all occurrences of a substring X in the text
string 7" such that the distance D(P, X) between the pattern P and the string X is
less than or equal to k. In this paper we will consider two types of distances called
Hamming distance and Levenshtein distance.

The Hamming distance, denoted by Dy, between two strings P and X of equal
length is the number of positions with mismatching symbols in the two strings. We
will refer to approximate string matching as string matching with k mismatches when-
ever D is the Hamming distance. The Levenshtein distance, denoted by Dy, or edit
distance, between two strings P and X, not necessarily of equal length, is the minimal
number of editing operations insert, delete and replace needed to convert P into
X. We will refer to approximate string matching as string matching with k differences
whenever D is the Levenshtein distance.

Approximate string matching is a sequential problem and therefore it is possible
to solve it using finite automata. Two variants of nondeterministic finite automata
are constructed for string matching with & mismatches and for string matching with

k differences ([Me95], [Me96]).
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There are two ways how to use these automata as a base for the matching algo-
rithm:

1. To simulate the nondeterministic automaton in a deterministic way.
2. To construct an equivalent deterministic automaton.

Several known algorithms use simulation of nondeterministic automata in a de-
terministic way [BG92], [MW92], [Uk85], [WM92]. The simulation leads to the time
complexity which is greater than linear. The only exception are SHIFT-OR based
algorithms ([BG92], [WM92]) which simulate the nondeterministic automata in lin-
ear time for small m and k using bit vectors. The advantage of the simulation of
nondeterministic automata is the low space complexity.

Use of deterministic finite automata leads to the linear time complexity for all m
and k. The drawback of this approach is a high expected space complexity. Therefore
we try to find the space complexity of deterministic finite automata for matching
which is less pessimistic than in [Uk95].

A nondeterministic finite automaton (NFA) is a 5 - tuple M = (Q, A, ¢, qo, F'),
where () is a finite set of states, A is a finite set of input symbols, ¢ is a state transition
function from @ x (AU {e}) to the power set of @), go € @ is the initial state, F C @
is the set of final states.

A finite automaton is deterministic (DF A) if 6(¢, a) has exactly one element for
any ¢ € @ and a € A and §(q,e) =0 for any ¢ € Q.

In the following, we will use the alphabet A = {sq,52,---, s/}

If p € A then p is the complement set A — {p}, in our case.

2 String Matching with £ Mismatches

First, we construct a nondeterministic finite automaton My for a given pattern P =
PiP2 - Pm, alphabet A = {s1,s9, -+, 514/}, and k& < m. This automaton is depicted
in Fig. 1.

Fach state ¢ € @ has alabel (7, j), where i,0 < i < k,isalevel of ¢,and 7,0 < j <
m, is a depth of ¢g. In the automaton My, there are k + 1 levels of states sequences.
Every level ends in one of the final states (0,m),(1,m),---,(k,m). These final states
are accepting states of strings with 0,1,2,---,k mismatching symbols, respectively.
The sequence of states of the level 0 corresponds to the given pattern without any
mismatch. Levels 1,2,---,k correspond to the strings with 1,2,---,k mismatching
symbols, respectively. From each nonfinal state of level j, 0 < j < k, there exists
a transition to the state of the level j 4+ 1, which means, that a mismatch occurs.
Moreover, there is a self loop in the state (0,0) for every symbol of the alphabet A.
This automaton accepts all strings having a postfix X such that Dy (P, X) < k. The
number of states of the automaton My is
(k+1)(m+1=5)=(m+1)+(m)+(m—=1)+ -+ (m—k+1).

Because this finite automaton is nondeterministic, it is necessary to construct
an equivalent deterministic finite automaton (DF Ap) using the standard algorithm
[AUT1,2].

Let us use the number of items of the transition table of DF A as a measure of
the space complexity of the algorithm of string matching with & mismatches. This
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Level 1

Level2 {22 /= 25 )"
Level k kk o k.m
Depth 0 1 2 m-1 m

Figure 1: Nondeterministic finite automaton M.

number of items is the number of states (number of rows) of DF Ay multiplied by
number of columns.

For the evaluation of the number of states of the DF Ap in question we will use
the following lemma.

Lemma 1 Let My be a nondeterministic finite automaton for given pattern P =
PPz P, k < m (see Fig. 1). Lel DF Ay be the deterministic finite automaton
constructed by the standard algorithm for My. Then each state of the automaton
DF Ay contains at most one state of My with depth 5, 0 < 53 <m.

Proof. The standard construction of the deterministic finite automaton equivalent to
the nondeterministic one is based on the “parallel simulation” of the nondeterministic
automaton.

The assertion of the lemma can be formulated in this way:

() The nondeterministic automaton My can reach at most one state at each depth
during parallel simulation.

This assertion can be proven by induction on the length of input string [, 0 <1 < n.
For [ = 0 assertion (%) holds, because My is in state (0,0). Let us assume, that
assertion (%) is true for all [ < n'. That means that My is in some number of states
(t1,71), (12, 92), - -, (14, J4), where all j,,0 < r < g, are different. For the state (i, j.),
Jr < m,i, < k, there are two possible transitions:

1. to the state (i,,jr41) in case when the input symbol matches the symbol p, 4
of the pattern,

2. to the state (4,41, jr41) in case when no match occurs.
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For the state (0,0) there is moreover the selfloop. For the state (i,, j.), where i, = k,
there is possible only transition when match occurs. For the state (i,,j,), where
j» = m, there is no transition possible. From this follows that at most one state in
the depth j.;; will be reached from each state (i,,j,) and the assertion holds. This
completes the proof of the lemma.
a

From the Lemma 1 follows the method of computation of the maximum number
of states of the deterministic automaton DF Ay.

There are p + 1 states in each depth p of the nondeterministic automaton My for
0 < p <k —1. Moreover, there are k + 1 states in My for each depth p, £ < p < m.

The number of subsets of these states can be computed as a product of numbers
of states of all depths between 1 and m increased by one, for the case, when no state
of particular depth is present in the subset. Therefore the maximum number of states
of the deterministic automaton DF Ay is

k+1)!
3*4**(k+1)*(k,+2)m—k+1:( _; ) *(k+2)m—k+1.
The number of states of DF Ag is

O((k 4+ 1) (k 4 2)m~F1),

For the computation of the number of columns of the transition table of the DF A
the following lemma is useful.

Lemma 2 Let P = pipy- - pm be a pattern. Let My = (Q, A, 6, qo, F) be nonde-
terministic automaton for P and k > 0. Let X = {x : 2 € A,z # p;,1 < i < m}.
Then for a deterministic automaton DF Ay = (Qp, A,0p, qop, Fp) constructed for
My holds: for all g € Qp exists p € Qp such that 6p(q,z) = p for all z € X.

Proof. The set X is a subset of A containing symbols not used in the pattern P.
The automaton My has for all symbols & € X identical columns in the transition

table. Thus 6(q,z) = {p1,p2,---,p-} and 6(q,y) = {p1,p2,-- -, pr} holds for all ¢ € Q

and all pairs z,y € X. Due to the construction of the deterministic automaton, for

g€ Qpand g=1{q1,¢2, -, qs}, it holds

Il
-
>
—~

=

\.E*I
~—

5D({(J1, qz,° " aqs}’ lL)

and
5D({qla g2, 7q5}a y) = U 5((127 y)
i=1
Because
5(‘72') T) = (S(QM y)a 1< i < Sa then (SD({qla qz," - 7‘75}7 T) = (SD({QD qz;" 7QS}3 y)
a

From this lemma the consequence follows: If the pattern has length m then no
more than m different symbols from an alphabet A may appear in it. For all other
symbols, both deterministic and nondeterministic automata behave in the same way.
It means, that the subset X C A of symbols not present in the pattern may be
replaced by some x € X and the size of alphabet will be m + 1.
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From it follows, that the space complexity of the deterministic automaton DF A
does not depend on the size of alphabet if it is large enough.

It follows from this discussion, that the number of columns of the transition table
of DFAis a = min(|A|,m + 1).

The total space complexity of deterministic automaton DF Ag is:

O((k + D!k + 2)" " s« min(|]A|,m + 1)).
The nondeterministic automaton My can be reduced as described in [Ho96]. This

reduction leads to the nondeterministic automaton RMpy having just ('m +1 - k)
states at each level. States

(0,m —k),(0,m —k+1),---,(0,m),
(ILm—k+4+1),(1,m—=Fk+2),---,(1,m),

'(k—l,m)

can be removed when we need not know the number of mismatches in the found
string. Moreover states (0,m —k +1),(1,m — k),---, (k,m) will be final states.

Because Lemma 1 is valid for RMpy as well as for My, it is possible to use sim-
ilar approach for computation of maximum number of states of deterministic finite
automaton RDF Ay constructed for RDy. Let us assume k£ < 7. In this case the
automaton RMpy has p+ 1 states in each depth pfor 0 < p < k + 1. There are k + 1
states in each depth p,k < p < m —k — 1. Moreover, there are m — p + 1 states in
RMpy for each depth p,m —k+1 <p < m.

From this follows, that the maximum number of states of the reduced deterministic
automaton RDF Ay is

NS(RDFAp) =3%4% - x(k+1) % (k+2)" "M s (k+1)%---x3%2=

= L+ 1) (k2

If & < k < m then the situation is different. In this case the maximal number
of states of RMp in one depth is lower than k£ + 1 and it is equal to m — k + 1.
The expression NSl(RDFAH) for the evaluation of number of states of deterministic
automaton has the form:

NSI(RDFAH) =344k x(m—k+D)x(m—k+2)* ™ (m—k4+1)* - +3+2 =

1
= 5((m =k 1)) (m — k4 2

Because Lemma 2 is also valid for reduced automaton RMy, the space complexity of
the reduced deterministic finite automaton RDF Ag is:

O(((k + 1)!)2 * (k + Q)m_%"'l « min(|Al,m+ 1)),
when k£ < % and
O(((m —k+ 1)!)2 * (m —k+ 2)2m_k+1 * min(|A|, m + 1))

when%<k<m.

32



Space Complexity of Linear 1'ime Approximate String Matching

Level k k,1 k,2
J 2/
Depth 0 1 2

Figure 2: Nondeterministic finite automaton M.

3 String Matching with £ Differences

We will construct a nondeterministic finite automaton My, for a given pattern P =
P1P2 - - Pm, alphabet A = {s1,52,---, 54}, and k < m. This automaton is depicted
in Fig. 2. Each state ¢ € @ has a label (¢, j), where i,0 < i < k, is the level of ¢, and
7,0 < 7 < m, is the depth of ¢.

The automaton is composed of k£ 4 1 levels of state sequences. Every level ends in
one of the final states (0,m), (1, m),---,(k,m) which accept strings with 0,1,--- &
differences, respectively. In each level, with exception of the level 0, there are m states
with depth 1,2,---,m — 1,m, where the depth of a state is its “distance” from the
state (0,0) of level 0. In the level 0, there are m + 1 states and the state (0,0) has
the depth equal to 0.

The transitions between adjacent levels correspond to the edit operations insert,
replace and delete in the following way:

1. The transitions corresponding to the operation insert are “vertical” transitions
from each nonfinal state of level j, 0 < j < k, with the exception of the initial
state, to the state of level j + 1 with the same depth for all symbols of the
alphabet A.

Do

The transitions corresponding to the operation replace are “diagonal” transi-
tions from each nonfinal state (i, j) of level j, 0 < j < k to the state (1+1,5+1)
of level j + 1. The label of such transition is the complement of the label of
transition from state (i, ) to state (i,7 + 1).

3. The transitions corresponding to the operation delete are “diagonal” e-transi-
tions from each nonfinal state (i,7) of level j, 0 < j < k, and depth less than
m to the state (i +1,5+ 1) of the level j + 1.

33



Proceedings of the Prague Stringologic Club Workshop ’96

Finally, there are self loops in the state (0,0) for all symbols of the alphabet A.
This automaton accepts all strings with postfix X such that Dy(P,X) < k. The
automaton has m(k + 1) + 1 states.

As in the case of the automaton for mismatching problem, we will construct an
equivalent deterministic automaton DF Ay, for My,

The approach we use for evaluation of the space complexity of the DF Ay, is based
on the notion of e-diagonals. Because we can leave out e-diagonals below the initial e-
diagonal starting with state (0, 0) for reasons described in [Ho96], the nondeterministic
automaton My, contains (m + 1) e-diagonals containing the following states:

number of diagonal | set of states number of states

0 (0,0),(1,1),---,(k, k) kE+1
1 (0,1),(1,2),---,(k,k+1) kE+1
2 (0,2),(1,3),---,(k,k+2) k41

m — k (0,m—k),(L,m—Fk+1), -, (k,m) k+1

m — 2 (0,m—2),(1,m —1),(2,m) 3

m—1 (0,m —1),(1,m)
m (0,m) 1

For the computation of number of states of the equivalent deterministic automaton
DF Ay, for My, we will use the following lemma.

Lemma 3 Let Mj, be a nondeterministic finite automaton for given paltern P =
PPz Pm, k < m (see Fig. 2). Let DF Ay, be the deterministic finite automaton
constructed by the standard algorithm for My. Then each stale of the automaton
DF Ay, contains at most one state of My, from each e-diagonal.

Proof. The proof is based on the observation, that if automaton M| reaches some
state (p,q) at the e-diagonal d, then, due to e-transitions, it reaches all next states
(p+1l,¢g+ 1), (p+2,9g+2),-,(p+k,q+ k) of the same e-diagonal. Therefore
we can select such state (p,q) of each diagonal, where the level p is minimal, as
a “representative” of the set of all next states at the same e-diagonal.
O
The number of states of deterministic automaton DF Ay, for M;, we can compute
as a product of the number of states at diagonals 1,2, -, m increased by one because
some states of DF A;, may contain no state from particular diagonal. The diagonal
0 plays special role, because automaton M7, is always in the state (0,0) due to the
selfloop in the initial state.
Because the number of “full” e-diagonals having length k4 1 others than diagonal
0 is . — k and there is k& “short” diagonals having length k&, &k —1,--- 1, respectively,
the number of different subsets of the representatives (the maximum number of states

of DF Ay) is given by

(k+1)!
2

NS(DFAL) = (k +2)"*
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Using the previous result on number of rows of transition table we can express the
space complexity of the deterministic finite automaton for approximate string match-
ing with k-differences as:

O((k +2)™* & (k + 1) % min(|A|,m + 1)).

The nondeterministic automaton M, can also be reduced as described in [Ho96].
This reduction leads to the reduced automaton RMp, having “full” e-diagonals only.
The number of states of reduced deterministic automaton RDF A, we can express as

NS(RDFAL) = (k +2)™*

and the space complexity of the reduced deterministic automaton for approximate
string matching with k-differences is

O((k +2)™ 7% ¥ min(|A],m + 1)).

4 Conclusion

The main result presented here is upper bound of space complexity of four variants
of deterministic finite automata for approximate string matching. While the number
of states of nondeterministic finite automata is O(k * m) in all cases, the number
of states of corresponding deterministic automata is much lower then O(2*™). In
the case of string matching with k differences, the presented space complexity is still
pessimistic and the computing of more realistic upper bound is open problem.
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Abstract. We extend the definition of Hamming and Levenshtein distance
between two strings used in approximate string matching so that these two
distances can be used also in approximate regular expression matching. Next,
the methods of construction of nondeterministic finite automata for approx-
imate regular expression matching considering both mentioned distances are
presented.
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1 Introduction

The notions from the theory of approximate string matching will be used for describ-
ing the problem of approximate regular expression matching. Approximate string
matching is defined as follows: A text T, a pattern P, and an integer k are given.
All occurrences of a substring X should be found such that the distance D(P, X)
between the string X and the pattern P is less or equal to k.

There are two basic types of distances called Hamming distance and Levenshtein
distance. The Hamming distance (notation Dy) between two strings of equal length
is the number of positions with mismatching symbols in this two strings. The Leven-
shtein or edit distance (notation Dp) between two strings P and X, not necessarily of
equal length, is the minimal number of editing operations insert, delete, and replace
needed to convert P into X.

If the Hamming distance is used then the approximate string matching is referred
as string matching with & mismatches. If the Levenshtein distance is used then
the approximate string matching is referred as string matching with £ differences.
Similarly, the notions regular expression matching with k£ mismatches and regular
expression matching with & differences will be used.

2 Definition of Regular Expressions

Definition 1
A regular expression V over an alphabet A is defined as follows:

37



Proceedings of the Prague Stringologic Club Workshop ’96

1. (&, a are regular expressions for all a € A.

2. If x,y are regular expressions over A then:

(@) (2 +9) (union)
(b) (z.y) (concatenation)
(¢) (z)* (closure)

are regular expressions over A.

Definition 2
A wvalue h(z) of a regular expression x is defined as follows:

L h(0) = 0,h(e) = {e}, h(a) = {a},
2. h(z +y) = h(z) Uh(y),

h(x.y) = h(x).h(y),

h(z*) = (h(z))".

The value of a regular expression is a regular language, a set of patterns. Un-
necessary parentheses in regular expressions can be avoided by the convection for
precedence of regular operations. The highest precedence has the closure operator,
the lowest precedence has the union operator.

3 Regular Expression Matching with k&£ Mis-
matches

The Hamming distance DI between a regular expression V' with a value 2(V) and
a string X can be defined by using the Hamming distance Dy between two strings
as follows:

DR = minweh(v),\|w|:|X| DH(”UJ, X)

Now, the construction of a nondeterministic finite automaton accepting patterns
with the postfix generated by a given regular expression with & mismatches is pre-
sented.

Let a regular expression V over an alphabet A is given, and M = (Qo, A, qo, d0, Fo)
is a nondeterministic finite automaton accepting the language L = h(V). Let the
automaton M has m states. The automaton M} = (Q, A, qo, 6, F) accepting patterns
with the postfix from A (V') with & mismatches will be constructed by interconnecting
the k + 1 clones My, ..., M}, of the automaton M.

Fach state of the automaton M} is labeled by ¢; ;, where i is the number of the clone,
0 < i < k, j is the number of the state inside the clone M;, 0 < 7 < m — 1. The
mapping & of the automaton MFE will be defined in the following way:

1. All transitions defined in the automata My, ..., My will be also included in the
automaton ME.
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Figure 1: Nondeterministic automaton H.

2. Error transitions will be added. For each state ¢;; (0 < i < k—-1,0<j <
m — 1) and for each such a symbol a € A, for which 6(g; ;,a) is defined, define
8(qi;, @) = 8(qit1,5, a), where @ denotes all symbols from the alphabet A except
the symbol a.

3. A self loop for all symbols from the alphabet A will be added for the state gq .

The initial state of the automaton M} is the state goo. The set of final states
F=FRUFU..UF;.

The number of states of the automaton Mﬁ’ is m(k + 1).
Example 1
A transition diagram of a nondeterministic automaton H; accepting with 1 mismatch
patterns with the postfix described by the regular expression V' = ab*ab*a(bab*ab*a)*
over the alphabet A = {a,b,z} can be found in Fig. 1. This automaton accepts
all strings with a postfix X such that DE(V,X) < 1. The result of searching in
the text aabrabaa can be described as follows: aabyz(ya)bayap,). The number
in parentheses shows the number of mismatches occurred when a final state of the
automaton H; was reached.

4 Regular Expression Matching with k£ Differ-
ences

The Levenshtein distance DF between a regular expression V with a value A(V) and
a string X can be defined by using the Levenshtein distance Dy, between two strings
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as follows:
Dg = minweh(v) DL(U), X)

Let V' be again a regular expression over an alphabet A and M is a nondetermin-
istic finite automaton accepting the language L = h(V). We will construct a non-
deterministic finite automaton M} accepting with k differences all patterns with the
postfix from A(V). This automaton will be as in the previous case constructed by
interconnecting the k + 1 clones My, ..., M} of the automaton M.

Each state of the automaton MF is again labeled by ¢; ;, where i is the number of
the clone, 0 <1 < k, j is the number of the state inside the clone M;, 0 < 7 < m —1.
The mapping § of the automaton MFE is defined in the following way:

1. All transitions defined in the automata My, ..., My will be also included in the
automaton ME.

2. Replace transitions will be added. For each state ¢;; (0 <i<k—1,0<j <
m — 1) and for each such a symbol a € A, for which 6(g; ;,a) is defined, define
8(qi,;, @) = 6(qit1,5,a), where @ denotes all symbols from the alphabet A except
the symbol a.

3. Delete transitions will be added. For each state ¢; ; and for each symbol a € A
0<i<k—1,0<j<m—1)dg;e)= (g, a).

4. Insert transitions will be added. For each state ¢;; (0 <i<k—-1,0<j<m-—
1), and for each symbol a € A 6(q; j,a) = gi1,;. All replace transitions between
states, where insert transitions are also defined (e.g. the replace transitions
between the states ¢; ; and g;41 ), can be removed.

5. A self loop for all symbols from the alphabet A will be added for the state g .

The initial state of the automaton M}j is the state goo. The set of final states
F=FRUFU..UF;.

The number of states of the automaton Mf is m(k’ + 1).
Example 2
A transition diagram of a nondeterministic automaton L; accepting with maxi-
maly 1 difference patterns with the postfix defined by the regular expression V =
ab*ab*a(bab*ab*a)* over the alphabet A = {a,b,z} can be found in Fig. 2. Delete
transitions are depicted as dashed lines. This automaton accepts all strings with
a postfix X such that DF(V, P) < 1.

The result of searching in the text abraa can be described as follows:

abzra(g)a(r,r).
The symbol in parentheses determines the operation needed to convert some pattern
from (V') to the string read when a final state was reached.

The notation (R, ) has the following meaning:
The string abbaa € h(V) can be converted to the string abzraa by using one replace
operation. The string abaa € h(V') can be converted to the string abzaa by using one
insert operation.
Example 3

Let us consider the input text abbbabab. We are interested in finding all occurrences of
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Figure 2: Nondeterministic automaton L.

strings with the postfix X such that DF(V, X) < 1, where V is the regular expression
from the previous example. The automaton [L; will be used. The result can be
described as follows:

abbbar,p)b(r,0)4(0,8,0,1b(R,D,1)-
The symbol 0 denotes the occurrence of a string from A(V').

5 Conclusion

Both the nondeterministic automata M# and ME have to be deterministicaly sim-
ulated for practical purpose. But during the process of creating of equivalent deter-
ministic finite automata the number of states can rise exponentialy, while the de-
terministic simulation of a nondeterministic automaton is of a high time complexity.
It seems that this problem can be solved by constructing of a hybrid deterministic-
nondeterministic finite automaton, but the problem is still open.
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Abstract. The author proposes a new data structure (TS-file) in order to
make a fast search for an arbitrary string in a large full text stored in secondary
storage. The TSfile stores the location of every string of length L (the level)
in the text. Using this, we can efficiently search for, not only strings of length
L but also those shorter than or longer than L. From an analysis of search
cost, the number of accesses to secondary storage in order to find the first
match to a key is two when the key length [ is shorter than or equal to L, and
2(L — Iy + 1) otherwise. And the time required to find all matching patterns
is proportional to the number of matches, which is the lowest rate of increase
for these kind of searches. Because of the high storage cost of the basic TSile,
a compressed TS—file is introduced in order to lower storage costs for practical
use without losing search speed. The experimental results on compression using
UNIX online manuals and network news show that the space overhead of the
TS-file against the text searched is from 17% (when L = 3) to 212% (when
L = 12) which is small enough for practical use.

Key words: data storage and indexing, gram based index, full text search, no
false drop, 1'S—file

1 Introduction

The capability to search for strings which are not specified in advance is required
more and more recently in the various ways of processing online data such as docu-
ments, articles, books, manuals, news, dictionaries and so on. When a text becomes
huge, methods which search the full text directly4 are not practical. So aux-
iliary data structures are used in order to speed up the searchl®-[8l, A signature
filel?h19] s a typical data structure for such purposes and it is widely used in practical
applications'-[13], However, when we consider the recent status of secondary storage
which is rapidly increasing in space per drive and decreasing in cost per bit, faster
and more flexible string searches are needed more than those which require less space.

In this paper, we propose a new data structure called a T'S—file (Tree Structured
file) and a set of algorithms using this in order to make arbitrary string searches
especially fast. In a previous paper, using a compressed data file we proposed an
algorithm which is efficient when the length of the search string is rather long!4l.
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The method in this paper is most suitable when the length of the search string is
rather short. The basic ideas of the TS-file is to store the location of every string
of length L in the text. Using a TS-file, not only strings of length L but also those
shorter than or longer than L can be searched efficiently.

A retrieval system using transposed files based on single characters, pairs of adja-
cent characters and longer strings of adjacent characters has been reported for searches
of Japanese text['”l. Since the size of the Japanese character set is large, multiple data
structures are provided for these combinations of character classes. This system is
analogous to our method for each L = 1,2, -, however, our method prepares only
one data structure and it has a unique L value.

Since one can find arbitrary strings using the TS-file alone, the proposed method
is more accurate than the one using signature files or PAT treel” by which one can
only know the possibility of existence. The proposed data structure is not made from
a word by word index stored as an inverted index['6l. Tn other words, it does not
depend on any specific language styles, for example, in which words are separated by
blanks and so on. So, the proposed method is applicable to a wide variety of pattern
matches which includes bit strings and genetic information.

From the analysis of search cost, the number of accesses to secondary storage
in order to find the first match to a key is two when the key length [; is shorter
than or equal to L, and 2(L — [ + 1) otherwise. This is far less than in the case of
signature file search. The proposed algorithm is one of the fastest for arbitrary string
searches. And the time required to find all matching patterns is proportional to the
number of matches, which is the lowest rate of increase for these kind of searches.
Because of the high storage cost of the basic TS-file, we introduce a compressed TS—
file by (1)making the data structure a tree to remove unused slots (null pointers), and
(2)storing differences between adjacent elements if possible in order to lower storage
costs for practical use without losing search speed.

Experiments using UNIX online manuals (up to 6.1Mbyte) and network news (up
to 500Mbyte) as source text show that the searches are very fast and their time is
less than 200msec in most cases and several hundred milli seconds even when keys
have many matches or their length is much longer than the level. The overhead of
storing the TS-file compared to text size is 30% when L = 4 and 66% when L = 6
for UNIX online manuals and 47% when I = 4 and 212% when L = 12 for network
news. These overheads are small enough for practical use.

2 Definitions

The alphabet is denoted by ¥. o (=|X|) denotes the size of the alphabet. The TS-file
stores the location of every string of a given length (called a gram) in the text. This
length is called the level, L. A string sought is a key, k, whose length is [;. A key
is constituted of characters ¢;. So a key is denoted by k = ¢i¢cz--- ¢, (¢; € ¥). The
length of the text searched is n characters. The text is assumed to be large compared
with the size of main memory and is stored on secondary storage. Data are transferred
to and from the main memory in blocks of size B words. The units of memory are
word, half word and character. The number of characters per word is w. In typical
cases, 1 word = 4 byte and 1 character = 1 byte so that w = 4.
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Figure 1: TS-file: Basic Structure (L = 4).

text

3 Basic TS—file and Its Storage Cost

3.1 Basic Data Structures

The basic TS-file consists of a leaf and a locator. Because the number of combinations
of strings with length I is o, the leaf has addresses of I digits in the o-ary system
(0,1,---, 0% —1)(see Fig. 1). We call each leaf address a slot. Fach slot has a pointer
which points to a bucket in the locator or null. FEach bucket has pointers which
point to locations in the text. The bucket which is pointed to by a slot stores the
locations where the strings corresponding to the slot are found in the text. If there
is no corresponding string in the text, the pointer in the slot is null.

3.2 Storage Cost

The size of the leaf is o words assuming 1 word/slot. The size of the locator is
n — L+ 1 ~n words assuming 1 word/pointer because there are n — I 4+ 1 strings of
length L in the text. Summing these up, the storage cost becomes

ol +n [word]. (1)

When slots used (i.e. not null) are sparse, we collect only used slots. Then slots
become two words each because each slot should contain a slot value also. In this
case a leaf is at most 2n words because the number of slots does not exceed n. Taking
account of this collection of used slots, the storage cost becomes less than

min{2n,o"} +n [word. (2)

If we can store information without having to align word boundaries, we can store
data in every bit. The slot value is expressed in L[log, o] bits and the pointer is
expressed in [log, n| bits, so the above cost becomes as follows.

min{n(L[log, 7] + [log, n]), " [log, n]} + n[logy n] [bit]. (3)

4 Search Algorithm and Its Cost

This section shows concrete algorithms based on the data structure introduced in 3.
We obtain a search cost by estimating the number of block transfers between main
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memory and secondary storage.

4.1 Search Algorithm

The algorithm is explained in terms of three cases according to the relation between
[, and L.
(A) I, =1L

(1) Obtain a slot address for k by

lg
s = Z ord(ci)aL_Z, (4)
i=1
where ‘ord’ represents an arbitrary function which maps each character uniquely
onto 0,1,---,0 — 1.

(2) Find a bucket of the locator which stores pointers to the same strings as & by
following the pointer in the slot obtained in (1).

(3) List the locations where k appears in the text by following the contents in the
bucket found in (2).

(B) I, < L
(1) Obtain lower and upper limit of slots (s; and s, respectively) since the slots to
be searched are consecutive.
I '
$1 = Zord(ci)aL_Z, (5)
i=1
3

Sy = Z(ord(ci) + 5i7lk)aL_i -1, (6)

i=1
where 6;; = 1,8, ; = 0(¢ # j).

(2) Obtain buckets of the locator which are pointed to by the pointers in the slots
of between s; and s5.

(3) List the locations where k appears in the text by following contents in the
buckets found in (2).

(1) Obtain I — L + 1 slots from the following equation.
L .
55 = Zord(ci_i_j)aL_Z (j=0,---,1,— L). (7)
i=1
(2) Obtain buckets of the locator which are pointed to by the pointers in the slots

sj(j:O,---,lk—L)
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(3) Find candidate locations where k may appear by following contents in the buck-
ets found in (2). Candidate locations for the appearance of the key k in the
text are the offsets of the obtained buckets contents minus j.

ist the locations where k truly appears by intersecting the sets of candidates
4) List the locati here k truly app by int ting the sets of candidat
for each j.

When [, < L, we compute the set sum of locations in the buckets pointed to by the
slots corresponding to strings containing the key. When [, > L, we have to compute
the set product of locations in the buckets pointed to by the slots contained in the
key.

[Examplel] Fig. 2 (a), (b) and (c) show how to follow the pointers in leaves and
locators of a I = 4 TS—file when the key is ‘text’, ‘ftr’ and ‘search’ respectively. Since
the buckets of the locator are stored sequentially, they are drawn in one box and
separated by double lines. O

4.2 Search Cost

We estimate the cost to execute the algorithms in 4.1. Because the TS-file is on the
secondary storage, the search cost becomes the number of block transfers (fetches)
from secondary storage to main memory.
(A)l, =1L

One fetch is required to read a slot computed from equation (4). When the number
of matches for the key is M, [M/B] fetches are required in order to read all matches
in the locator. Summing these up, we obtain the cost fZ.

Jeg =14 [M]B] (8)

The fetches required to find a first match is f! = 2 because only the first block of

eq
the locator has to be read.

(B) Il < L

The algorithm fetches consecutive slots from s; to sy and buckets of the locator
pointed to by these slots. Not only slots but also the buckets pointed to by the
consecutive slots are expected to be stored in adjacent regions of secondary storage.
Then the number of fetches to find all matches becomes

i o= [(ss—si+1)/Bl+[Y M/B],

i:sl

= [0 /B) 4 M/, (©)

i=s
where M; is the number of matches for slot ¢. The first term of this equation becomes
quite small under the compression proposed in 6.2 because it comes from a sequential
scan of the leaf. The fetches required to find a first match is f. = 2 because only the
first block of the locator for the slot s; has to be read.
Although the algorithm fetches [ — L.+ 1 slots and the related parts of the locator,
they are not necessarily adjacent on the secondary storage. So the number of fetches

to find all matches becomes
{p—L+1

fo=l—L+1+ > [M;/B]. (10)

j=1
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text
|eaf | ||| |
jocator | [NRARI |
te¢ [ tex text text et § |
(a) ln = L, key = “teat” (I = L = 4).
ftr
Wﬁw
|eaf | (_U|Q ||||| |
locator | ” | |ﬂ | .| ” ” ” | |
te¢ | ftra ftrb fra_§, |
(b) I < Lkey = “fir” (Iy = 3, L = 4).
arch earc sear
leaf | H|| |u | |
ocator | [I[[ [ ]Il [NEEEN |
s
| kh g
text | search % |

(¢) Iy > L key = “search” (I, = 6, L = 4).

Figure 2: Example of TS-file search

47



Proceedings of the Prague Stringologic Club Workshop ’96

The fetches required to find a first match is f;t =2l — L+1).

We have analyzed the cost in three cases from the relations between [, and L; the
search cost is independent of n as long as the number of matches (M, M;, M;) are
constant. And we have to pay attention to the fact that slots are accessed sequentially
when [, < L, but randomly when [, > L.

5 Comparison with Other Methods

In this section, we review signature files, which are widely used for full text searches,
and PAT trees which provide fast retrieval times. Both are not based on word indices
and can be retrieved by arbitrary strings. We then compare these with the TS-file.

5.1 Signature Files

In section 6, we present a way of compressing TS—files without losing the features
of a fast full text search. Since we have to handle many parameters there, we will
compare our method with search using signature files from the viewpoint of search
speed before section 6. The signature file is a typical example of an auxiliary data
structure which is used in order to make a full text search fast. In this section, we
compare the method proposed in the previous sections with the method of signature
files, and we show the former is much faster than the latter. The signature file is known
as an effective method for fast search and has been studied extensively. Because there
are many forms of signature files, we first outline the signature file which is the object
of comparison with the method proposed. Next we estimate the search cost when the
signature file is used and compare this with the results discussed in section 4.

Since the T'S—file can search for a string in a text which is not necessarily composed
of words, we assume that the signature files with which we are comparing are also
made from grams (i.e. strings of characters) and not words. We divide the text
into logical blocks of D characters. For each logical block, we make a bit vector
of length b bits. We make each bit vector as follows. The bit vector is bit string
of all zeros initially. For each pair of adjacent characters from the beginning of the
logical block, one obtains a number between 0,1, ---,b—1 by applying an appropriate
hash function. The i-th position of the bit vector is set to ‘1’ when the number is 7.
Because the number of such pairs is (D — 1), the hash function sets bits to ‘17 in this
bit vector (D — 1)-times. Although the hash function should be selected carefully so
as to distribute ‘1’s randomly and uniformly, we cannot avoid collisions. Combining
the bit vectors of all blocks, we get a signature file. As we assume n is the length
of the text, the number of logical blocks is [n/D]. We use « for the ratio of b to D
(o = b/ D). Then the size S in bytes of the signature file becomes

S =b/8x [n/D] ~an/8 [byte]. (11)

In order to make the search fast, this signature file is sliced column wise when the bit
vectors to be looked at are stored row wise. S is divided into b sub-files whose size is
Sy =8/b~ an/8b=n/8D.

Next we consider a key search using the above sliced signature file. Since the key
length is [, we compute the locations where ‘17 is set (I, — 1) times from the pairs of
adjacent characters in the key. As we assume [ < D, hash collisions are negligible,
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so the number of these locations is approximately (I, — 1). Searching the (I, — 1)
sub-files which store the location in the bit vectors corresponding to the locations
of 1’s computed from the key, we return as candidates the rows which have 1’s in
all these sub-files. In this case the number of fetches [, of the signature sub-files
becomes

w = Slk—=1)/B
~ n(ly—1)/(8DB) (12)

We know that this search returns the numbers of logical blocks which may contain
the key. So we have to access the text blocks directly and examine them in order to
know whether the key truly exists or not and what are the offsets in these blocks if
it exists.

[Example2] When n = 10%, B = 1024, D = b = 256, = 6,1, = 7, M; = M, = 100,
the numbers of fetches of the two methods are

o = 286

s9

fao= 4

In this case, we see that the method proposed in this paper is about seventy times
faster than the method using signature files. O
[5: does not change with n, however, fi, grows in proportion to n (i.e. O(n)).

5.2 PAT Trees

A PAT treel is a Patricia tree constructed over all the possible strings (called sistring)
formed by starting at a given position and continuing to the end of a text. A Patricia
treel'™ 18] is a digital tree where the individual bits of the keys are used to decide
on the branching. A zero bit will cause a branch to the left subtree, a one bit will
cause a branch to the right subtree. Hence Patricia trees are binary digital trees. In
addition, Patricia trees have in each internal node an indication of which bit of the
query is to be used for branching. This may be given as a count of the number of
bits to skip. This allows internal nodes with single descendants to be eliminated, and
thus all internal nodes of the tree produce a useful branching, that is, both subtrees
are non-null.

Patricia trees store key values at external nodes; the internal nodes have no key
information, just the skip counter and the pointers to the subtrees. The external
nodes in a PAT tree are sistrings, that is, integer displacements. For a text of size n,
there are n external nodes in the PAT tree and n — 1 internal nodes.

Retrieval using a PAT tree follows edges from a root towards leaves by considering
skip counts in nodes. The contents of leaves in a subtree which follow edges where the
bit comparisons end are candidate places for the key. Since there may have been bits
skipped which should have been compared, we have to access the text and confirm
whether we can find the key at that place or not. This method can not avoid false
drops.

The depth of a leaf is the number of comparisons required to distinguish its sistring
from others. The average depth is d = log,n. It is natural to assume that PAT
trees are stored in secondary memory because the texts being searched are large and
therefore also stored in secondary memory.
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We store skip counts of a complete binary tree of e levels * and pointers from nodes
at the lowest level of the tree into a one block space in memory. If we assume these
are represented in a one word space, the size of data in one block is 2! — 1[word].
Then the number of levels which fit into a block is at most e = logQ(B + 1) — 1. When
we cache one block which stores the root of a PAT tree in main memory, the average
number of block accesses to a leaf in order to find a pattern which may match with
the key is at least [d/e] — 1. Including one access to the text for confirmation, this
becomes [d/e].

The whole subtree lying under a point where the bit comparisons end has to be
searched in order to find all patterns which match with the key in a text. If we assume
that the point is at level ¢, the average number of nodes in the subtree becomes 24,
Dividing by the number of words in a block, the number of block accesses becomes
2d—t/B t
[Example 3] When n = 2%°(~ 10°), B = 1024, d = 30,¢ = 9, the number of disk
accesses to find a pattern which matches the key is 4, and the number of accesses to
find all patterns when ¢ = 15 is 32. O

We compare these results with the TS—file when [, < .. The number of accesses
to find one matching string is two in the case of the TS—file. To find all strings
matching a key, we scan a part of the locator of the T'S-file. It contains the same
data as the leaf of a subtree of the PAT tree which starts at a point at level ¢ but its
size 1s half that of the PAT subtree. Based on this, we estimate that the search speed
of the T'S—file is twice as fast as that of the PAT tree in this case. On the other hand,
when [ > L, a PAT tree becomes advantageous in terms of the search speed.

The problem with a PAT tree is its high construction cost. In order to make a PAT
tree, all the sistrings in the text have to be sorted. When n sistrings whose average
length is n/2 are sorted in main memory whose work size is p blocks by multi-way
merge sort, the number of disk accesses is fp p = (n/Bw)*[log,(n/Bw)*/2] . On
the other hand in the case of a TSHile it is ffg = 2(nl/Bw)[log (nL/Bw)].
[Example 4] When n = 2% B = 1024, w = 8, L = 12, p = 2048,

fiar ~ 50,332,000

fig =~ 131, 000. (13)
The sort used in making a TS—file is about 400 times faster than that for a PAT tree.
O

6 Compression of the TS—file

Although we can search for arbitrary strings fast by the method explained in the
earlier sections, the TS—file often becomes too large to store in practice. So we want
to compress the data structure without losing the features of fast full text searches.
We explain compression methods for the locator and the leaf respectively in the
following.

*in a PAT tree a level is a set of nodes which are at the same depth from the root.

TThis is the case when every block is 100% filled up. If we use log, 2 x 100% , an average value
reported in the literature [7], the number of accesses becomes 247/ Blog, 2.

Hn general, the number of disk accesses required to sort 2 blocks of data by p-way merge sort is

2z[log, z].
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6.1 Compression of the Locator

6.1.1 Using Block Numbers for Locations

In this paper, we are not concerned with searches making use of the text structure
(for example SMGL or Hyper text) 120, When we search a large text, however, it
is rather rare that it have no structure. Usually texts have logical blocks at least. So,
numbering each logical block in sequence, we adopt the method in which the numbers
are output as the result of the search instead of the locations (pointers) where the
key appears in the text. Because the number of pointers in one logical block is (the
number of characters in the block —L + 1), the number expressed should decrease
considerably if we use the logical block numbers instead of pointers as output results.
Using block number, a half word may be enough in most cases even if the pointer
is one word 1n these cases. For example, in section 7 we use a UNIX online manual
whose size is 6.11 Mbyte. Although we use 4 bytes (1 word) to express pointers, 2
bytes (half word) is enough to express the number of logical blocks (manual pages)
which is 2707 in total. So we halve the amount of storage. Moreover, since the same
strings often appear in the same logical block, duplicated logical block numbers for the
same string should be removed. If we assume c is the average number of duplications,
the compression rate a. by this compression method in storing the locations where
the key appears becomes

a. =1/2c. (14)

When the locations are stored by block number, —j in the algorithm of 4.1(c)(3)
should be removed, and the result gives only the possibility of existence. Now we
have to access the logical blocks of the text whether the key is truly there or not.
However, we have confirmed experimentally that if L is large enough (L > 6), false
drops are very rare in practice.

6.1.2 Run-length Encoding

According to 6.1.1, each bucket of the locator contains the numbers of the logical
blocks which include a given string of length L. If the differences between adjacent
numbers are small, we can store them in less storage space by sorting these numbers
and storing their differences. This method is called run-length encodingl'6l.

For example, if 7hits is used to express the difference and 1 bit to express whether
the next data is differenced or not, 1 byte (=8bits) is enough to store a block number
when the difference is less than 128. We can halve the memory required for the locator
compared with the case when 2 bytes is used for each logical block number. Assuming
that pg is the probability of being able to store by difference, the compression factor
ag4 by this method becomes

When we apply both 6.1.1,6.1.2 methods, the total compression rate for the locator
becomes a.qy4.
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6.2 Compression of the Leaf
6.2.1 Using a Tree Structure

Although in 3.1 we prepared slots for every sub string of length L, the results of
the experiments in 7 show that the usage rate of slots is not high. As we stated in
3.2, we can remove slots that are not used in order to save space. If these slots are
simply removed and the leaf is compacted, we can no longer compute, using just the
sub string, the slots where the desired pointer to the locator is stored. So another
auxiliary data structure should be added in order to access slots quickly. Firstly, in
each slot we store not only a pointer to the locator but also a slot value computed from
the sub string. Though each slot size increases from 1 word to 2 words, assuming
a slot value can be expressed in 1 word, considerable compression is expected as
a result because slots which have null pointers can be removed. If u; is the usage rate
of the slots, the compression factor becomes

o, = 2u,. (16)

Secondly, we prepare the root, a data structure which stores the values of regularly
spaced slots (interval=by) of the leaf in order to guarantee fast accesses to the required
slots of the leaf. In order to make leaf access only one block, by is set as

by = B/2 (17)

from the fact that the physical block size is B (transfer unit between main and
secondary memory) and each slot is 2 words (one for the slot value and one for
a pointer to the leaf). Using this data structure, two fetches are required to access
the leaf, as long as accessing the root is one fetch. Since the slots of the leaf are
accessed in only one fetch for the basic TS-file, one more fetch is required in this
case. But from the fact that physical data accesses are not required when we retrieve
keys successively because the root is cached in main memory, the influence on search
performance is negligible. If b. is the number of blocks that can be used as the root
cache, the whole root can be put in cache when the usability of slots us is

us < bobyB/20" = b.B*/4a". (18)

Although in most cases, a two-level structure (root and leaf) is enough, we can make
the root into a multi-level structure, i.e. a tree structure, if we can not put the whole
root in main memory. Fig. 3 shows this tree structure.

6.2.2 Compression of Slots

When we adopt the structure for the leaf proposed in 6.2.1, each slot is composed
of a slot value and a pointer to a bucket of the locator. Among these, the former
is compressed to 1 byte by the run-length encoding as 6.1.2, when the difference of
neighboring slot values is less than 128. Because buckets are stored in the order of
corresponding slot value, the pointers which point to buckets can be also compressed
by run-length encoding.

Assuming p, and p,(0 < ps,p, < 1) are the possibilities of storing differences for
slot values and pointers respectively, the compression factor by this method becomes

ap =1—(3/8)(ps + pp). (19)
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Figure 3: Compressed TSfile.

If both 6.2.1,6.2.2 are applied, the size of the leaf becomes o”a,a, and the root
becomes oo, /b;.

7 Experimental Results

In order to confirm that the proposed data structure and algorithm provide very fast
searches and that the compression methods proposed are effective we did experiments
and measured the parameters appearing in 6. The computer mainly used is a SUN
Microsystems Sparc Server 630 (28.5MIPS) and the text searched is a UNIX online
manual. In 7.3 where second stage compression is applied, we also show the results
using network news, whose total size is 100, 300, 500Mbyte, as a source text. Each
search time is measured under the condition that the whole root is cached and no
parts of the leaf and the locator are cached in main memory initially.

7.1 Basic Structure

Experiments were done for the basic TSfile of 3 first (see Table 1). Fig. 4(a) shows
the relationship between text size and search time, and (b) shows the relationship
between level and search time. To make the alphabet size small, upper-case letters
are converted to lower-case and letters other than numerical or alphabetical are all
converted to blanks. That is, ¥={0,1,---,9,a,b,--+ .z,,} and ¢ = 37. Although this
manual consists of 2707 separate files (called manual pages), we concatenated them
into one large non-structured file. In order to change the text size in the experiments,
four different size texts were made from the concatenation of 200, 500, 1000, 2707
pages of online manual respectively. As shown in Table 1, the maximum size of these
texts is 6.11 Mbyte. Because 37% < 232 and 1 word = 4 bytes in this case, the
slot values can be expressed in one word if . < 6. The pointers to the locator are
expressed in one word. The size of the locator and the leaf of each level are shown in
Table 1. In the first experiment, we measured the search time for a key set of ‘1234°,
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Figure 4: Basic

‘123457, 11234567, ‘stri’, ‘strin’, ‘string’. Among these strings, ‘12347, ‘12345’ ‘123456’
are used as low selectivity examples, on the other hand, ‘stri’, ‘strin’, ‘string’ are used
as relatively hight selectivity examples. The numbers of matches are shown in the
‘unix manual’ column of Table 2. Since no false drop occurs in basic TSfile search,
we don’t have to access the text in order to determine the locations where the key
appears. Because the case [ < L is faster than the case [, > L, L is preferably set
somewhat larger than the average key length expected. The number of slots, however,
grows exponentially with I, so we should take care that the leaf does not become too
large by referring to the analysis of 3. The size of the locator is not related to L. Tt
is four times the text size because one pointer is four times longer than one character
(=1 byte). In this experiment, however, it is less than three times as large because
the pointers which point to characters which are neither alphabetic nor numeric are
not stored in order to save storage space.
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level 4 5 signature file
page# 200 500 | 1000 | 2707 200 500 | 1000 | 2707 200 500 | 1000 | 2707
text(MB) 751 1.89 2.80 6.11 751 1.89 2.80 6.11 751 | 1.89 2.80 6.11
leaf(MB) 7.29 | 7.29 7.29 7.29 270 270 270 270

092 | .232 343 750
locator(MB) 2.16 | 5.43 8.05 175 | 2.16 | 5.43 8.05 17.5

1234 | 69.7 | 78.1 73.3 62.3 | 93.2 | 89.0 93.9 89.8 42s .82s 1.2s 2.2s
12345 111 104 157 119 112 | 90.0 95.9 81.1 .35s 67s .98s 1.9s
time | 123456 205 159 234 166 163 197 187 133 34s .59s .83s 1.7s
(ms) stri | 84.3 | 88.9 83.4 93.6 148 120 149 120 .39s N 1.1s 2.2s

strin 191 171 173 170 148 109 146 121 41s .78s 1.1s 2.1s
string 278 262 267 269 257 214 241 184 41s .78s 1.1s 2.1s

Table 1: Experimental Results 1 — Basic Structure

unix manual (page##) news (MB)
200 | 500 | 1000 | 2707 | 100 300 500
1234 3 5 6 13 | 125 516 771
12345 2 3 3 8 51 136 223
123456 2 3 3 6 24 87 137
stri | 57 | 151 | 248 | 601 | 9798 | 15184 | 21817
strin | 40 | 95| 143 | 376 | 867 | 3288 | 4993
string | 40 | 95| 143 | 376 | 867 | 3285 | 4988
database - - - — | 1082 | 4540 | 6706
cryptograph - - - - 9 75 156

Table 2: Number of Matches

The search time measured is that for finding all addresses of matched strings. It is
very fast as predicted in the analysis of 4 and it is less than 300 msec. In particular,
it i1s faster, less than 150msec, when [, < L. Search time does not increase with
text size. The time required to search these texts using the signature files (b = 256)
described in 5.1 is also recorded for reference. In the table ‘s’ indicates that this is
the only search measured in seconds. The size of the signature files is written between
the rows for leaf and locator in this table. We can read the relationship between [, L
and measured time qualitatively although, because the times measured are short and
apt to include measurement errors, it doesn’t necessarily agree with the analysis.

Although a fast search is accomplished with this basic TS-file, the locator and
the leaf which constitute the TS—file are quite large and storing them is burdensome.

7.2 Compression by Block Number and Tree Structure

For the first stage compression of the TS—file, page numbers, which are expressed in
half word (=2 bytes), instead of locations are put in the locator, and a tree structure
is made in order to remove unused slots of the leaf. Table 3(a) shows the experimental
results in this case. The size of the locator, leaf and root are also measured in the
table. The usage rate u; of the slots and the average duplication count ¢ of the same
string in a logical block of the text which relate to the compression rate of the leaf
is measured also. The size of the locator is decreased by 1/4 to 1/10 and the leaf
is decreased as per equation (16). The manual pages don’t have to be concatenated
in this experiment. Fach manual page corresponds to a logical block in 6 and the
output is page numbers. Search time was measured for the same key set as in 7.1.
But it should be noted that when [, > L the time measured is until determining the
possibility of existence. According to another experiment there are no false drops
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for the search strings in the table. The result of these experiments shows that the
searches are quite a lot faster than those using the basic TS—file, because the amount
of data accessed is reduced due to compression.

level 4 5 6
page# 200 500 1000 2707 200 500 1000 2707 200 500 1000 2707
Ug X 100(%) 1.04 1.47 1.81 2.84 0688 104 .130 214 .0034 .0057 .0072 L0122
c 3.06 2.95 2.92 2.74 2.28 2.21 2.22 2.12 1.90 1.84 1.87 1.82
I‘OOt(kB) 612 .864 1.06 1.67 1.49 2.26 2.82 4.64 2.76 4.54 5.77 9.80
leaf(kB) 156 220 272 426 381 578 722 1187 704 1163 1477 2509
locator(kB) 353 919 1377 3197 474 1232 1814 4128 570 1475 2151 4828

1234 | 48.1 | 58.5 78.4 63.5 61.4 61.2 68.6 64.8 61.1 52.5 72.9 81.2
12345 | 48.2 | 80.1 82.1 66.0 62.7 60.9 68.5 63.8 61.5 52.1 62.2 91.8
time | 123456 | 49.0 | 80.9 771 73.6 59.3 83.2 69.4 65.3 69.5 50.3 69.0 89.6
(ms) stri | 83.2 | 94.2 97.9 116 90.2 107 111 115 108 77.3 118 124

strin | 97.1 122 126 151 90.2 116 108 109 114 76.6 126 138
string 158 187 205 242 94.3 136 149 205 114 76.8 126 135

(a) Compression — 1

level 4 5 6
page# 200 500 1000 2707 200 500 1000 2707 200 500 1000 2707
Ps .902 918 .931 951 773 .801 811 .837 .633 .680 .690 711
Pp 1.00 972 .959 .937 1.00 .992 988 977 1.00 .997 .996 .991
Pd 886 .923 919 912 .794 .846 .840 824 684 .746 .738 717
root(kB) 612 .864 1.06 1.67 1.49 2.26 2.82 4.60 2.75 4.54 5.77 9.80
lea.f(kB) 44.8 64.1 79.2 124 128 189 234 380 273 431 544 907
locator(kB) 197 495 744 1739 286 710 1053 2426 375 925 1358 3096

space overhead(%) | 32.3 | 29.6 | 29.4 | 305 | 55.3 | 47.7 | 46.0 | 46.0 | 86.7 | 72.0 | 68.1 | 65.7
1234 | 81.9 | 62.4 | 77.7 | 67.7 | 68.9 | 60.0 | 69.0 | 65.7 | 67.9 | 69.3 | 66.4 | 101
12345 | 82.3 | 62.9 | 79.6 | 56.7 | 67.3 | 61.7 | 57.2 | 64.6 | 65.5 | 69.7 | 63.6 | 101
time 123456 | 72.2 | 65.7 | 79.0 | 74.6 | 66.3 | 61.2 | 71.2 | 70.2 | 63.5 | 66.6 | 66.5 | 101
(ms) stri | 79.0 | 85.7 | 78.0 | 111 | 100 | 93.0 | 94.1 | 124 | 96.8 | 65.6 | 119 | 121
strin | 92.1 | 112 | 105 | 162 | 110 | 102 | 90.4 | 127 | 110 | 746 | 128 | 135
string | 126 | 160 | 187 | 241 | 111 | 106 | 161 | 219 | 111 | 74.7 | 128 | 135

(b) Compression — 2
Table 3: Experimental Results 2

Since a larger I increases the chance of [, < L, it decreases search time. Moreover
if L > [ we know the page numbers which contain the key without accessing the text
because then there are no false drops. So a larger L is more advantageous as long as
storage space permits it.

7.3 Compression by Run-length Encoding

For the second stage of compression, we did an experiment in which the locator and
the leaf are compressed by run-length encoding (see Table 3(b)). Fig. 5(a) shows
the relationship between text size and search time, and (b) shows the relationship
between level and search time. The size of the compressed locator and leaf agree with
the values which are computed from the equations in 6 with the original size and
the compressing probability (ps, py, ps) measured. When L = 4 and the text is 2707
pages, the size of the TS-file (sum of the locator, leaf and root) is 1.86Mbyte which
is 30% overhead against 6.11Mbyte (the text size). This ratio is 65.7% when L = 6
(see space overhead row of the table). Fig. 6(a) shows how TS-file is compressed by
the first and second compression. We also show how search time changes by these
compressions in (b).
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level 4 6 12 sig
root(MB) 0191 | .115 | 1.20 | —
leaf(MB) 123106 | 111 | —
locator(MB) 46.1 | 67.9 | 99.7 | —

space overhead(%) | 47.4 | 78.6 | 212 | 12.3
1234 | 95.8 | 105 | 84.3 | 41s
12345 184 | 115 | 83.5 | 36s
123456 2711 92.4 | 92.0 | 37s
time stri 106 | 163 | 183 | 37s
(ms) strin | 206 | 133 | 167 | 38s
string 331 | 134 | 165 | 37s
database 363 | 290 | 86.6 | 38s
cryptograph 611 | 505 | 78.0 | 13s

Table 4: Experimental Results 3
100MB (Compression—2)

For this compression only, we also tried using 100Mbyte of network news as text
(see Table 4). Fig. 7 shows the relationship between level and search time. Creating
TS-files for the levels of 4,6 and 12, we measured the space and search time. Slots have
twice the length, i.e. 8 bytes, for L = 12 only. we added ‘database’ and ‘cryptograph’
(Ix = 8 and 12 respectively) to the previous list of search strings. The number of
matches are shown in the ‘news’ column of Table 2. 17.5% false drops were observed
for the search string ‘strin’ and level I = 4; however, no false drop was observed for
any other combinations of search strings and levels.

The ratio of the size of the TS-file to the text size is less than half (47.4%)
when L =4 and about twice (212%) when L = 12 (see space overhead in Table 4).
Considering the average length of words is from five to seven, L = 12 is a sufficiently
large level. The size of the root is 1.2Mbyte even when L = 12, which may easily
be put in the main memory. From the fact that ordinary key word indices, which
cannot be used for arbitrary string searches, often become bigger than the text and
that secondary storage devices are increasing their space and decreasing the price per
byte recently, the TS-file is sufficiently small for practical use.

The search time measured is less than 200msec for the strings whose length is less
than six when L = 6 and for all strings searched when L = 12. The search time is
very fast for the arbitrary string searches of the 100Mbyte text.

Searches using signature files (b = 256) are also recorded for reference. Although
the overhead in size (12.3%) is smaller than that of a TS-file, the search speed is very
slow.

We also used 300 and 500Mbyte network news as a text with level L = 12. We
use different computers in this case. A Silicon Graphics Challenge is used to make
the TS—files, and a Silicon Graphics Indy R4600 (62.8 Specint92) is used to search for
keys. We measured the time required to search for the first matches as well as that
for all match (see Table 5). Fig. 8(a) and (b) show the relationship between level and
search time for all and first match respectively. It is proved by this experiment that
the search is fast even when the text size is quite large and its time depends only on
the number of matches.
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Figure 5: Compression
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12 level

text(MB)

100

300

500

root(MB)
leaf(MB)
locator(MB)

1.20
111
99.7

3.94
263
248

7.71
555
442

space overhead (%)

212

172

201

first
match

(ms)

1234

12345
123456

stri

strin

string
database
cryptograph

33.2
36.6
31.0
40.2
34.6
35.7
39.1
36.1

33.1
37.1
37.6
39.2
38.7
34.2
40.6
36.4

37.3
36.8
37.2
38.1
41.9
38.8
37.3
34.6

all
match
(ms)

1234

12345
123456

stri

strin

string
database
cryptograph

41.8
39.0
34.9
72.1
43.3
47.9
45.1
39.6

42.1
33.1
41.7

120
57.7
63.1
63.9
39.8

42.4
35.7
39.2

152
75.3
78.1
78.3
41.8

Table 5: Experimental Results 4
L =12 (Compression—-2)

8 Conclusions

In this paper we introduced the TS-file, a new gram based data structure for fast
full text search, and we gave a set of concrete search algorithms using the TS-file.
Because the proposed method can find an arbitrary string using the TS-file alone,
the proposed method is more accurate than the one using signature files by which one
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can only know the possibility of existence. We also showed that this method is much
faster than searches using signature files by analysis. From the experimental results,
we confirmed that sub string matches of rather short strings, which are common
in practice, can be done very fast. We were able to reduce the size of the TS-file
without losing search speed by introducing two stage compression methods by which
the storage required became sufficiently small for practical use.
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Abstract. A number of new algorithms for regular grammar pattern matching
is presented. The new algorithms handle patterns specified by regular grammars
— a generalization of multiple keyword pattern matching and single keyword
pattern matching, both considered extensively in and [14, Chapter 4] and in
[18].

Among the algorithms is a Boyer-Moore type algorithm for regular grammar
pattern matching, answering a variant of an open problem posed by A.V. Aho in
1980 [2, p. 342]. Like the Boyer-Moore and Commentz-Walter algorithms, the
generalized algorithm makes use of shift functions which can be precomputed
and tabulated.

It appears that many of the new algorithms can be efficiently implemented.

Key words: pattern matching, algorithms, regular grammars, regular pattern
matching, algorithmics, string algorithms

1 Introduction

The pattern matching problem is: given a regular pattern grammar (for a formal
definition see Section 2) and an input string S (over an alphabet V), find all substrings
of S which correspond to the language denoted by some production in the grammar.
Several restricted forms of this problem have been solved (all of which are discussed
in detail in [14, Chapter 4], and in [3, 18]):

¢ The Knuth-Morris-Pratt [12] and Boyer-Moore [5] algorithms solve the problem
when there is only a single production and its right-hand side has no nontermi-
nals — it is in V* (the single keyword pattern matching problem).

e The Aho-Corasick [1] and Commentz-Walter [6, 7] algorithms solve the problem
when all productions in the grammar have right-hand sides without nontermi-
nals — all of them are in V* (this is the multiple keyword pattern matching
problem). The Aho-Corasick and Commentz-Walter algorithms are generaliza-
tions of the Knuth-Morris-Pratt and Boyer-Moore algorithms respectively.
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To date, very few regular grammar pattern matching algorithms have been developed.
Only recently, the generalized Boyer-Moore algorithm was developed [14, 16, 17]*.

It should be noted that there do exist other regular pattern matching algorithms
with good performance — for example, the one which was developed by R. Baeza-
Yates [4, 10]. Those algorithms are not, however, considered here since they either
use regular expressions’ or they require some precomputation on the input string,
and are therefore not suited to the type of application presented in this paper.

This paper is structured as follows:

e Section 2 gives the problem specification, and a naive algorithm.

e Section 3 gives a family of algorithms which process the input string in a left-
to-right manner.

e Section 4 gives a family of algorithms which process the input string in a right-
to-left manner. These algorithms are not symmetrical with the ones in Section 3,
due to our asymmetrical choice of right-linear grammars for our regular pattern
grammars.

e Section 5 presents the conclusions of this paper.
Before continuing with the developement of the algorithms, we first give some of the

definitions required for reading this paper.

1.1 Mathematical preliminaries

Most of the following definitions are standard ones relating to regular grammars and
languages.

Definition 1.1 (Alphabet): An alphabet is a finite, non-empty set of symbols. O
Throughout this paper, we will assume some fixed alphabet V.

Definition 1.2 (Functions pref and suff): For a given string z, define pref(z)
(respectively suff(z)) to be the set of prefixes (respectively suffixes), including string
z and the empty string ¢, of z. O

Definition 1.3 (String manipulation operators): Since we will be manipulating
the individual symbols of strings, and we do not wish to resort to such low-level
details as indexing, we define the following four operators (all of which are infix
operators, taking a string as the left operand, a natural number as the right operand,
and yielding a string):

e wN\ k is the kmin |w| left-most symbols of w.

e w 'k is the kmin |w| right-most symbols of w.

*That research was performed jointly with Richard E. Watson of the Department of Mathematics,
Simon Fraser University, Burnaby, British Columbia, V5A 156, Canada; he can now be reached at
rwatson@RibbitSoft.com.

T Although regular grammars and regular expressions have the same descriptive power, they can
yield algorithms which are substantially different.
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o w/ kis the [w| — kmax0 right-most symbols of w.
o w\ k is the |w| — kmax0 left-most symbols of w.

O

Definition 1.4 (Regular pattern grammar): A (right) regular grammar (also
known as a right linear grammar) is defined to be a three tuple, (V, N, P), where:

e V is our alphabet, known as the terminal alphabet.
e N is an alphabet, known as the nonterminal alphabet.

¢ PC N X (V*UV*N) is a finite and nonempty set of (right linear) productions.
We usually write a given production (A, w) as A — w. We also define left-
hand side and right-hand side functions lhs and rhs (respectively) such that
lhs(A — w) = A and rhs(A — w) = w.

We also define a function vpart on right-hand sides as follows: vpart(w) is
the longest prefix of w containing only symbols in V; that is, we drop the
nonterminal on the right, if there is one. More formally, for a right-hand side
z (for z € V*) we have vpart(z) = z; for a right-hand side B (for B € N,
z € V*) we have vpart(zB) = z.

O

We assume some fixed regular grammar (V, N, P) throughout this paper. Note that,
unlike usual grammars (for parsing, etc.), we do not have a “start symbol”. We have
chosen to use right regular grammars, instead of left regular grammars (which have
the same descriptive power), because they are symmetrical (under reversal); with of
this choice, we must treat both left-to-right and right-to-left algorithms.

Definition 1.5 (Languages of strings and productions): We define function £,
mapping strings in V* U V*N to regular languages over V', as follows (for w € V*):

L(w) = {w}
and (for B € N)
L(wB) = {w)£(B)

We extend function £ to map productions and nonterminals to the regular languages
they denote as follows (for A — w € P):

L(A — w) = L(w)
and
L(A)=(Uw:pe PAAEelhs(p): L(p))

Since this definition may be recursive, we naturally take the usual fixed-point defini-
tion, which always yields regular languages. O
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Property 1.6 (Language of a production): We have the following useful prop-
erty of the language of a production p € P:

L(p) € vpart(rhs(p))V*

O

Intuitively, the above property holds because all words in the language denoted by
some production p have vpart(rhs(p)) as their prefix.

Throughout this paper, we adopt the convention of extending a given function
which takes elements of some set D so that it takes elements of 27 (sets of elements
taken from D). (Typically, this is used to extend a function which takes one produc-
tion, giving a function which takes a set of productions.)

Definition 1.7 (Chain rules): Productions of the form A — B (for A, B € N)
are known as chain rules. (When B has been recognized as the left-hand side of
a production matching a substring, production A — B has been matched as well.)
For this reason, we define function crule € 28 — 27 (where 2 denotes the set of
all subsets of our production set P) as:

crulel)={A—B|A— Be PABeclhs(U)}

We define function erule* to be the reflexive and transitive closure of function crule.
O

2 Problem specification and a naive algorithm

We begin this section with a precise specification of the regular grammar pattern
matching problem.

Definition 2.1 (Regular pattern matching problem): Given an input string
S € V™, and our regular grammar, establish postcondition RPM :

O={(,p)|lu=5Apreflu)yNL(p) O}
O
Intuitively, this means that we are registering all productions which match some
substring of S, along with the left context (in S) of the match location. (That is,
for simplicity, we are registering our matches by their begin-point.) We will use the
notation O, to refer to the set of productions in O which match with left context x

(a prefix of ). More formally, O, = {p| (z,p) € O }.

We can now give our naive (and nondeterministic) algorithm

Algorithm 2.2:

0:=0;
for Lu:lu=5—

O:=0U{l} x{p|pe P Apreflu)ynL(p) #0}
rof{ RPM }
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Note that we are still making some assumptions about our ability to evaluate
membership in £(p).

In the next two sections, we consider adding more determinism to our first algo-
rithm. We will use the property that substrings of S can be characterized as “prefixes
of suffixes” of S or as “suffixes of prefixes” of §.

3 Left-to-right algorithms

We begin by deciding to traverse input string S from left-to-right in the following
algorithm.

Algorithm 3.1:

Lu=¢,8; O:={c} x{p|pe P Apref(S)NL(p) #D};
dou#e¢—
Lu:=1(uN1),u,/1;
O:=0U{l} x{p|p€ P Apref(u)NnL(p)# 0O}
od{ RPM }

O

This algorithm is still far from practical to implement, and we now consider adding
an inner repetition to implement the update of 0. The inner repetition can consider
prefixes of u in either increasing order or decreasing order. We begin by considering
the former.

Algorithm 3.2:

Lut=c.8: 0= {5} x {p| p € P A pref(S) N £(p) £ 0 ):
dou%€—>

Lu:=1(uN1),u/ 1;

ri=cu; O:=0U{l} x{plpePANeeLllp}l

dor#e¢—
v,r:=0(r’\\1),r/1;
dO. OU{lv} x{p|lpePAveEL(p}
od{ RPM }

O

The test v € L(p) is particularly difficult to implement — indeed, almost as
difficult as the problem we are trying to solve. There does not appear to be an easy
manner in which to improve the algorithm, and we abandon its development here.

The following (alternative) algorithm considers prefixes of u in order of decreasing

length.
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Algorithm 3.3:

Lu=¢,85; O:={c} x{p|pe P Apref(S)NL(p) #0};
dou#¢e¢—
Lu=1(uN\1),u/1;
v,ri=u,e; O:=0U{l}x{p|pePAué€L(p}
dov#e—
v,r:i=v\,1, (v 1)r;
O:=0U{lv}x{p|lpe PAveEL(p}
od
od{ RPM }

O

Improving this algorithm appears to be as difficult as the previous one. As a result,
we do not pursue either of them any further.

3.1 A recursive algorithm

We can also develop a recursive algorithm which traverses input string S from left-
to-right. Before presenting the recursive version, we first examine another imperative
algorithm traversing S from left-to-right. It considers productions p and decomposi-
tions u,r : ur = S such that vpart(p) € suff(u). For this algorithm only, we make
two trivial restrictions to patterns and the input string: S # ¢ and there is no pro-
duction p such that rhs(p) = ¢. We also define the following predicate, which makes
the subsequent algorithms more concise:

Definition 3.4 (Predicate R): Predicate R takes an argument in N x V* x (N U
V) x V=

R(A,w,a,u) = A — wa € P AN w € suff(u)

g
Algorithm 3.5:
u,r:=¢,5; 0:= 0;
dor#e¢—
{ur=251}
{ Deal with productions without a nonterminal in the RHS. }
O:=0U{(uN(|w,A — w(r\1))|R(Awr\1,u)};
{ Deal with productions with a nonterminal in the RHS. }
O:=0U{(uN\(|w,A— wB)| R(A,w,B,u) AN B€ N A
pref(r) N L(B) # O };
u,ri=u(r’\\1),r/1;
od{ RPM }
a
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We now present the recursive version of the same algorithm. Beginning with
O = @, the procedure invocation mat(e, S) will yield postcondition RPM.

Algorithm 3.6:

proc mat(u,r) —
{ur=SAr#e}
{ Deal with productions without a nonterminal in the RHS. }
O:=0U{(uNj|Jw,A— w(r\1))|RAwr\ 1Lu)};
{ Deal with productions with a nonterminal in the RHS. }
O:=0U{(uN/|w|,A— wB)| R(A,w,B,u) A BE N A
pref(r) N L(B) # 0 };
if (ry/1)#e— mat(u(r’\N1),r /1)
| (ry1)=¢— skip
fi

corp

O

This algorithm is guaranteed to terminate, since S is a finite string, and the division
between u and r (in S) is monotonically moving from left-to-right with each recursive
call.

The algorithm can be made more efficient (in the next few pages) by moving the
second update of O below the recursive call.

The expression suff(u) occurs in several places within the update of O. We could
introduce a new parameter such that U/ : U = suff(u). In the above algorithm, all
tests for membership in suff(u) involve prefixes of rhs(P). For this reason, we can
introduce the more general U : suff(u) N pref(rhs(P)). This is established with
U = {e} in the initial invocation of mat. We now derive the new value for U in the
recursive invocation of mat, based upon the old value:

suff(u(r’\\ 1)) N pref(rhs(P))
= { property of suff }
(suff(u)(r’\\1) U {e}) N pref(rhs(P))
= { U distributes over N; ¢ € pref(rhs(P)) }
(suff(u)(r’\\ 1) N pref(rhs(P))) U {e}
= {{wa} Npref(W) £ 0 = ({w} N pref(W)){a} N pref(W) £0 }
((suff(u) N pref(rhs(P)))(r \\ 1) N pref(rhs(P))) U {}
= { definition of U }
(U(r\\ 1) N pref(rhs(P))) U {e}
The domain of U is finite, and it conceptually represents a state. There are some
very efficient means of representing this particular domain, which is related to the

Aho-Corasick state function. The new value of U can be more easily computed using
the following function.
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Definition 3.7 (Function 7): We define function 7 € opref(rhs(P)) (NUV) —

opref(rhs(P)) .

7(U,a) = (Ua N pref(rhs(P))) U {0}

O

This function is easily precomputed, since it corresponds to the forward trie con-
structed from the right-hand sides of productions. The updates of O can be made
much simpler with the introduction of the following function (most of which can also
be precomputed):

Definition 3.8 (Function Output): Function Qutput € 2PrefEhs(P) oy
V* x 2prefrhs(P)) i defined as

Output(Uju) = (U Ajw: A—w e PAweU: {uN\ |wl} xcrule"(A — w))

O
These two functions are used in the following version of our algorithm:
Algorithm 3.9:
proc mat(u,r,U) —
{ur=5ANr+#e AU =suff(u) N pref(rhs(P)) }
O := O U Output (t(U,r\ 1), u);
if (r/1)#e— mat(u(r\1),r /1, 7(U,r\ 1))
| (ry/1)=¢— skip
fi;
O:=0U(U B:Be& N Apref(r) N L(B) # 0 : Output(r(U, B),u))
corp
O

The second update of O still contains the predicate pref(r) N £L(B) # @. With this
update appearing after the recursive call to mat, all productions matching at u will
already appear in 0. The predicate can therefore be replaced with B € lhs(O,) in
the following algorithm:

Algorithm 3.10:

proc mat(u,r,U) —

{ur=5Ar#e AU =suff(u) N pref(rhs(P)) }

O:= 0 U Qutput(t(U,r\ 1), u);

if (r/1)#e— mat(u(r\1),r /1, 7(U,r\ 1))

| (ry/1)=¢— skip

f1;

O:=0U(U B:B&N A BE¢€lhs(0,) : OQutput(r(U, B),u))
corp
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For our final improvement, we change the algorithm such that at any given u,r :
ur = 5, we only register local matches (those p matching at u). Any other (nonlocal)
matches are returned by the procedure to be locally registered at their appropriate
local u level. To make the new version concise, we redefine our output function as
follows:

Definition 3.11 (Function Ouiput): Function  Quiput € 2prefrhs(P)
Naturals x 2 now registers matching productions with the number of levels that
they must be passed back for matching

Output(U) = (U A,w: A—w € PAwe U : {|w|} x crule"(A — w))
O

Since this function does not depend upon u (unlike our earlier definition), we can fully
precompute it. The new matching scheme is presented in the final recursive algorithm
(in which we introduce variable matches to hold the intermediate matches):

Algorithm 3.12:

proc mat(u,r,U) —
{ur=5ANr+#e AU =suff(u) N pref(rhs(P)) }
matches := Output(t(U,r\ 1));
if (r /1) # e — matches := matches U mat (u(r\\1),r / 1,7(U,r'’\ 1))
| (ry1)=¢— skip
fi;
matches := matches U (U B: B€ N A
B € lhs(matchesg) : Output(r(U, B)));
O:= 0 U{u} x matchesg;
mat:= (U 1i:0<i:{i—1} x malches;)
corp

O

For efficiency reasons, we also consider two methods by which we can represent the
set matches. Both of the methods rely upon the fact that P is a finite set, and that
the integers (in the first components of variable matches) are in [0, MAX p : p €
P : |p|) — 1] (the upperbound is one less than the length of the longest production).

1. Use signature matches € P — 9l0.(MAX pipePilp-1],

each production to a set of levels that it must be passed up to match locally.

In other words, map

The representation can use an array (indexed by an integer associated with
each production in P) of bit vectors (each of length (MAX p: p € P : |p|))
indicating the number of levels back that the production must be passed for
local registration. All of the updates of matches can be done using bit vector
operations (bitwise-OR). Finding which productions have matched locally is
done by looking up those productions whose corresponding bit vector has the
0 bit set. Computing the final return value of the procedure is done by bit
shifting all of the entries in the representation of matches.
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2. Use signature matches € [0,(MAX p:p€ P:|p|) —1] — 2. Tn this repre-
sentation, we map each level (to be passed on the return) to the set of produc-
tions which match at that level. The representation can use an array (indexed
by level number) of bit vectors (each of length |P|). Again, all of the updates of
matches can be done using bit vector operations (bitwise-OR). Finding which
productions have matched locally is done by looking up those productions in
entry 0 of matches. The return value can be computed trivially if the array is
represented as a circular array (in which the current 0 position is determined
by a separate pointer); in this case, the return value only involves updating the
pointer.

These representations would also yield interesting representations for function Quiput.

4 Right-to-left algorithms

In this section, we consider algorithms which traverse input string from right-to-left
in general. Qur first algorithm consists of a single repetition:

Algorithm 4.1:

Lu:=S,e; O:={S} x{p|lpePAreeL(p}
dol#¢e¢—
Lu=1N1,( 7 1)u;
O:=0U{l} x{p|pe P Apref(u)NL(p)£0}
od{ RPM }

d

The update of O in the repetition must still be implemented. This will be addressed
shortly in Section 4.1. Another possible implementation is to use a nested repetition
to traverse the prefixes of u in order of increasing length, as in the following algorithm:

Algorithm 4.2:

Lu:=S,e; O:={S} x{p|lpePArececLl(p}
do!#¢e¢—
Lu:=1IN1, /"y
v,ri=c,u; O:=0U{l} x{p|lpePAreeLl(p}
dor#¢—
v,ri=v(rN1),r/ 1;
O:=0U{l} x{p|lpePArveLl(p}
od
od{ RPM }

d

In Section 4.2, this algorithm will be used as the starting point for the derivation of
a particularly efficient new algorithm.

The inner repetition of the above algorithm could also be structured to consider
prefixes of u in order of decreasing length:
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Algorithm 4.3:

Lu=>95,¢ 0:={Stx{plpePAreeLlp}
dol#¢e¢—
Lu:=1N1,(,1)u;
v,ri=u,e; O:=0U{l} x{p|lpePAueL(p}
dov#e—
v,ri=o0N\1, (v, 1)r;
O=0U{l}x{p|lpePANvel(p}
od
od{ RPM }

O

It does not appear that there are any straightforward methods for improving the

efficiency of Algorithm 4.3.

4.1 Improving the single-repetition algorithm

In this section, we make some improvements to Algorithm 4.1. The update of O can
be made much simpler by introducing a new variable W:

W ={x |z € suff(rhs(P)) A pref(u)N L(z) # D}
The resulting algorithm is:
Algorithm 4.4:

lLiu:= 9, ¢;

W:={z |z € suff(rhs(P)) A e € L(z) };

O:={S} x{p|p€ P Arhs(p) e W };

dol#¢—
Lu:=1N1,(1)u;
W:={xz |z € suff(rhs(P)) A pref(u) N L(z) # O };
O:=0U{l} x{p|p€ P Arhs(p)c W}

od{ RPM }

O

The initialization of W can be greatly simplified using the chain-rule relation crule:

Algorithm 4.5:

lLiu:=9,¢;

W .= {e} Ulhs(crule*({p | rhs(p) = ¢ }));

O:={S} x{p|p€ P Arhs(p) € W };

do/#¢—
Lu:=1N1,(,1)u;
W:={xz |z € suff(rhs(P)) A pref(u) N L(z) # O };
O:=0U{l} x{p|p€ P Arhs(p)c W}

od{ RPM }
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We now need an efficient implementation of the update of W. We can derive the
update as follows, starting with the new value (after the updates of [ and u):

{z | = € suff(rhs(P)) A pref(({ /" 1)u)NL(z) £ O}
= { property of pref}
{z |z € suff(rhs(P)) A ({e} U (I /1)pref(u)) N L(z) # O}
= { N distributes over U }
{z |z € suff(rhs(P)) A (I /1)pref(u)N L(z) #O Ve € L(x))}
= { split quantification }
{z |z € suff(rhs(P)) AN e € L(z)}
U{z |z € suff(rhs(P)) A (I /1)pref(u) N L(z) £ O}
= { use crule* for first quantification }
{e} Ulhs(crule*({p|p € P Arhs(p) =¢c}))
U{z |z € suff(rhs(P)) A (I " 1)pref(u)nN L(z) # O}
= { change of bound variable in second quantification: = = ([ 1)z’ }
{e} Ulhs(crule*({p|p € P Arhs(p) =¢c}))
U{({ " Da"| (I 71)z" € suff(rhs(P)) A (I /7 1)pref(u) N L((I " 1)z') # D}
= { apref(u) N L(az") # O = pref(u) N L(z") # O; first conjunct }
{e} Ulhs(crule*({p|p € P Arhs(p) =¢c}))
U{( " Da"| (I 71)z" € suff(rhs(P)) A pref(u) N L(z") # D}
= {az € suff(W) = = € suff(W) }
{e} Ulhs(crule*({p|p € P Arhs(p) =¢}))
U{({ " 1Da"| (Il 71)z" € suff(rhs(P)) A 2z’ € suff(rhs(P)) A
pref(u) N L(z') £ O}
= {invariant on W }
{e} Ulhs(crule*({p | p € P Arhs(p) =¢}))
U/ AND{2"| (I 71)z" € suff(rhs(P)) Az’ € W}

Since the domain of W is finite, we can define a state set, and an initial state.

Definition 4.6 (State set): State set is defined as () = suff(rhs(P)). The initial
state gy is defined to be

{e} Ulhs(crule*({p | rhs(p) = ¢ }))

O

Using this state set, we can also define a transition function (using the derivation
above).

Definition 4.7 (Function o): Transition function o € Q x V — @ is defined as

o(q,a) =qUa{y | ay € suff(rhs(P)) Ay € ¢}

The state set and the transition function can be used in the final algorithm:
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Algorithm 4.8:

liu:= 9, ¢;
W= qo;
O:={S}x{p|pe P Arhs(p) ¢ W};
do!l#¢e¢—
Lu:=1N1,(1)u;
W:=o(W,l /1),
O:=0U{l} x{p|pe P Arhs(p) e W}
od{ RPM }

O
This algorithm can be simplified somewhat by defining an output function for the

update of O, and by applying Aho-Corasick-like simplification of the state set.

4.2 Improving an algorithm with two repetitions
We begin with Algorithm 4.2, duplicated here:
Algorithm 4.9:

Lu=>95,¢ 0:={Stx{plpePAeceLl(p}
do!#¢—
Lu:=1N1,( " 1)u;
v,ri=e,u; O:=0U{l} x{p|pePAeeL(p}
dor#ce—
v,r:=0(r’N\1),r/ 1;
O:=0U{l} x{p|pePArveEL(p}
od
od{ RPM }

O

In this algorithm, as we consider prefixes of u of increasing length, we can make use
of some information already stored in the set O. We will use the variable v to keep
track of partial matches corresponding to right-hand sides of productions. Once we
have a completed right-hand side, the match can be registered, along with any other
matches induced by chain rules. We consider the two possible forms of right-hand
sides separately.

We begin by rewriting the set

{plpePAveLl(p)}

(used in the inner repetition’s update of O in the algorithm above, and catering to
the simpler form of right-hand side) as

crule*({p|p € P Arhs(p) =v})

We now turn to the second form of right-hand side. In the following derivation, we
rely upon the fact that the outer repetition considers string S from right-to-left. We
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would like to register a match when there is some nonterminal A € lhs(O,,) (that is,
A is the left-hand side of some production matching in r, with left context [v) and
vA is the right-hand side of some production. More formally, the set of such matches
is

crule*({p|p € P Arhs(p) =vA A A € lhs(Oy,) })
We use these two formulas in the following algorithm:

Algorithm 4.10:

lyu:=S,e; O:={S} xcrule*({p|p€ P Arhs(p) =¢});
dol#¢—
Lu=1N1,( 7 1)u;
v,ri=c¢,u; O:=0U{l} xcrule*({p|p € P Arhs(p) =c});
dor#e¢—
v,ri=o(rN\1),r/1;

O:=0U{l} xcrule*({p|p€ P Arhs(p) =v});
O:=0U{l} xcrule*({p|p€ P Arhs(p) =vA A A €lhs(Oy,) });
od
od{ RPM }

O

The twin updates of O in the inner repetition arise from the fact that we have two
different types of right-hand sides to consider.

In the above algorithm, we note that, once v ¢ pref(vpart(rhs(P))), it is not
possible to find a further match by extending v on the right. It is thus possible
to terminate the inner repetition once further iterations are futile. This is done by
extending the inner repetition guard to r # ¢ cand v(r’\( 1) € pref(vpart(rhs(P))).

This change also happens to give us the inner repetition invariant
v € pref(vpart(rhs(P))), which is initially true by the redundant initialization of v.
This invariant encompasses the information which we will later use to improve the
algorithm. For this reason, we would also like to have this as an invariant of the outer
repetition. This can be done by adding the initialization v,r := e, ¢ at the beginning
of the program. All of these improvements yield the following algorithm:

Algorithm 4.11:

liu:=S,¢;
v,r:=¢,e; O:={S} x crule*({p|p € P Arhs(p) =¢c});
do!#¢—

Lu=1N1,( 7 1)u;

v,ri=¢e,u; O:=0U{l} xcrule*({p|p € P Arhs(p) =¢});

do r # ¢ cand v(r’\\ 1) € pref(vpart(rhs(P))) —
v,ri=0(r’N1),r/ 1;
O:=0UA{l} xcrule*({p|p € P Arhs(p) =v});
O:=0U{l} xcrule*({p|p € P Arhs(p) =vA A A €lhs(O,) });

od

od{ RPM }
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The evaluation of the inner repetition guard can be done by using a trie.

Definition 4.12 (Function 7,.4): The {rie for (the finite set of keywords)
rhs(P) (over combined alphabet N U V) is function 7.4 € pref(rhs(P)) x V —
pref(rhs(P)) U {L} defined by
| aw if wa € pref(rhs(P))
Trea (10, @) = { 1 if wa ¢ pref(rhs(P))
This function is known as the reduced trie — a compressed version of the function 7

given in Definition 3.7. O

Using the trie, we rewrite the conditional conjunct v(r’\ 1) € pref(vpart(rhs(P)))
as

Trea (0,7 (1) # L
(This hinges upon the fact that pref(vpart(rhs(P))) C pref(rhs(P)) and S € V*.)

To make the algorithm more concise, we also define the following output function:

Definition 4.13 (Output function): Function Out € pref(rhs(P)) — 27 is
defined by
Out(w) = crule”({p [ p € P A rhs(p) = w})
O
Function Out is easily precomputed. Tt is obvious that we can use Out for the first

update of O in the inner repetition. We can use this function, along with the reverse
trie, to rewrite the second update of O in the inner repetition, as follows:

crule*({p|p € P Arhs(p) =vA A A € lhs(Oy,) })
= { definition of 7,4 }

crule*({p | p € P A rhs(p) = 7eq(v, A) AN A € 1hs(Oy,) })
= { definition of Out }

Out ({ Tyea(v, A) | A € Ths(Oy,) })

Using these two functions yields the following algorithm:

Algorithm 4.14:

l,bu:=S,¢;
v,r:=¢,e; O:={S} x Out(e);
do/ #¢—

Lu:=1N1,(,1)u;

v,r:=¢,u; O:=0U{l} x Oul(e);

do r # ¢ cand T.4(v, 7\ 1) # L —
v,r:=v(rN\1),r/1;
O := O UA{l} x Out(v);
O:= 0 UA{l} x Out({rrea(v,A) | A €lhs(O,) } \ {L});

od

od{ RPM }
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4.3 Greater shift distances

In a manner analogous to the Commentz-Walter and Boyer-Moore algorithm deriva-
tions in [14, Chapter 4] or [18, 20], we can use the invariant v € pref(vpart(rhs(P)))
on subsequent iterations of the outer repetition to make a shift of £ > 1 symbols by
replacing the assignment [, u := I\ 1,(l " 1)u by l,u:=1Nk,(I /' k)u.

As with the Commentz-Walter and Boyer-Moore algorithms, we would like an ideal
shift distance — the shift distance to the nearest match to the left (in input string 5.
Formally, this distance is given by: (MIN n: 1 <n < || A pref((I /" n)u) N L(P) #
@ :n). Any shift distance less than this is also acceptable, and we define a safe shift
distance (similar to that given in [14, Chapter 4] and in [18, 20]).

Definition 4.15 (Safe shift distance): A shift distance k satisfying
1<E<(MINn:1<n<|l|Apref(l n)u) NL(P)#O:n)

is a safe shift distance. We call the upperbound (the quantification) the mazimal safe
shift distance or the ideal shift distance. O

Using a safe shift distance, the update of [,u then becomes [,u:= I \/k, (Il /' k)u.
In order to compute a safe shift distance, we will weaken predicate pref((! /n)u) N
L(P) # @ (which we call the ideal shift predicate) in the range of the maximal safe
shift distance quantification. This technique of using predicate weakening to find
a more easily computed shift distance was introduced in [18] and used in [14, 20].
The weakest predicate, true, yields a shift distance of 1 — which, in turn, yields our
last algorithm. We now find a weakening of the ideal shift predicate which is stronger
than true, but still precomputable.

In the following weakening, we will first remove the dependency of the ideal shift
predicate on r and then [. The particular weakening that we derive will prove to
yield precomputable shift tables. Assuming 1 < n < |l| and the (implied) invariant
u = vr, we begin with the ideal shift predicate:

pref((I /' n)u)NL(P) # 0O
= {invariant: v = vr}
pref((l /' n)or)NL(P) # O
= { discard lookahead to r: r € V*, monotonicity of pref and N}
pref(({ /n)oV*)NL(P) # O
= {domain of [ and n: n <|l|,so (I /'n) € V™}
pref(V*oV*)N L(P) # O
{ property of pref (see [14, Chapter 2]) }
VioV*NL(P)V* # O
= { property of L(P): L(P) C vpart(rhs(P))V* }
V*oV* nvpart(rhs(P))V*V* £ 0
{V*V*=V*}
V*oV* N vpart(rhs(P))V* £ 0
{ property of languages (see [14, Chapter 2]) }
V*oV* N vpart(rhs(P)) # O vV Vv N vpart(rhs(P))V* # 0
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Note that we have removed the dependence upon [, meaning that we can remove the
upper bound on n in the MIN quantification. Given the last line above, we have the
following approximation:

(MIN n: 1 <n <|l|Apref(({ /n)u)NL(P)# D :n)

> { derivation above, disjunction in the resulting range predicate }
(MIN n:1 <nAV™V*Nvpart(rhs(P)) # O : n)
min(MIN n:1 <n A Vv N vpart(rhs(P))V*# 0 : n)

This last line above can be written more concisely with the introduction of a pair of
auxiliary functions.

Definition 4.16 (Functions b,,b;): We define two functions by, by with signatures
by, by € pref(vpart(rhs(P))) — Naturals (the domain comes from the fact that
v € pref(vpart(rhs(P)))) as:

bi(z) = (MINn:1<nAV"zV*Nvpart(rhs(P))#£ O :n)
by(z) = (MINn:1<nAV"Nvpart(rhs(P))V* £ 0 :n)

These two functions are, in fact, reversed versions of the Commentz-Walter shift func-
tions (known as dy and dy) for (finite) keyword set vpart(rhs(P)). Their precompu-
tation is extremely well understood, and is detailed in [18, 20]. The precomputation
algorithm involves the trie (for rhs(P)) 7,4, introduced earlier. O

Using the auxiliary functions, our approximation of the ideal shift distance is
bi(v) minb,(v). Using the new shift distance yields our final algorithm (with new
variable A to hold the shift distance):

Algorithm 4.17:

lLiu:= 9, ¢;
v,ri=¢,¢; O:={5} x Out(e);
do!l#¢e¢—

h:= bi(v) minby(v);
Lu=1Nnh, (I h)u;
v,r:=¢,u; O:=0U{l} x Oul(e);
do r # ¢ cand T.y(v, 7\ 1) # L —
v,r:=0(r’\\1),r/1;
O := O UA{l} x Out(v);
O:= 0 UA{l} x Out({rrea(v,A) | A €1hs(Oy,) } \ {L});
od
od{ RPM }

4.3.1 Specializing the pattern matching algorithm

By restricting the form of the regular grammars, we can specialize Algorithm 4.17 to
obtain a reversed version of the Commentz-Walter and the Boyer-Moore algorithms.
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The most straightforward specialization is to restrict the productions to be of
the form A — w for w € V* and each nonterminal appears as at most one left-
hand side. From this restriction, we have vpart(rhs(P)) = rhs(P). In this case,
the set of productions essentially represents a finite set of keywords rhs(P) (the
left-hand sides are redundant). We can then delete the second update of O in the
inner repetition, since it is used exclusively for productions with a nonterminal as
the right-most symbol of the right-hand side. The resulting algorithm is the reversal
to the Commentz-Walter algorithm without lookahead. (For a presentation of the
Commentz-Walter algorithm, see [14, Section 4.4] or [19].)

We can similarly restrict the set of productions to consist of a single production
A — w for w € V*. In this case, we obtain a variant of the Boyer-Moore algorithm.
(For a number of variants of the Boyer-Moore algorithm, see [14, Section 4.5] and

[11].)

4.3.2 Improving the algorithm

We now briefly mention two approaches to improving this algorithm (both of which
are discussed in more detail in [14, Chapters 4 and 5]):

e In the derivation of a weakened range predicate, we eliminated any (right)
lookahead into string r by replacing it with V*. We could have retained a single
symbol of lookahead, by replacing r with (r  1)V*. We could then have further
manipulated the predicate and defined a third shift function.

e Also in the derivation, we discarded any (left) lookahead into [ by replacing
[ /n with V. We could have kept a single symbol of lookahead by replacing
[ /'n with V"=1(1 /1). This would also have yielded a different shift function.

5 Conclusions

We have succeeded in deriving and presenting a number of new algorithms for the
regular grammar pattern matching problem. The interesting, and possibly efficient,
algorithms include a generalization of the Boyer-Moore algorithm, a recursive al-
gorithm (which resembles a generalized Aho-Corasick algorithm), and an algorithm
based on a type of finite automaton.

Interestingly, the Boyer-Moore type algorithm presented here was only derived
after a regular tree pattern matching version of the algorithm was developed [15].

Future directions include implementing all of the algorithms and collecting bench-
marking data.
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