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Notation & the Shuffle

Operation



Notation

Σ: A finite alphabet

Σ∗: Set of a all words (finite sequences), ε denotes empty word

of length zero

Language: Subset of Σ∗

Projection for Γ ⊆ Σ; Mapping πΣ,Γ : Σ∗ → Γ∗ given by

πΣ,Γ(x) =

{
x if x ∈ Γ

ε otherwise

and πΣ,Γ(ux) for u ∈ Σ∗, x ∈ Σ.

Language Families: We will consider regular, context-free,

context-sensitive, recursive and recursively enumerable

languages.

Automata: We will mention deterministic finite automata (DFA) and

non-deterministic finite automata (NFA)

P(M): Power set of set M
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Shuffle Operation

The shuffle operation, denoted by �, is defined by

u� v :=

{
x1y1x2y2 · · · xnyn |

u = x1x2 · · · xn, v = y1y2 · · · yn,
xi , yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1

}
,

for u, v ∈ Σ∗ and L1 � L2 :=
⋃

x∈L1,y∈L2
(x � y) for L1, L2 ⊆ Σ∗.

Example: {ab}� {cd} = {abcd , acbd , acdb, cadb, cdab, cabd}
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Initial and Literal Shuffle &

Motivation



Initial and Literal Shuffle

I : (Σk)n → Σnk denotes interleaving.

Example: I (aab, bbb, aaa) = abaababba.

Berard (1987) Let U,V ⊆ Σ∗. The initial literal shuffle of U and V is

U �1 V = {I (u, v)w | u, v ,w ∈ Σ∗, |u| = |v |,
(uw ∈ U, v ∈ V ) or (u ∈ U, vw ∈ V )}.

and the literal shuffle is

U �2 V = {w1I (u, v)w2 | w1, u, v ,w2 ∈ Σ∗, |u| = |v |,
(w1uw2 ∈ U, v ∈ V ) or (u ∈ U,w1vw2 ∈ V ) or

(w1u ∈ U, vw2 ∈ V ) or (uw2 ∈ U,w1v ∈ V )}.

Example: {abc}�1 {de} = {adbec},
{abc}�2 {de} = {abcde, abdce, adbec, daebc , deabc}.
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Motivation

1. Introduced to model the synchronization of two processes (the

general shuffle models full concurrency).

2. Initial and Literal Shuffle are not associative.

3. So, how to model more than two synchronous process? How to

define iterated versions naturally?

4. Here, we present n-ary variants of this operation to remedy these

defects.
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Introducing the n-ary Variants



The n-ary Initial Literal and Literal Shuffle

Instead of two words that are interleaved letter-wise, we interleave n

input words that way.

Write w1, . . . ,wn as wi = x
(i)
1 · · · x

(i)
m where x

(i)
j ∈ {ε} ∪ Σ.

• �n
1 : (Σ∗)n → Σ∗ denotes the n-ary initial literal shuffle:

�
n
1(w1, . . . ,wn) = x

(1)
1 · · · x

(n)
1 x

(1)
2 · · · x

(n)
2 · . . . · x (1)

m · · · x (n)
m

where ∀j ∈ {1, . . . ,m − 1} : x
(i)
j = ε⇒ x

(i)
j+1 = ε. (i ∈ {1, . . . , n})

• �n
2 : (Σ∗)n → P(Σ∗) denotes the n-ary literal shuffle:

�
n
2 (w1, . . . ,wn) = {x (1)

1 · · · x
(n)
1 x

(1)
2 · · · x

(n)
2 · . . . · x (1)

m · · · x (n)
m |

∀i ∈ {1, . . . , n} ∃j ≤ j ′ (∀k ∈ {j , . . . , j ′} ∩ [1,m] : x
(i)
k 6= ε)∧

(∀k ∈ {1, . . . , j − 1} ∩ [1,m] : x
(i)
k = ε)∧

(∀k ∈ {j ′ + 1, . . . ,m} ∩ [1,m] : x
(i)
k = ε). }

where [1,m] = {1, . . . ,m} (case {j , . . . , j ′} ∩ [1,m] = ∅ possible)
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The n-ary Literal Shuffle, Example

Graphical depiction of the word
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Iterated Variants

Let L ⊆ Σ∗ be a language. Then, for i ∈ {1, 2}, define

L�i ,~ = {ε} ∪
⋃
n≥1

�
n
i (L, . . . , L).
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Formal Properties

Formal Properties: Let L1, . . . , Ln ⊆ Σ∗ and π : {1, . . . , n} → {1, . . . , n}
a permutation. Then

1. Lπ(1) · . . . · Lπ(n) ⊆ �n
2(L1, . . . , Ln)

L∗1 ⊆ L�2,~
1 ; (concatenations in any order)

2. Let k ∈ N0. Then

�
n
2(L1, . . . , Ln) = �n

2(L((1+k−1) mod n)+1, . . . , L((n+k−1) mod n)+1)

(cyclic permutation of arguments)

3. �n
1(L1, . . . , Ln) ⊆ �n

2(L1, . . . , Ln) ⊆ L1 � . . .� Ln;

L�1,~
1 ⊆ L�2,~

1 ⊆ L�,∗1 ; (inclusion relations)

4. for u1, . . . , un, u ∈ Σ∗, if u ∈ �n
i ({u1}, . . . , {un}), then

|u| = |u1|+ . . .+ |un| (length preserving)
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Closure Properties

A full trio (Ginsburg & Greibach, 1967) is a family of languages closed

under

1. homomorphisms,

2. inverse homomorphisms,

3. and intersection with regular languages.

Let L be a full trio. The following are equivalent:

1. L is closed under shuffle.

2. L is closed under literal shuffle.

3. L is closed under initial literal shuffle.

4. L is closed under the n-ary initial literal shuffle for a fixed n ≥ 2.

5. L is closed under n-ary literal shuffle for a fixed n ≥ 2.

Further, for L ⊆ Σ∗ and i ∈ {1, 2},

L�,∗ = πΣ∪{$},Σ(π−1
Σ∪{$},Σ(L)�i ,~).

11



Closure Properties

A full trio (Ginsburg & Greibach, 1967) is a family of languages closed

under

1. homomorphisms,

2. inverse homomorphisms,

3. and intersection with regular languages.

Let L be a full trio. The following are equivalent:

1. L is closed under shuffle.

2. L is closed under literal shuffle.

3. L is closed under initial literal shuffle.

4. L is closed under the n-ary initial literal shuffle for a fixed n ≥ 2.

5. L is closed under n-ary literal shuffle for a fixed n ≥ 2.

Further, for L ⊆ Σ∗ and i ∈ {1, 2},

L�,∗ = πΣ∪{$},Σ(π−1
Σ∪{$},Σ(L)�i ,~).

11



Closure Properties

A full trio (Ginsburg & Greibach, 1967) is a family of languages closed

under

1. homomorphisms,

2. inverse homomorphisms,

3. and intersection with regular languages.

Let L be a full trio. The following are equivalent:

1. L is closed under shuffle.

2. L is closed under literal shuffle.

3. L is closed under initial literal shuffle.

4. L is closed under the n-ary initial literal shuffle for a fixed n ≥ 2.

5. L is closed under n-ary literal shuffle for a fixed n ≥ 2.

Further, for L ⊆ Σ∗ and i ∈ {1, 2},

L�,∗ = πΣ∪{$},Σ(π−1
Σ∪{$},Σ(L)�i ,~).

11



Closure Properties

Closed under �n
i for i ∈ {1, 2} and every fixed n ≥ 2:

1. regular languages

2. context-sensitive

3. recursive

4. recursively enumerable

Closed under both iterated versions:

1. context-sensitive

2. recursive

3. recursively enumerable
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Closure Properties

Class of context-free languages not closed.

Let

1. U = {a2nbnc | n ≥ 1},
2. V = {anb2nc | n ≥ 1}.

Then,

�1 (U,V ) ∩ {a, b}∗cc
= �2(U,V ) ∩ {a, b}∗cc = {an(ba)nbncc | n ≥ 1}.

In general, a full trio is closed under a shuffle variant iff it is closed under

intersection (Ginsburg, 1975). Even for finite languages, for the iterated

versions we have:

(abc)�1,~ = (abc)�2,~ ∩ a∗b∗c∗ = {ambmcm | m ≥ 0}.
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Computational Complexity

The following problems are in P:

1. Input: L ⊆ Σ∗ represented by NFA, w1, . . . ,wn ∈ Σ∗.

Question: �n
1(w1, . . . ,wn) ∈ L?

2. Input: Words w , v ∈ Σ∗

Question: w ∈ {v}�1,~?

The following problem is NP-complete if |Σ| ≥ 3:

1. Input: L ⊆ Σ∗ represented by DFA, w1, . . . ,wn ∈ Σ∗.

Question: �n
2(w1, . . . ,wn) ∩ L 6= ∅.

14



Computational Complexity

Problem

Input: L ⊆ Σ∗ represented by DFA, w1, . . . ,wn ∈ Σ∗.

Question: �n
2(w1, . . . ,wn) ∩ L 6= ∅.

Reduction from 3-Partition. Strongly NP-complete, i.e., it is

NP-complete even when the input numbers are encoded in unary.

Input: Multiset S = {n1, . . . , n3m} with B = (
∑3m

i=1 ni )/m ∈ N0.

Question: Partition S into m disjoint S1, . . . ,Sm such that for

each 1 ≤ k ≤ m, |Sk | = 3 and
∑

n∈Sk
n = B.

Reduction: Let S = {n1, . . . , n3m} be an instance of 3-Partition. Set

L = {aaauc ∈ {a, b, c}∗ | |u|b = B, |u|a = 0, |u|c = 2}m.

We can construct a deterministic automaton for L in polynomial time.

Then, the given instance of 3-Partition has a solution if and only if

L ∩�n
2(abn1c , abn2c , . . . , abn3mc) 6= ∅.
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Computational Complexity

Input: S = {1, 1, 2, 1, 3, 2}.

Solution: {1, 1, 3}, {1, 2, 2}

Reduction: L = U · U with

U = {aaabbbbbccc, aaabbbbcbcc , . . . , aaaccbbbbbc}.

start

c

c a a a

c

c

c

c

c

c

c

c

c

c c

c

c

c

c

c

c

c

c

c

c

c
a a a b b b b b

b b b b b

b b b b bb b b b b

b b b b b

b b b b b
c

c

L ∩�6
2(abc, abc, abbc, abc, abbbc, abbc) 6= ∅
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Computational Complexity

Ogden, Riddle & Round (1978) have shown that there exist deterministic

context-free languages U,V ⊆ Σ∗ such that

Input: w ∈ Σ∗

Question: w ∈ U � V

is NP-complete. This result was improved by Berglund, Björklund &

Johanna Björklund (2013) to linear deterministic context-free languages.

If U,V ⊆ Σ∗ are context-free, then the following problem are in P:

Input: w ∈ Σ∗

Question: w ∈ U �1 V

Input: w ∈ Σ∗

Question: w ∈ U �2 V
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Relation to Shuffle on

Trajectories



Shuffle on Trajectories

Only defined if the trajectory fits the operands; generalizes to languages.
(Example due to Edixhoven & Jongmans, DLT 2021 Talk)

�
n
T (L1, . . . , Ln) = h(L′1 � . . .� L′n ∩ T ′) where

1. L′i ⊆ Σ∗i copies of Li ⊆ Σ over pairwise disjoint alphabets

2. T ′ result from T by replacing i by Σi

3. h : (Σ1 ∪ . . . ∪ Σn)∗ → Σ∗ identifies letters again 18



Shuffle on Trajectories

1. �3
1(w1,w2,w3) = �3

T (w1,w2,w3) with

T = (123)∗(12)∗1∗∪ (123)∗(12)∗2∗∪ (123)∗(23)∗2∗∪ (123)∗(23)∗3∗

2. �3
2(w1,w2,w3) = �3

T (w1,w2,w3) with

T =1∗((12)∗ + (13)∗)(123)∗((12)∗ + (13)∗)1∗

2∗((12)∗ + (23)∗)(123)∗((12)∗ + (23)∗)2∗

3∗((13)∗ + (23)∗)(123)∗((13)∗ + (23)∗)3∗

· · ·
1∗2∗3∗ + 2∗3∗1∗ + 3∗2∗1∗ + 1∗3∗2∗ + 2∗1∗3∗ + 3∗2∗1∗.
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Shuffle on Trajectories

1. Mateescu et al. (JALC 2000) extended the binary shuffle on

trajectories to an n-ary version similar to the one presented here and

investigated decision problems related to a fairness condition.

2. Edixhoven & Jongmans (DLT 2021) used these n-ary operations to

characterize special Dyck languages were parentheses of different

type freely commute by regular-like expressions.
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Conclusion



Further Results & Outlook

1. Similar commutative operations with analogous closure and

complexity results (see the paper)

2. The NP-complete decision problem needed an alphabet of size three.

What about alphabets of size two? (in case of an unary alphabet, all

n-ary shuffle variants reduce to n times concatenation and the

problem is in P).

3. Investigate further, or related, decision problems for the shuffle

operation from the literature for the n-ary (iterated) variants (see for

example work of Berglund et al. (2013), or Eremondi et al. (2021))

4. Expand investigation to arbitrary trajectories: For example, for

which trajectories are certain decision problems in P and for which

NP-complete.
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Thank you for your attention!
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