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Overview

Motivation

Expected time complexity analysis for an approximate pattern matching
algorithm:
E. W. Myers: A sublinear algorithm for approximate keyword searching.
Algorithmica, 1994.
G. Myers: What’s Behind Blast. Models and Algorithms for Genome
Evolution, 2013.

Sequence neighbourhood

Complexity driven by the maximum size of the neighbourhood of k-mers.

Results

Improved upper bound on the maximum size of sequences neighbourhood.
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Sequence neighbourhood

Definition

Given a sequence w of length k on an alphabet Σ (with |Σ| = s), the
d-neighbourhood of w , denoted by N(d ,w), is the set of all sequences on
Σ at Levenshtein distance of w at most d :

N(d ,w) := {v | dLev (v ,w) ≤ d}.

Definition

The condensed neighbourhood of w , denoted by CN(d ,w), is the subset
of this neighbourhood comprising sequences that have none of their
prefixes in the neighbourhood:

CN(d ,w) := {v | v ∈ N(d ,w) s.t. @u ∈ N(d ,w) prefix of v}.
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Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences).

Algorithm [Myers, 1994]

For a well chosen value k , splits the pattern into non-overlapping
k-mers.

Compute for each such k-mer its condensed neighbourhood.

Search (through a pre-built index) occurrences of the sequences in
these neighbourhoods in the text.

For any such occurrence, try to extend it into an approximate pattern
occurrence by dynamic programing.
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Approximate pattern matching: expected time complexity

Definition

We denote by CN(s, k , d) the maximum size of a condensed
d-neighbourhood over all sequences w of length k on an alphabet Σ of
size s:

CN(s, k , d) := max
w∈Σk

|CN(d ,w)| .

[E. W. Myers: A sublinear algorithm for approximate keyword searching.
Algorithmica, 1994]
Approximate pattern matching can be solved in expected time

O
(
e · CN(s, k , d) ·

(
1 + k

n

sk

)
+ h · e · p

)
where h is the expected number of e-approximate pattern occurrences,
which is optimal for k = logs(n), and, for s = 4, is sub-linear if
ε := e/p ≤ 1/3.
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Problem and motivation

Approximate pattern matching can be solved in expected time

O
(
e · CN(s, k, d) ·

(
1 + k

n

sk

)
+ h · e · p

)
.

Problem statement

Given s, k , d , find an upper-bound for CN(s, k, d), the maximum size of a
condensed d-neighbourhood over all sequences of length k on an alphabet
of size s.

Motivation

Improve the sub-linearity window for the expected time complexity of the
approximate pattern matching algorithm.
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Known results, Myers

Let

B(s, k , d , c) :=

(
c + 1

c − 1

)k

cdsd

c? := 1 +
√

2

and

M(s, k, d) :=
c?

c? − 1
B(s, k, d , c?)

Then
CN(s, k, d) ≤ M(s, k, d).

Moreover, if

pow(ε) := logs

(
c? + 1

c? − 1

)
+ ε logs (c?) + ε, k := dlogs(n)e

then for ε = e/p,

CN(s, k , d) ∈ O
(
npow(ε)

)
which leads to the sub-linear expected time complexity if ε ≤ 1/3.
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New results

Conjecture

Let

A(s, k , d) :=
(2s − 1)dkd

d!
.

Then
CN(s, k, d) ≤ A(s, k, d).

Experimentally, we obtain the following result.

Proposition

Let s ∈ {1, . . . , 4}, k ∈ {1, . . . , 50}, d ∈ {1, . . . , 4}. Then

CN(s, k , d) ≤ (2s − 1)dkd

d!
.
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Application: approximate pattern matching complexity

Figure: Illustration of the behaviour of pow(ε) and logn(A(s, k, d)) for n = 109 as
a function of ε, with s = 4, k = dlogs(n)e and d = dkεe.
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Methods overview

Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.

Translations into ordinary generating functions.

Asymptotics analysis of these generating functions: conjectured upper
bound for CN(s, k, d).

Experimental evaluation: confirmed upper bound in a range of
realistic settings.

19 / 32



Methods overview

Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.

Translations into ordinary generating functions.

Asymptotics analysis of these generating functions: conjectured upper
bound for CN(s, k, d).

Experimental evaluation: confirmed upper bound in a range of
realistic settings.

20 / 32



Methods overview

Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.

Translations into ordinary generating functions.

Asymptotics analysis of these generating functions: conjectured upper
bound for CN(s, k, d).

Experimental evaluation: confirmed upper bound in a range of
realistic settings.

21 / 32



Methods overview

Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.

Translations into ordinary generating functions.

Asymptotics analysis of these generating functions: conjectured upper
bound for CN(s, k, d).

Experimental evaluation: confirmed upper bound in a range of
realistic settings.

22 / 32



Recurrences for edit scripts

Lemma 1 [Myers, 2013]

Let S(s, k, d) be defined by the following trivariate recurrence.
If k ≤ d or d = 0 then S(s, k , d) := 1, otherwise

S(s, k , d) :=



S(s, k − 1, d) + (s − 1)S(s, k − 1, d − 1)

+(s − 1)
d−1∑
j=0

s jS(s, k − 2, d − 1− j)

+(s − 1)2
d−2∑
j=0

s jS(s, k − 2, d − 2− j)

+
d−1∑
j=0

S(s, k − 2− j , d − 1− j)

Let T (s, k , d) := S(s, k , d) +
∑d

j=1 s
jS(s, k − 1, d − j).

Then CN(s, k , d) ≤ T (s, k , d).
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Generating functions / formal power series

Let the ordinary generating functions of S ad T be

Ss,d(z) :=
∞∑
k=1

S(s, k , d)zk , Ts,d(z) :=
∞∑
k=1

T (s, k , d)zk .

From the recurrences for S we get

Lemma 2

Ss,d(z) =
Ps,d(z)

(1− z)d+1

where Ps,d(z) is a polynomial that satisfies Ps,d(1) = (2s − 1)d .

Lemma 3

Ts,d(z) = Ss,d(z) + z

d−1∑
j=1

s j (Ss,d−j(z)− 1)

+
sd

1− z
.
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Asymptotics

Using techniques of analytic combinatorics [FO, 1990]:

Lemma 4

Let d be a strictly positive integer. Suppose P(z) is a polynomial such
that P(1) 6= 0. Then asymptotically, when k becomes large,

[zk ]
P(z)

(1− z)d+1
∼ P(1)kd

d!
.

Combined with Lemma 2 and Lemma 3, we can show that

lim
k→∞

[zk ]Ts,d(z)

A(s, k, d)
= 1

i.e. that asymptotically T (s, k , d) is equivalent to A(s, k , d), our
conjectured upped bound for CN(s, k, d).
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Experimental evaluation
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Conclusion

Motivation: approximate pattern matching (expected) time
complexity.

Open problem (Myers): tighter upper bounds for the maximum size
of condensed neighbourhoods.

Results: a conjectured tighter upper bound, verified experimentally in
some settings relevant for computational biology.

Approximate pattern matching complexity: minor improvement on
the sub-linearity window.

Open problem: Improving edit scripts recurrences to reduce
redundancy.
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