Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	Thanks
0000				00000		

Computational Substantiation of the *d*-step Conjecture for Distinct Squares Revisited

Frantisek Franek and Michael Liut

Department of Computing and Software McMaster University, Hamilton, Ontario, Canada & Department of Mathematical and Computational Sciences University of Toronto Mississauga, Mississauga, Ontario, Canada

PSC 2021, Czech Technical University, Prague August 31, 2021

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
				00000		

Outline

- 1 Motivation and background
- (d, n-d) table
- 3 S-cover
- 4 Generating counter-examples
- 5 Special S-cover
- 6 Conclusion

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
●000	000000	0000	0000	00000		

Motivation and background

- In a pivotal paper in 1981, *Crochemore* showed that the maximum number of maximal repetitions in a string is $O(n\log(n))$, attained by Fibonacci strings.
- *Maximal repetitions*, a precursor to *runs*, may contain several squares bundled up, so bounding the maximum number of squares is a different problem.
- In 1998, in another pivotal paper, *Fraenkel* and *Simpson* showed that the number of occurrences of squares is bounded by n log_Φ(n) ≈ 1.441n log₂ 2(n) (Φ denotes the golden ratio).
- Improved in 2020 by Bannai et. al to $n \log_2(n)$.

 Motivation and background
 (d, n-d) table
 S-cover
 Generating counter-examples
 Special S-cover
 Conclusion
 Thanks

 000
 0000
 0000
 0000
 0000
 0
 0
 0

- The main result by *Fraenkel* and *Simpson* in their 1998 paper is that the maximum number of **distinct** squares, when types rather than occurrences are counted, is bounded by 2n. They conjectured that the bound should be ≤ n.
- The most significant aspect of their work was the fact that only 2 rightmost squares can start at the same position.
- The combinatorics analysis of so-called double squares was pioneered by *Lam*, and fully developed by *Deza*, *Franek*, and *Thierry* in 2015, giving an upper bound for MNDS¹ as $\frac{11}{6}n \approx 1.83n$.

¹MNDS=maximum number of distinct squares

 Motivation and background
 (d, n-d) table
 S-cover
 Generating counter-examples
 Special S-cover
 Conclusion
 Thanks

 0000
 0000
 0000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- Since then, several partial results concerning the densities of distinct squares distribution had been published – Blanchet-Sadri et. al and Manea et. al.
- In 2011, *Deza*, *Franek*, and *Jiang* presented the *d*-step approach to the problem and conjectured the bound to be ≤ n−d where *d* is the number of distinct symbols in the string (*d*-step conjecture).
- In 2012 they introduced a computational substantiation of the d-step approach to the number of distinct squares problem that allowed to approximately double the length of the strings for computational verification of MNDS conjecture and MCM University d-step conjecture.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
0000						

- Note that the problem has two versions counting all distinct squares, or a simpler version of counting all distinct *primitively rooted* squares.
- Fraenkel+Simpson's and Deza+Franek+Thierry's results are for all distinct squares, while Deza+Franek+Jiang were formulated for all distinct primitively rooted squares.
- There does not seem to be any essential reason not to be able to reformulate Deza+Franek+Jiang's result for all distinct squares, however the posted results are for primitively rooted version as the software used counted only the primitively rooted squares.

Motivation and background	(<i>d</i> , <i>n</i> − <i>d</i>) table ●00000	S-cover	Generating counter-examples	Special S-cover	Conclusion o	

$$(d, n-d)$$
 table

A string \boldsymbol{x} is a (d, n)-string if it has d distinct symbols and its length equals n

abba is a (2, 4)-string (the distinct symbols are a and b)
abcabdbabd is a (4, 10)-string (the distinct symbols are a, b, c, and d)

 $s(\mathbf{x}) = the number of distinct squares in string \mathbf{x}$

 $\sigma_d(n) = \max \{ s(\mathbf{x}) : \mathbf{x} \text{ is } a(d, n) \text{-string} \}$

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
	00000					

The (d, n-d) table is an infinite table that contains the values $\sigma_d(n)$ for all $n \ge 2$ and all $2 \le d \le n$.

Normally, it would be expected to be organized in rows indexed by *d* and columns indexed by *n*:

Computational Substantiation of the *d*-step Conjecture for Distinct Squares Revisited

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
	000000					

In the (d, n-d) table, we organize the entries differently, the rows are again indexed by d, but the columns are indexed by n-d:

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
	000000					

																																									n.	· a									_																								
Π		2	3	4		5	6	7	8	•	10	IJ	1	1	3	14	15	1	6	17	18	19	2	0	1	2	23	24	2:	5 2/	6 2	72	8	29	30	3	13	32	33	34	3:	5 3	6 3	17	38	39	40	41	42	43	44	45	46	4	4	8 49	9 51	5]	52	53	54	55	56	6 5	7 5	8 5	9 61	6]	62	63	64	65	66	5 6	7 68
	2	2	2		3	3	4	5	6	7	7	<u>8</u>	2	1	0	11	12	1	2	13	13	14	41	5]	6	7	18	19	2	2	0 2	12	2	23	23	2	3 2	24	25	26	2	2	8 2	9	30	31	32	33	33	34	3.	36	36	3	3	7 38	3	40	41	4	4	44	4	4 4	54	64	7 4	3 45	49	50	51	52	53	3 54	4 55
	3	2			2	4	4	5	6	Ζ	<u>8</u>	8	2	1	0	11	12	1	3	13	14	14	41	5]	6	7	18	19	2	2	1 2	12	2	23	24	2	4 2	25	26	26	2	2	8 2	2	30	31	32	33	34		Г		Г	Г			Т	Г		Γ	Г		1							1				1	
	4	2	F		1	4	5	5	6	Ζ	8	2	2	1	Q.	11	12	1	3	14	14	15	5 1	5]	6	.7	18	19	20	0 2	1 2	2 2	2	23	24	2	5 2	25	26	27		Т	Т							Г	Г	Г	Γ	Г	Т	Т	Т	Г	Γ	Г	Г	Г	Γ	1	Т	Т		Т			Г	Г	Т	Т	
	5	2				5	5	6	6	Z	<u>\$</u>	2	1	1	0	11	12	1	3	14	15	15	5 1	6]]	6	7	18	19	20	9 2	1 2	2 2	3	23	24	2	5 2	26			Г		1					Г			Г	Г	Γ	Г	Т		Т	Г	Γ	С	Г	Г		1				1				C		1	
	6	2				5	6	6	7	7	8	2	1	1	1	11	12	1	3	14	15	16	51	6]]	7	7	18	19	2	2	1 2	2 2	3	24		Г	٦٢				Г	Т	٦٢					Г		Γ	Г	Г	1	Г	Т		Т	Г	1	Γ	Г	Γ	1		٦Г				1	1	Г	Г	1	1	
	7	2				5	6	7	Z	8	<u>8</u>	9	1	1	1	12	12	1	3	14	15	16	5 1	7]]	7	8	18	19	2	0 2	1 2	2 2	3	24	25	1					Γ	Т	Т					Γ			Г		Г	Г	Т		Т	Г	Т	Γ	Г	Γ	1						1	1	Г	Γ	1	1	
	8	2	ľ			5	6	7	8	8	2	9	1	1	1	12	13	1	3	14	15	16	5 1	7]]	8					Т	Т					Γ					Г	Т	Т					Γ		Г	Г	Г	Γ	Г	Т		Т	Г	Γ	Г	Г	Г	Γ	1	Т	Т		Т			Γ	Г	Т	Т	
	9	2				5	6	7	8	2	2	10	1	1	1	12	13	1	4	14	15	16	5 1	7]	8	9				1	Т					Γ					Г		1					Г			Г	Г	Γ	Г	Т		1	Г	Γ	С	Г	Г		1				1				C		1	
	10	2			1	5	6	7	8	2	10	10	1	1	1	12	13	1	4	15	15	16	5 1	7]]	8	9	20			1						Γ																												1				1				C		1	
	11	2	3	-	1	5	6	7	8	9	10	11	1	1	2	12	13	1	4	15	16	16	5 1	7]]	8	9	20	21		Т	Т					Γ					Γ	Т	Т					Γ			Г		Г	Г	Т		Т	Г	Т	Γ	Г	Γ	1						1	1	Г	Γ	1	1	
	12	2	3		1	5	6	7	8	9	10	11	1	1	2	13	13	1	4	15	16	17	7							Т						Γ					Γ		Т								Г	Г		Г	Т		Т			Г	Γ	Γ		1								Г		1	
a	13	2	3		•	5	6	7	8	9	10	IJ	1	1	3	13	14	1	4	15	16	17	71	8						1	Т					Γ					Г		1					Г			Г	Г	Γ	Г	Т		Т	Г	Γ	С	Г	Г		1				1				IC		1	
	14	2	1		1	5	6	7	8	9	10	11	1	1	3	14	14	1	5	15	16	17	1	8]	9				Γ	Т	Т	٦٢	٦٢			Γ	٦٢				Г	Т	٦٢					Г		Γ	Г	Γ	1	Г	Т		Т	Г	1	Γ	Г	Γ	1		٦Г				1	1	1	Г	1	1	
	15	2	3	1	1	5	6	7	8	9	10	11	1	1	3	14	15	1	5	16	16	17	1	8]	9	20				Т	Т					Γ					Γ	Т	Т					Γ			Г		Г	Г	Т		Т	Г	1	Γ	Г	Γ	1						1	1	Г	Γ	1	1	
	16	2	3		1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	16	17	17	7 1	8]	9				Γ	Т	Т					Γ					Г	Т	Т					Г		Г	Г	Г	Γ	Г	Т		Т	Г	Γ	Г	Г	Г	Γ	1	Т						Γ	Г	Т	Т	
	17	2	3		•	5	6	7	8	9	10	1)	1	1	3	14	15	1	6	17	17	15	3 1	8						1	Т					Γ					Г		1					Г			Г	Г	Γ	Г	Т		Т	Г	Γ	С	Г	С	Γ	1	Т			1			Γ	IC		1	
	18	2	3	1	1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	15	3 1	9						1						Γ																												1								C		1	
	19	2	3	1	1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	19	21	9	0					Т	Т					Γ					Γ	Т	Т					Γ			Г		Г	Г	Т		Т	Г	1	Γ	Г	Γ	1						1	1	Г	Γ	1	1	
	20	2	3			5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	19	2	0	0					Т						Γ					Γ		Т								Г	Г		Г	Т		Т			Г	Г	Γ		1								Г		1	
	21	2	3	1	1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	19	2	0	1											L																				L				L		L	L	L		L		L				IC		Т	
	22	2	3		•	5	6	7	8	9	10	IJ	1	1	3	14	15	1	6	17	18	19	2	0	1	2				1						Г][][1						1	1								C		1	
	23	2	3		1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	19	2	0	1	2	23									Γ							1																										Г			Ē	T	T	
	24	2	1	1	1	5	6	7	8	9	10	11	1	1	3	14	15	1	6	17	18	19	2	0	1	2	23	24		Т	Т					Γ					Γ	Т	T																			Γ	1		Т			Г	1	1				1	

 Motivation and background
 (d, n-d) table
 S-cover
 Generating counter-examples
 Special S-cover
 Conclusion
 Thanks

 0000
 0000
 0000
 0000
 0000
 0
 0
 0

Deza+Franek+Jiang showed that there are a lot of relationships in the table such as:

- Uniform below diagonal
 - $(\forall 2 \leq d) (\sigma_{d+k}(2d+k) = \sigma_d(2d))$
- Diagonal rules $(\forall 2 \le d \le n) (\sigma_d(n) \le n-d) \Leftrightarrow (\forall 2 \le d) (\sigma_d(2d) = d)$
- Row increase

 $(\forall 2 \leq d \leq n) (\sigma_d(n) \leq \sigma_d(n+1) \leq \sigma_d(n)+2)$

- Column increase $(\forall 2 \le d \le n) (\sigma_{d+1}(n+1) \ge \sigma_d(n))$
- Diagonal increase $(\forall 2 \leq d) (\sigma_d(2d) \leq \sigma_{d+1}(2d+2) \leq \sigma_d(2d)+2)$

 Motivation and background
 (d, n-d) table
 S-cover
 Generating counter-examples
 Special S-cover
 Conclusion
 Thanks

 0000
 0000
 0000
 0000
 0000
 0
 0

- The (d, n-d) table entries can be filled in a fashion similar to dynamic programming, from left to right and top to bottom.
- This approach was utilized to compute the values.
- Knowing $\sigma_{d-1}(n-2)$, $\sigma_d(n-1)$, $\sigma_{d+1}(n)$, and $\sigma_{d-1}(n-1)$ strongly limits the pool of candidates for $\sigma_d(n)$.

σ _{d-1} (n-2)	σ _{d-1} (n-1)	
σ _ď (<i>n</i> -1)	σ _d (n)	
σ _{d+1} (n)		

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
		0000		00000		

S-cover

Some strings are "made of squares":

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
0000		0000		00000		

Definition

A sequence $\{(a_i, b_i) : 1 \le i \le k\}$ is an **S-cover** of string $\mathbf{x} = \mathbf{x}[1..n]$, if

- $(\forall i \in 1..k) \ \mathbf{x}[a_i..b_i]$ is a rightmost square
- **②** ($\forall i \in 1..k-1$) $a_i < a_{i+1}$ and $b_i < b_{i+1}$
- **③** $(\forall j \in 1..n)(\exists i \in 1..k)$ $a_i \leq j \leq b_i$
- for every rightmost square (a, b) in **x**, there is $i \in 1..k$ so that $a_i \le a < b \le b_i$

Observation

- From condition 3, $a_1 = 1$ and $b_k = n$.
- If a string has an S-cover, then the S-cover is unique.

Motivation and background	(<i>d</i> , <i>n</i> - <i>d</i>) table	S-cover oo●o	Generating counter-examples	Special S-cover	Conclusion o	

Examples:

- the red squares form the S-cover of *aabbabbababbababababccddee*.
- the red squares + the first blue square is not an S-cover, the blue square violates the 2nd condition.
- *abcabc* has an S-cover, the S-cover consists of a single square *abcabc*.
- **abbabbCabbabb** does not have an S-cover, *C* is not in any rightmost square so any collection of rightmost squares cannot satisfy the 3rd condition.

Motivation and background	(<i>d</i> , <i>n</i> − <i>d</i>) table	S-cover ○○○●	Generating counter-examples	Special S-cover	Conclusion o	

- The (*d*, *n*-*d*) table setup allows us to limit the search for square-maximal strings to strings with an S-cover.
- Note that strings with an S-cover are necessarily free of singletons (i.e., letters with a single occurrence).
- Since generating a square requires just to generate its root, it basically doubles the length of strings that can be processed.
- There are some additional constraints on the strings based on the properties of the (*d*, *n*-*d*) table.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
			0000	00000		

Generating counter-examples

- We changed the paradigm instead of generating possible candidates for maximality, we try to generate counter-examples to the *d*-step conjecture, i.e. (*d*, *n*) strings with strictly more than *n*-*d* rightmost squares.
- This change of paradigm significantly reduces the search space.
- The reduction of the search space is in the form of several conditions a possible counter-example must satisfy.
- It allowed us to extend the viable length of strings that can be processed, and hence extend the range of the validity of the *d*-step conjecture.

Motivation and background	(<i>d</i> , <i>n</i> - <i>d</i>) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	

- Problem: since the result of computation for given *d* and *n* is an empty set, i.e. no counter-example had been generated, the result cannot be verified; the certificate is the code.
- But it is the same problem as with computing the square-maximal strings; the certificate is the code, as the maximality cannot be easily independently verified.
- As we keep discovering new necessary conditions that a counter-example must satisfy, the ultimate goal is to show analytically that counter-examples cannot exist.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	Thanks
			0000			

The first lemma shows that induction on n-d is well-founded and possible:

Lemma

Let **x** be a singleton-free (d, n)-string, $1 \le d < n$ and let d_1 be the number of distinct symbols in a non-empty proper prefix (resp. suffix) of **x** of length n_1 . Then, $n_1-d_1 < n-d$.

So, for all work we are assuming that the *d*-step conjecture holds for every $n_1-d_1 < n-d$, and we are trying to generate counter-examples for *d* and *n*.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
			0000			

Necessary conditions for a (d, n)-string **x** to be a counter-example:

- It must have a special S-cover (and hence be singleton free).
- It must satisfy several density conditions.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
0000	000000	0000	0000	•0000		

The S-cover $\{(a_i, b_i) : 1 \le i \le k\}$ is **special** if:

- k > 1, so the S-cover has at least 2 squares.
- There is a square (1, b) so that b < b₁, hence (1, b₁) is an FS-double square.
 Note that a₁ = 1 and that (1, b₁) and (1, b) are unique squares, i.e. both rightmost and leftmost occurrences.
- The last square $(a_k, b_k) = (a_k, n)$ is a unique square.
- There is a unique square (a, n) so that $a_k < a$, hence $(1, a_k n + 1)$ is an FS-double square in y, where y = x[n]x[n-1]...x[2]x[1], the string x in reverse.
- ∀i ∈ 1..k−1, a_{i+1} < b_i and the intersection x[a_{i+1}..b_i] must contain all characters common to x[1..b_i] and McMaster x[a_{i+1}..n].

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	Thanks
				00000		

The density conditions are expressed using two arrays: B(i, j) is defined as the number of rightmost squares that start and E(i, j) that end in the interval *i..j*.

Let $1 \le k < n$, let d_2 be the number of distinct symbols of $\boldsymbol{x}[k+1 \dots n]$, and let e be the number of distinct symbols occurring in both $\boldsymbol{x}[1 \dots k]$ and $\boldsymbol{x}[k+1 \dots n]$.

•
$$B(1, k) > k - d + d_2$$

● B(1, k)−E(1, k) > e

Motivation and background	(<i>d</i> , <i>n</i> - <i>d</i>) table	S-cover	Generating counter-examples	Special S-cover	Conclusion o	

In particular for binary strings:

An additional property that is not in the paper; let's define a symmetric and reflexive relation \sim on 1..*n*:

 $i \sim j$ iff i = j or there is a rightmost square (a, b) so that $a \leq i \leq \frac{b+a-1}{2} < \frac{b+a+1}{2} \leq j \leq b$ and $i-a = j-\frac{b+a+1}{2}$ or $a \leq j \leq \frac{b+a-1}{2} < \frac{b+a+1}{2} \leq i \leq b$ and $j-a = i-\frac{b+a+1}{2}$

Motivation and background	(<i>d</i> , <i>n</i> - <i>d</i>) table	S-cover	Generating counter-examples	Special S-cover 000●0	Conclusion o	

Take the transitive closure of \sim . It is a relation of equivalence on 1..*n*.

In simple terms, $i \sim j$ if i = j or we can use successive rightmost squares to map *i* onto *j*.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	
0000				00000		

Note that necessarily, if $i \sim j$, then $\boldsymbol{x}[i] = \boldsymbol{x}[j]$.

Necessary condition for the S-cover:

For any *i* in 1.. a_{i+1} so that $\boldsymbol{x}[i]$ occurs in the intersection $\boldsymbol{x}[a_{i+1}..b_i]$, $i \sim j$ for some $j \in a_{i+1}..b_i$.

Motivation and background	(<i>d</i> , <i>n</i> - <i>d</i>) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	

Conclusion

- We presented a set of necessary conditions for a counter-example for *d*-step conjecture for (*d*, *n*)-strings when the *d*-step conjecture is verified for all (*d'*, *n'*)-strings such that n'-d' < n-d.
- This allowed us to computationally verify the *d*-step conjecture for previously intractable lengths.
- The main goal is to discover more necessary conditions which would allow to prove the non-existence of counter-examples in an analytical way.

Motivation and background	(d, n-d) table	S-cover	Generating counter-examples	Special S-cover	Conclusion	Thanks
0000	000000	0000	0000	00000		•

THANK YOU

Computational Substantiation of the *d*-step Conjecture for Distinct Squares Revisited

PSC 2021, August 2021, Prague