Reducing Time and Space in
Indexed String Matching by
Characters Distance Text Sampling

Simone Faro and Francesco Pio Marino

Dipartimento di Matematica e Informatica,
Universita di Catania, viale A.Doria n.6, 95125, Catania, Italia
faro@dmi.unict.it

String Matching

String Matching consists in finding all occurrences of a given pattern x, of length m, in a large text y, of length n,
where both sequences are composed by characters drawn from an alphabet 2 of size o.

A AABA
/?AC/?AIS)%ABAABA

10 11 12 13 14 15

AABA

w8 &

A A
A A
o 1
Pattern Found at (, 9 and 12

Exist two types of solutions, called Online and Offline:

* Solutions based on the first approach assume that the text is not pre-processed and thus they need to
scan the text online, when searching.

* Solutions based on the second approach tries to drastically speed up searching by pre-processing the
text and building a data structure that allows searching in time proportional to the length of the pattern.

Sampled String Matching

The task of the sampled string matching problem, introduced in 1991 by Vishkin, is to find all occurrences of a
given pattern x in a given text y, assuming that a fast and succint pre-processing of the text is allowed in order to
build a data-structure, which is used to speed-up the searching phase. For its features we call such data structure
a partial-index of the text, the partial index should:

* Be succint

e Be fast to build

* Allow fast search
e Allow fast update

Apart the theoretical result of Vishkin, a more practical solution to sampled string matching has been recently
introduced by Claude et al. based on an alphabet reduction.

Occurrence Text Sampling

Let y be the input text, of length n, and let x be the input pattern, of length m, both
over an alphabet ' of size 0. The main idea of their sampling approach is to select
a subset of the alphabet, Yy cx (the sampled alphabet), and then to construct
a partial-index as the subsequence of the text (the sampled text) ¢, of length 7,
containing all (and only) the characters of the sampled alphabet 3. More formally

gli] € X, for all 1 < i < n.

TestoT: [A[B|A|A[C|A[B[D|A[A Pattern P: [A[C|A|B

| si omettonole @

cle

Position Mapping

During the searching phase of the algorithm a sampled version of the input pat-
tern, z, of length M, is constructed and searched in the sampled text. Since ¢ contains
partial information, for each candidate position ¢ returned by the search procedure
on the sampled text, the algorithm has to verify the corresponding occurrence of x in
the original text. For this reason a table p is maintained in order to map, at regular
intervals, positions of the sampled text to their corresponding positions in the original
text. The position mapping p has size |n/q|, where q is the interval factor, and is
such that p[i] = j if character y[j] corresponds to character g|q X i]. The value of p|0]
is set to 0. In their paper, on the basis of an accurate experimentation, the authors
suggest to use values of g in the set {8, 16,32}

a|blaja|c|a|b|d|a]a| Text alc|a|b| Pattern
y Omitting a’s y Omitting a’s
b C b|d Sampled Text C b| Sampled Pattern
0 5 8 Mapping

Occurrence Text Suffix Array

To turn the sampling approach into an index, Claude et al. use a suffix array to index the sampled positions of the
text. When constructing the suffix array, only suffixes starting with a sampled character will be considered, but

the sorting will still be done considering the full suffixes. The resulting sampled suffix array is like the suffix array
of the original text where suffixes starting with unsampled characters have been omitted.

T: [R[B[AJAJCTAB[®[A[A sA [ZT7T5T3

Characters Distance Solution

Definition 2.3 (The Characters Distance Sampling). Let ¢ € ¥ be the pivot char-
acter, let n. < n be the number of occurrences of the pivot character in the text y
and let 6 be the position function of y. We define the characters distance function
A(i) =6(i) — (i — 1), for 1 < i < n,— 1, as the distance between two consecutive
occurrences of the character c in y.

The characters-distance sampled version of the text y is a numeric sequence,

indicated by 7, of length n. — 1 defined as
g = (A(1),A(2),..,An. — 1)). (2.1)

SAMPLING (y, 1)
Jj<0
fori <—1tondo
if yli] € &
glil =0(j) = é(5 = 1)
j=7+1

St b=

Characters Distance Solution

P:[alalcle |a|T A

i -

CIGIT/IA/IA(IA|ICIGIA|T|(A|GIC|T|IA|C|IG|T A AC|IGH A|T|A

VERIFY (z, m, y, S)

1.

2.
3.
4

11

while i <m and z[i]| = y[s+i| doi+ i+ 1
if 2 > m then return TRUE

return FALSE

Indexed Characters Distance

The algorithm proposed in this section is divided into two phases: a first pre-
processing phase which consists in the construction of a suffix array of the sampled
version of the text and a searching phase which is used to search any pattern x of
length m in y making use of the suffix array s; and the sampled text y.

Pre-processing
A

Original Partial | Suffix | Searching
Text Index Array Phase

Verify
Phase

Indexed Characters Distance

Let y be an input text of length n over an alphabet)’ of size o and let C C) be
the set of pivot characters. During the preprocessing phase the algorithm builds and
stores the position sampled text y of y. This requires O(n)-time and O(n.)-space,
where n. is the number of occurrences of any pivot character in y. Subsequently a
suffix array of y is constructed.

However when constructing the suffix array of ¢, the algorithm takes into account
only suffixes beginning with a pivot character in the original text, drastically reducing
the space requirement for maintaining the whole index. Apart from this detail, all
other features of the data structure remain unchanged.

Ezxample 7. Let y = “agaacgcagtata” be a text of length 13, over the alphabet
Y = {ac,gt}. Let C = {a} be the pivot character. Thus the character distance
sampling version of y is § = (2, 1,4, 3,2).

Sy[O]— 1 — <174 >
syl1] = 0 —(2)

Sy[z] <27 1a4)
Sy[?’] _ 3 — <37 2)
szl4] =2 — (4,3,2)

Indexed Characters Distance

During the searching phase the algorithm uses the suffix array of the sampled text
sy as an index to quickly locate every occurrence of a sampled pattern z in y. Each
of these occurrences is treated as a candidate occurrence of x in y, and as such it will
be verified by a comparison procedure.

Thanks to the lexicographical ordering of the suffix
array, all such suffixes are grouped together and can be found efficiently with a single
binary search, which locates the starting position of the interval. All other occurrence
are then grouped together close the first one.

Space requirement and Searching time

As expected, the function which describes memory requirements follows a decreasing trend while the value of r
decreases. Specifically the benefit in space consumption obtained by the algorithms based on character distance
sampling ranges from 70% to 80% when compared with the OTS approach.
From such experimental results it turns out that the indexed searching approach based on OTS reaches a speed-
up between 61% and 74%, while new proposed solution reaches a speed-up between 80% and 91%. In addition
the best results are obtained in all cased by the approach based on character distance sampling.

KBytes

104
In Standard SA
ImSA based on OTs
1 00SA based on Cps
) | I I I ‘
2 4 6 8 10 12 14 16 18 20

Value of r

0.6

0.4

0.2

0.6

0.4

0.2

0.5

0.4

0.3

0.2

0.1

2 4 6 8 10 12 14 16
m = 128

2 4 6 8 10 12 14 16
m = 256

0.5

0.4

0.3

0.2

0.1

_____________ - - - SA standard
—— SA and OTs
SA and Cps

O

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14 16

Future Works

The previous sampling approaches to exact string matching prove to work efficiently only in the case of natural
language texts or, in general, when searching on input sequences over large alphabets, while their performances
degrade when the size of the underlying alphabets decreases.

* We are working on an extension of the approach previously introduced to small alphabets which turns out to be
much more feasible in the case of biological data like genome or protein sequences

* A possible idea could be extend the previous indexed searching using such different data structures like Suffix tree
or FM-Index

THANKS YOU
FOR YOUR ATTENTION

Any gquestions?

