
Reducing Time and Space in
Indexed String Matching by

Characters Distance Text Sampling
Simone Faro and Francesco Pio Marino

Dipartimento di Matematica e Informatica,
Università di Catania, viale A.Doria n.6, 95125, Catania, Italia

faro@dmi.unict.it

String Matching
String Matching consists in finding all occurrences of a given pattern x, of length m, in a large text y, of length n,
where both sequences are composed by characters drawn from an alphabet Σ of size σ.

Exist two types of solutions, called Online and Offline:

• Solutions based on the first approach assume that the text is not pre-processed and thus they need to
scan the text online, when searching.

• Solutions based on the second approach tries to drastically speed up searching by pre-processing the
text and building a data structure that allows searching in time proportional to the length of the pattern.

Sampled String Matching
The task of the sampled string matching problem, introduced in 1991 by Vishkin, is to find all occurrences of a
given pattern x in a given text y, assuming that a fast and succint pre-processing of the text is allowed in order to
build a data-structure, which is used to speed-up the searching phase. For its features we call such data structure
a partial-index of the text, the partial index should:

• Be succint
• Be fast to build
• Allow fast search
• Allow fast update

Apart the theoretical result of Vishkin, a more practical solution to sampled string matching has been recently
introduced by Claude et al. based on an alphabet reduction.

Occurrence Text Sampling

Position Mapping

Occurrence Text Suffix Array
To turn the sampling approach into an index, Claude et al. use a suffix array to index the sampled positions of the
text. When constructing the suffix array, only suffixes starting with a sampled character will be considered, but
the sorting will still be done considering the full suffixes. The resulting sampled suffix array is like the suffix array
of the original text where suffixes starting with unsampled characters have been omitted.

Characters Distance Solution

Characters Distance Solution

Indexed Characters Distance

Indexed Characters Distance

Indexed Characters Distance

Space requirement and Searching time
As expected, the function which describes memory requirements follows a decreasing trend while the value of r
decreases. Specifically the benefit in space consumption obtained by the algorithms based on character distance
sampling ranges from 70% to 80% when compared with the OTS approach.
From such experimental results it turns out that the indexed searching approach based on OTS reaches a speed-
up between 61% and 74%, while new proposed solution reaches a speed-up between 80% and 91%. In addition
the best results are obtained in all cased by the approach based on character distance sampling.

Future Works
The previous sampling approaches to exact string matching prove to work efficiently only in the case of natural
language texts or, in general, when searching on input sequences over large alphabets, while their performances
degrade when the size of the underlying alphabets decreases.

• We are working on an extension of the approach previously introduced to small alphabets which turns out to be
much more feasible in the case of biological data like genome or protein sequences

• A possible idea could be extend the previous indexed searching using such different data structures like Suffix tree
or FM-Index

THANKS YOU
FOR YOUR ATTENTION

Any questions?

