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Overview

Motivation
Expected time complexity analysis for an approximate pattern matching
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Complexity driven by the maximum size of the neighbourhood of k-mers.

Improved upper bound on the maximum size of sequences neighbourhood.
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Sequence neighbourhood

Definition

Given a sequence w of length k on an alphabet ¥ (with || = s), the
d-neighbourhood of w, denoted by N(d, w), is the set of all sequences on
> at Levenshtein distance of w at most d:

N(d,w) :={v | diey(v,w) < d}.
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Sequence neighbourhood

Definition

Given a sequence w of length k on an alphabet ¥ (with || = s), the
d-neighbourhood of w, denoted by N(d, w), is the set of all sequences on
> at Levenshtein distance of w at most d:

N(d,w) :={v | diev(v,w) < d}.

Definition

The condensed neighbourhood of w, denoted by CN(d, w), is the subset
of this neighbourhood comprising sequences that have none of their
prefixes in the neighbourhood:

CN(d,w) :={v | v € N(d,w) s.t. fu € N(d,w) prefix of v}.
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Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences).

7/32



Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences). )

Algorithm [Myers, 1994]

o For a well chosen value k, splits the pattern into non-overlapping

k-mers.

8/32



Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences).

Algorithm [Myers, 1994]
o For a well chosen value k, splits the pattern into non-overlapping
k-mers.
@ Compute for each such k-mer its condensed neighbourhood.

9/32



Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences). )

Algorithm [Myers, 1994]
o For a well chosen value k, splits the pattern into non-overlapping
k-mers.
@ Compute for each such k-mer its condensed neighbourhood.
@ Search (through a pre-built index) occurrences of the sequences in
these neighbourhoods in the text.

10/32



Approximate pattern matching

Problem statement

Given a (long) text of length n, a (short) pattern of length p, and an
integer e < p, find in the text all the occurrences of sequences that are at
distance at most e from the pattern (e-approximate pattern occurrences).

Algorithm [Myers, 1994]
@ For a well chosen value k, splits the pattern into non-overlapping
k-mers.

| A

@ Compute for each such k-mer its condensed neighbourhood.

@ Search (through a pre-built index) occurrences of the sequences in
these neighbourhoods in the text.

@ For any such occurrence, try to extend it into an approximate pattern
occurrence by dynamic programing.
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Approximate pattern matching: expected time complexity

Definition

We denote by CN(s, k, d) the maximum size of a condensed
d-neighbourhood over all sequences w of length k on an alphabet ¥ of

size s:
CN(s, k,d) := max |CN(d,w)|.

wexk

[E. W. Myers: A sublinear algorithm for approximate keyword searching.
Algorithmica, 1994]
Approximate pattern matching can be solved in expected time

o(e-CN(s,k,d)-(1+ks—"k>+h-e-p)

where h is the expected number of e-approximate pattern occurrences,
which is optimal for k = log,(n), and, for s = 4, is sub-linear if
e:=e/p<1/3.

12/32



Problem and motivation

Approximate pattern matching can be solved in expected time

o(e-CN(s,k,d)-(1+ksik)+h-e-p>.

13/32



Problem and motivation

Approximate pattern matching can be solved in expected time

o(e-CN(s,k,d)-(1+ksik>+h-e-p>.

Problem statement

Given s, k, d, find an upper-bound for CN(s, k, d), the maximum size of a
condensed d-neighbourhood over all sequences of length k on an alphabet
of size s.

14/32



Problem and motivation

Approximate pattern matching can be solved in expected time

O(e-CN(s,k,d)-(1+k£k>—|—h-e-p).

Problem statement

Given s, k, d, find an upper-bound for CN(s, k, d), the maximum size of a
condensed d-neighbourhood over all sequences of length k on an alphabet
of size s.

Improve the sub-linearity window for the expected time complexity of the
approximate pattern matching algorithm.
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Known results, Myers

Let .
1
B(s,k,d,c) := <z+ 1) cdsd
=142
and
< B(s,k,d,c*
M(s, k =
(s’ 7d) C* _ 1 (57 ) ) c )
Then
CN(s, k,d) < M(s, k,d).
Moreover, if
cr+1 N
pow(e) := log, p— +elog, (¢*) + €, k := [logs(n)]

then for e = e/p,
CN(s, k,d) € O (nP°W<E>)

which leads to the sub-linear expected time complexity if € < 1/3.
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New results

Let

_ (2s—1)9k9
Als, k, d) 1= ==—p—.
Then

CN(s, k, d) < A(s, k, d).

Experimentally, we obtain the following result.

Proposition

Let s e {1,...,4}, ke {1,...,50}, d € {1,...,4}. Then

(2s — 1)9k¢

CN(s, k,d) < —
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Application: approximate pattern matching complexity

Complexity exponent for s=4, n=1000000000 as a function of epsilon

— log_n(A(s,d.n)) ~
Pow(epsilon/100) ’
14 —— y=1

exponent of n

E)
epsilon

Figure: Illustration of the behaviour of pow(e) and log,(A(s, k, d)) for n = 10° as
a function of ¢, with s =4, k = [log,(n)] and d = [ke].
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Methods overview

@ Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.
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Methods overview

@ Recurrences for counting/generating edit scripts [Myers, 2013], i.e.
redundant recurrences for counting/generating condensed
neighbourhoods.

@ Translations into ordinary generating functions.

@ Asymptotics analysis of these generating functions: conjectured upper
bound for CN(s, k, d).

@ Experimental evaluation: confirmed upper bound in a range of
realistic settings.
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Recurrences for edit scripts

Lemma 1 [Myers, 2013]

Let S(s, k, d) be defined by the following trivariate recurrence.
If k < dord=0then S(s, k,d) := 1, otherwise

S(s,k—1,d)+ (s —1)S(s, k —1,d — 1)
d—1
+(s — 1)Zsj5(s,k—2,d— 1—))
j=0
. d—2
Sk d) =0 - 12 F8(s, k—2,d—2— )
j=0
d—1
+> " S(s,k—2—j.d—1-))
j=0

Let T(s, k,d) := S(s, k,d) + Y0, /S(s, k — 1,d — j).

Then CN(s, k,d) < T(s, k, d).
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Generating functions / formal power series

Let the ordinary generating functions of S ad T be
Ss.a(2) ==Y _S(s, k,d)z*, Tsa(2): Z T(s, k,d)z
k=1

From the recurrences for S we get

Ps 4(2)
56.d(2) = = a1

where P 4(z) is a polynomial that satisfies Ps 4(1) = (25 — 1)

Lemma 3

N
I
(=Y
Il
Q Q
A\

d—1
Tea(2) =Ssa(2) +2 [ S5 (Seai(z) 1) | + 15_

j=1
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Using techniques of analytic combinatorics [FO, 1990]:

Let d be a strictly positive integer. Suppose P(z) is a polynomial such
that P(1) # 0. Then asymptotically, when k becomes large,

P(z) P(1)kd
1—z)d+ " g

[2]

Combined with Lemma 2 and Lemma 3, we can show that

i [2T2a(2)

M A(s kd)

i.e. that asymptotically T (s, k, d) is equivalent to A(s, k, d), our
conjectured upped bound for CN(s, k, d).
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Experimental evaluation
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Conclusion

e Motivation: approximate pattern matching (expected) time
complexity.
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Conclusion

e Motivation: approximate pattern matching (expected) time
complexity.

@ Open problem (Myers): tighter upper bounds for the maximum size
of condensed neighbourhoods.

@ Results: a conjectured tighter upper bound, verified experimentally in
some settings relevant for computational biology.

@ Approximate pattern matching complexity: minor improvement on
the sub-linearity window.

@ Open problem: Improving edit scripts recurrences to reduce
redundancy.
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