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grammar compression

text
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grammar compression

text grammar
grammar 
compression
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grammar compression

text grammar
grammar 
compression

fuzzywuzzyuzi
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grammar compression

text grammar
grammar 
compression

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi
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grammar compression

text grammar
grammar 
compression

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi

non-terminals
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restore text

A → uz
B → Az
C → By
S → fCwCAi
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restore text

A → uz
B → Az
C → By
S → fCwCAi

start symbol
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restore text

A → uz
B → Az
C → By
S → fCwCAi

start symbol A → uz
B → uzz
C → uzzy
S → fCwCAi

       

expand
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restore text

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi

restore

start symbol A → uz
B → uzz
C → uzzy
S → fCwCAi

       

expand
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SLP: Straight Line Program

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
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SLP: Straight Line Program
● only one start symbol

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S



13

SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two 
(except start symbol)

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C
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SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two 
(except start symbol)

● no cycles

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C

Cz
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SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two 
(except start symbol)

● no cycles

● every non-terminal has exactly one rule

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C

Cz

A → zz
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bigram

given : text T
● bigram : pair of characters
● bigram frequency: number of 

non-overlapping bigrams in T
● #(b) := frequency of bigram b

fuzzywuzzzyuziT = 



17

bigram

given : text T
● bigram : pair of characters
● bigram frequency: number of 

non-overlapping bigrams in T
● #(b) := frequency of bigram b

fuzzywuzzzyuzi #(zz) = 2
#(fu) = 1fuzzywuzzzyuziT = 
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Re-Pair
● is an SLP 

fuzzywuzzyuzi
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Re-Pair
● is an SLP 
● takes bigram with highest 

frequency and replaces it with 
new non-terminal

fuzzywuzzyuzi

#(uz) = 3

fuzzywuzzyuzi
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Re-Pair
● is an SLP 
● takes bigram with highest 

frequency and replaces it with 
new non-terminal

fuzzywuzzyuzi

fA_zywA_zyA_i

#(uz) = 3
A → uz

fuzzywuzzyuzi
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Re-Pair
● is an SLP 
● takes bigram with highest 

frequency and replaces it with 
new non-terminal

● recurses fuzzywuzzyuzi

fA_zywA_zyA_i

#(uz) = 3
A → uz

fuzzywuzzyuzi
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T1=fA_zywA_zyA_i
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T1=fA_zywA_zyA_i

T1=fAzywAzyAi
#(Az) = 2

shrink text
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T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

shrink text
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T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
#(By) = 2

shrink text



26

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

#(By) = 2
C → By

shrink text
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T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

T3=fCwCAi

#(By) = 2
C → By

shrink text
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T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

T3=fCwCAi

#(By) = 2
C → By

terminate when 
all bigram 
frequencies are 
at most 1

shrink text
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#(Az) = 2
B → Az

#(By) = 2
C → By

T3=fCwCAi

A → uz
B → Az
C → By
S → fCwCAi

final string T3 
becomes start 
symbol
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Larson, Moffat'00:

5n + 4σ2 + 4π + 
n½ words

Bille+'17:

εn + n½ words

both run in expected 
linear time 

known algorithms
● n: text length

● σ: alphabet size

● π: # non-terminals

● ε > 0 constant

space is additional to 
the rewritable input 
text of n words
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target space:
● n lg (σ+π) + 

O(lg n) bits 
● input as 

rewritable part 
included 

our algorithms
● n: text length

● σ: alphabet size

● π: # non-terminals
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in O(n3) time

find bigram b with highest 
frequency:
● given b = T [i] T [i+1]
● #(b) = #(T [i] T [i+1]) 

　　 = max1⩽j⩽n #(T [j] T [j+1])

● can find b in O(n2) time
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in O(n3) time
● can find b in O(n2) time
● replace all occurrences of b in T 

within O(n) time
● number of all distinct bigrams is 

at most n (π ≤ n)

⇒ O(πn2) = O(n3) time
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if σ+π = O(1)
● σ+π : # symbols that can appear in T at 

any time
● if σ+π is constant:

– maintain frequencies of all bigrams in 
O((σ+π)2) = O(1) space in a binary search 
tree

– all operations on the tree: O(1) time
– total time: O(πn) = O(n)

● what if σ+π = ω(1), such as σ+π = Θ(n) ?
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general approach

aim in this talk: O(n2) time

input text T

n
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general approach

aim in this talk: O(n2) time

input text T

n

...

one cell takes O(1) words
      (for lg σ bits cells : consult the paper)
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assumption

can store bigram + frequency in one cell

one cell takes O(1) words
      (for lg σ bits cells : consult the paper)

input text T...
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idea
● bigram replacement frees up space

⇒ can maintain more frequencies
● for that: divide algorithm into rounds
● at beginning of k-th round :

– fk : number of frequencies we can maintain

– task: compute the frequencies of the fk 
most frequent bigrams
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#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk             

k-th round, number of rules: i
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#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk             

maintain
frequencies

k-th round, number of rules: i
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#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk             

#(da) = 20

maintain
frequencies

the most frequent bigram 
among those we did not store

k-th round, number of rules: i



42

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

fk

#(ao) = 19
#(bv) = 17
#(cy) = 13

...
fk             

after creating
j rules

#(da) = 20

Ti+j

the most frequent bigram 
among those we did not store

k-th round, number of rules: i+j



43

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

fk

#(ao) = 19
#(bv) = 17
#(cy) = 13

...
fk             

after creating
j rules

#(da) = 20

Ti+j

        table becomes useless

the most frequent bigram 
among those we did not store

k-th round, number of rules: i+j
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#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

                      fk+1

fk             
after creating

j rules

#(da) = 20

Ti+j fk+1

the most frequent bigram 
among those we did not store

k+1-th round, number of rules ： i+j
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start of algorithm
● first round: f1 = O(1) = constant

● maintain the f1 most frequent 
bigrams

● replace the most frequent bigram
● update the maintained 

frequencies
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why updating?

fuzzywuzzyuzi
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why updating?

fuzzywuzzyuzi #(uz) = 3
#(zz) = 2
#(zy) = 2
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why updating?

fuzzywuzzyuzi #(uz) = 3
#(zz) = 2
#(zy) = 2

fuzzywuzzyuzi



49

why updating?

fuzzywuzzyuzi

fAzywAzyAi

A → uz

#(uz) = 3
#(zz) = 2
#(zy) = 2

fuzzywuzzyuzi
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why updating?

fuzzywuzzyuzi

fAzywAzyAi

A → uz

#(uz) = 3
#(zz) = 2
#(zy) = 2
#(Az) = 2

0
fuzzywuzzyuzi

fAzywAzyAi
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one

fuzz

#(fu) = 1
#(zz) = 2
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

⇔ fk+1≥ (1.5)k f1

–  for large k = O(lg n)  
fk=Θ(n)

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

can maintain 
a constant 
fraction of 

all frequencies ！
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● for each replaced 
occurrence:
– the frequencies of at 

most two bigrams are 
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

⇔ fk+1≥ (1.5)k f1

–  for large k = O(lg n)  
fk=Θ(n)

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

can maintain 
a constant 
fraction of 

all frequencies ！

⇒ there are O(lg n) rounds
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time: summary
● computing frequencies of fk bigrams: 

O(n2) time + sort(fk) time

= O(n2) time (since fk  ⩽ n)

● compute frequencies O(lg n) times

⇒ O(n2 lg n) time
● how do we get O(n2) time?



58

in-place sorting
● fk : length of input integer array

● result:
– O(fk) space (including input)

– O(fk lg fk)  time

[Williams'64: heapsort]
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O(n2) time
● speed up frequency computation

Ti

T

text after creating i-th rule
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O(n2) time
● speed up frequency computation
● have fk space 

Ti fk

T



61

O(n2) time
● speed up frequency computation
● have fk space 

● divide in blocks Bj with |Bj| = ½fk

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

T
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk 
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1

compute frequencies of bigrams in Ti that appear in B2
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1

compute frequencies of bigrams in Ti that appear in B2

merge

 
store 

the ½ fk most 
frequent bigrams 
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

 
store 

the ½ fk most 
frequent bigrams 
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

 

● # merge = # Bj - 1 ⩽ n / fk , |Ti| ⩽ |T| = n 

store 
the ½ fk most 

frequent bigrams 
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Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

 

● # merge = # Bj - 1 ⩽ n / fk , |Ti| ⩽ |T| = n 
● time for bigrams in Bj ： O(n lg fk)  (binary search)
● time for each merge: O(fk lg fk)

● total time: O((n (n+fk) lg fk )/ fk) = O((n2 lg fk )/ fk) 

store 
the ½ fk most 

frequent bigrams 
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total time
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total time

have at most O(lg n) rounds



71

total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k) 
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total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k) 

 ⇒ lg fk= O(k) 
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total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k) 

 ⇒ lg fk= O(k) 

can we get o(n2) time ？
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bit-parallel algorithm
● machine word size: Θ(lg n) bits
● popcount: O(lg lg lg n) time per word
● total time:

O(n2  lg logτ n  lg lg lg n / logτ n)

where τ := σ+π : # symbols

⇒ o(n2) time for τ = O(polylog n)

original
algorithm

penalty word packing
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arxiv paper

additional content:
● parallel computation
● external memory computation

... in-place or in small space
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summary
● can compute Re-Pair in-place

– O(n3) time ： trivial
– O(n2) time

● in-place sorting
● batch computing frequencies
● assumed that σ = Θ(n)

● general σ: need max(n/c lg n, n lg τ) + O(lg n) bits for c > 1

● future work: 

– n lg τ + O(lg n) bits

– o(n2 lg n) time and τ between ω(1) and o(n) ? 

thanks for listening - any questions are welcome!
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