

Searching with Extended Guard and Pivot Loop

Waltteri Pakalén <u>Jorma Tarhio</u> Bruce W. Watson

Outline

- Exact string matching:
 Find the occurrences of P = p₀...p_{m-1} in T = t₀...t_{n-1}
- Tune-up technique: Guard test with q-gram
 - Experimental results
- Tune-up of SSM algorithm
 - Pivot loop
 - Variations
 - Experimental results

Guard Test with q-gram

Horspool/SMART

 $s \leftarrow 0;$ while $s \le n-m$ do $i \leftarrow 0$ while i < m and $p_i = t_{s+i}$ do $i \leftarrow i+1$ if i = m then report $s \leftarrow s + shift[t_{s+m-1}]$

Horspool with Guard Test

```
prefix \leftarrow p_0
s \leftarrow 0;
while s \le n-m do
if \ prefix = t_s \ then
i \leftarrow 1
while i < m and p_i = t_{s+i} \ do \ i \leftarrow i+1
if \ i = m \ then \ report
s \leftarrow s + shift[t_{s+m-1}]
```

Guard Test

- A. Hume and D. Sunday: *Fast string searching*.
 Software: Practice and Experience 1991
- T. Raita: *Tuning the Boyer-Moore-Horspool string searching algorithm*.
 Software: Practice and Experience 1992

Guard Test with q-gram, q = 2, 4, 8

```
\begin{array}{l} \text{prefix} \leftarrow p_{0}...p_{q-1} \\ \text{s} \leftarrow 0 \\ \text{while } \text{s} \leq n-m \text{ do} \\ \text{if } \text{prefix} = t_{s}...t_{s+q-1} \text{ then} \\ \text{i} \leftarrow q \\ \text{while } \text{i} < m \text{ and } p_{i} = t_{s+i} \text{ do } \text{i} \leftarrow \text{i+1} \\ \text{if } \text{i} = m \text{ then } \text{report} \\ \text{s} \leftarrow \text{s} + \text{shift}[t_{s+m-1}] \end{array}
```

Checking q-grams as Entities

- J. Tarhio and B. W. Watson: *Tune-up for the Dead-Zone algorithm*. PSC 2020
- S. Faro and M. O. Külekci: Fast packed string matching for short patterns. ALENEX 2013
- A. Sharfuddin and X. Feng: Improving Boyer-Moore-Horspool using machine-words for comparison. ACM 2010
- M. A. Khan: A transformation for optimizing string-matching algorithms for long patterns. The Computer Journal 2016

Speed-ups, English, q = 8, m = 8

BF 3.11 SMITH 1.31 NSN 1.29 1.26 HOR TSW 1.25 TS 1.15 RAITA 1.14 BR 1.12 GRASPM 1.03 ASKIP 1.02

Speed of BF with q = 4, 8

- BF4 is faster than other comparison-based algorithms for m = 4 on English and DNA
- BF8 is faster than other comparison-based algorithms for m = 8 and 16 on English and DNA
- On English, the rank of BF8 for m=8 is #16 among all algorithms of SMART
- BF8 is faster than any algorithm of SMART for m = 8 on rand2

Pivot Loop and SSM

SSM, Pivot loop

- The SSM algorithm¹ (Simple String Matching) utilizes a special skip loop where a pivot, a selected position of the pattern, is tested at each alignment of the pattern.
- □ In case of failure, the Horspool shift is applied.
- We call this kind of skip loop a pivot loop.

¹ A. M. Al-Ssulami: Hybrid string matching algorithm with a pivot. Journal of Information Science 2015

Model of Exact String Matching

- 1 s ← 0;
- 2 **while** s ≤ n−m **do**
- 3 while condition do $s \leftarrow s + shift1$
- 4 match loop
- 5 $s \leftarrow s + shift2$

SSM

- □ condition: $p_c \neq t_{s+c}$ where c is the pivot position
- shift1: Horspool
- match loop: backward
- shift2: proprietary
- a stopper is used

Selection of Pivot

- Compute the distance of each p_i to its next occurrence to the left in the pattern or to the left end.
- Select p_i with the largest distance.
- Example: aaacbaaaa

SSM shift2 vs. BM good suffix

□ Shift of the pattern after character mismatch in the match loop

	а	а	а	С	а	а	а	а	t	g	а	а
SSM shift2	9	9	9	9	9	9	9	9	9	9	9	9
good suffix	3	2	1	4	10	10	10	10	10	10	10	10

	а	а	а	а	b	а	а	а	а
SSM shift2	5	5	5	5	5	5	5	5	5
good suffix	4	3	2	1	5	5	5	5	5

ababab222222222446681good suffix

Variations

- 2 **while** s ≤ n−m **do**
- 3 while condition do $s \leftarrow s + shift1$
- 4 backword match loop
- 5 $s \leftarrow s + shift2$
- Pivot (8 alternatives)
 - least frequent character
 - o q-gram
- Shift1 (4 alternatives)
 - Sunday
 - Berry-Ravindran
- Shift2 (2 alternatives)
 - original + good suffix

Experimental Results (speed-up)

		English			DNA	
	5	10	20	5	10	20
SSM-ASC	1.13	1.06	1.03	1.04	0.99	0.98
SSM-AFSC	1.31	1.21	1.11	0.99	0.83	0.72
SSM-ASGC	1.33	1.28	1.19	1.00	0.84	0.73
SSM-USC	1.51	1.28	1.07	1.96	1.46	1.17
SSM-UBC	1.82	1.70	1.72	2.61	2.56	2.71
SSM-UXC	1.68	1.70	1.82	2.90	2.96	3.22
SSM-VBC	-	1.76	1.82	-	2.61	2.71
SSM-VXC	-	1.70	1.82	-	3.09	3.22
SSM-MB	1.41	1.38	1.41	1.24	1.27	1.45
SSM-WB	1.82	1.76	1.72	2.61	2.61	2.71
SSM-WX	1.75	1.76	1.94	3.03	3.09	3.32
SSM-WBZ	2.28	1.89	1.35	-	-	-

- U: 4-gram pivot p_{m-4}...p_{m-1}
- X: shift1 modified Berry-Ravindran
- C: shift2: SSM shift2 + good suffix

Conclusions

- Guard test with 8-gram made BF competitive.
- The SSM algorithm offers a platfom for experimentation.
- Tune-up of an algorithm may outcome a significant speed-up.