PSC 2020

Re-Pair in small space

Dominik Koppl

Tomohiro |

Isamu Furuya
Yoshimasa Takabatake
Kensuke Sakai
Keisuke Goto

grammar compression

text

grammar compression

text » grammar
grammar
compression

grammar compression

text » grammar
grammar
compression

fuzzywuzzyuzi

grammar compression

text » grammar
grammar
compression
A - uz
fuzzywuzzyuzi *B ~ AZ
C - By
S - fCwCA1

grammar compression

text » grammar
grammar
compression
A uz
fuzzywuzzyuzi 2 AZ
C By
S - TCwCA1
A4

non-terminals

restore text

A - uz
B - Az
C - By
S - fCwCA1

restore text

A - Uz
B - Az
C - By

/”s} fCwCA1

start symbol

restore text

A - Uz
B - Az
C - By

/Qa fCwCAL

start symbol é » Uz
- Uzz
expand C - uzzy
S - fCwCA1

restore text

A - Uz
B - Az
C - By

/Qa fCwCAL

start symbol

expand

fuzzywuzzyuzi

noowx>

l 1 11

/ restore
uz

Uuzz

uzzy
fCwCAL

10

SLP: Straight Line Program

A - uz
B - Az
C - B1
S - fCwCALl

restore

-

fuzzywuzzyuzi

11

SLP: Straight Line Program

* only one start symbol

A - Uz
B - Az

C - Bi
S - fCwCAi

restore

-

fuzzywuzzyuzi

12

SLP: Straight Line Program

* only one start symbol

* right hand side of each rule has length two
(except start symbol)

S
'
C
!
B
'
A

Bi + fuzzywuzzyuzi
restore

13

SLP: Straight Line Program

* only one start symbol

S
 right hand side of each rule has length two |
(except start symbol) [C
* NO cycles é
\ }
A - | Cz A

B - |Az . f .

C - |Bi o uzzywuzzyuzi

@_, fCwCA1

14

SLP: Straight Line Program

only one start symbol

right hand side of each rule has length two

(except start symbol)

no cycles

every non-terminal has exactly one rule K '
A

Cz
Az
Bi
S - fCwCAi

O 0 >
l Il

S

!
[
B

A - 77

restore

-

fuzzywuzzyuzi

15

bigram

given : text T
* bigram : pair of characters

* bigram frequency: number of
non-overlapping bigrams in T

* #(b) := frequency of bigram b
T =fuzzywuzzzyuzi

bigram

given : text T
* bigram : pair of characters

* bigram frequency: number of
non-overlapping bigrams in T

» #(b) := frequency of bigram b

#(zz) = 2

T =Tuzzywuzzzyuzl 4t _ 1

Re-Pair
*|S an SLP

fuzzywuzzyuzi

Re-Pair

e is an SLP #(uz) = 3

» takes bigram with highest
frequency and replaces it with
new non-terminal

fuzzywuzzyuzi

Re-Pair

e is an SLP #(uz) = 3
A - Uz

» takes bigram with highest
frequency and replaces it with
new non-terminal

fuzzywuzzyuzi

'
fA zywA zyA 1

Re-Pair

*|S an SLP #(uz) = 3
A - Uz

» takes bigram with highest
frequency and replaces it with
new non-terminal

-recurses fuzzywuzzyuzi

'
fA zywA zyA 1

I=tA zywA zyA 1

shrink text
(I=tA zywA zyA 1
T.=fAzywAzyAi #Az)=2

shrink text
(I=tA zywA zyA 1
_ #(Az) = 2
Tl—fAzywAzyA} (BZL -
I,=fB ywB yA1

shrink text
I=tA zywA zyA 1
(T =fAzywAzyAi #(AZL—AZZ
T =fB ywB yAl
(T =fBywByAi #(By) =2

shrink text
I=tA zywA zyA 1
(T =fAzywAzyAi #(AZL—AZZ
T =fB ywB yAl
(T =fBywByAi #(By) =2
T =fC wC Ai 7%

shrink text
I=tA zywA zyA 1
(T =fAzywAzyAi #(AZL—AZZ
T =fB ywB yAl
(T =fBywByAi #(By) =2
T =fC wC Ai 7%
(T3=waCAi

shrink text
I=tA zywA zyA 1
(T =fAzywAzyAi #(AZL—AZZ
T =fB ywB yAl
(T =fBywByAi #(By) =2
T =fC wC AL 7%
TofCwCAL SEne

frequencies are
at most 1

AN

B - A7z #(AZ)=2
C - By B - Az
S - fCwCA1L

#(By) = 2
\: N By

. final string T,
T3_fCWCAl becomes start

symbol

known algorithms

Larson, Moffat'00: < n: text length

5n + 402 + 41 + * 0: alphabet size

nv words .
e IT: # non-terminals

e £ > 0 constant

Bille+'17:
€n + nv words

space Is additional to
the rewritable input
text of n words

both run in expected
linear time

30

our algorithms

target space: * n: text length
*nlg (o+m) + * 0: alphabet size

O(lg n) bits » 1: # non-terminals
* Input as

rewritable part
included

In O(n?) time
find bigram b with highest
frequency:
egiven b=TI[i] T [i+1]

o #(b) = #(T[I] TI[i+1])
= max, ., #(T [j1 T [j+1])
e can find b in O(n2) time

IN O(n3) time

e can find b In O(n2) time

* replace all occurrencesof bin T
within O(n) time

 number of all distinct bigrams is
at most n (m < n)

= O(mrn2) = O(n3) time

33

If o+m = O(1)

 0+1T : # symbols that can appear in T at
any time
 if o+m is constant:

- maintain frequencies of all bigrams in
O((o+m)2) = O(1) space in a binary search
tree

- all operations on the tree: O(1) time
- total time: O(rtn) = O(n)

e what if o+m = w(1l), such as o+mr = ©(n) ?

34

general approach

alm In this talk: O(n2) time

I

iInput text T

general approach

alm In this talk: O(n2) time

I

iInput text T

.
e

one cell takes O(1) words
(for Ig o bits cells : consult the paper)

36

assumption

can store bigram + frequency in one cell

iInput text T

.
e

one cell takes O(1) words
(for Ig o bits cells : consult the paper)

37

idea

* bigram replacement frees up space
= Ccah maintain more frequencies
 for that: divide algorithm into rounds

» at beginning of k-th round :
- f. : number of frequencies we can maintain

-task: compute the frequencies of the f,
most frequent bigrams

38

f

#(zb) = 33
#(wy) = 33
#(cx) = 31
#(aol)”= 21

k-th round, number of rules: |

39

#(zb) = 33
#(wy) = 33
#(cx) = 31
#(aol)”= 21

maintain
frequencies

T

/

k-th round, number of rules: |

40

the most frequent bigram
among those we did not store

#(da) = 20
#(zb) = 33
#(wy) = 33
#(cx) = 31
#(ao.)”= 21

maintain
frequencies

T. f

I k

k-th round, number of rules: |

41

f

the most frequent bigram
among those we did not store

-

#(da) = 20
#(zb) = 33
#(wy) = 33
#(cx) = 31 after creating
#(a0) = 21 J rules
T ..
i+

#(ao) = 19

#(bv) =17

#(cy) =13
fk

k-th round, number of rules: i +J

42

the most frequent bigram
among those we did not store

table becomes useless

#(da) =120
#(zb) = 33 #(ao) =/19
#(wy) = 33 #(bv) =17
#(cx) = 31 after creating " #(cy) =13
#(aol)“= - i rules

Ti+j fk

k-th round, number of rules: i +J

the most frequent bigram
among those we did not store

#(da) =20
#(Zb) = 33 ™~
#(wy) = 33
#(ex) = 31 after creating .
#(aO.)“= 21 J rules > k+1
_/
Ti+j f e

k+1-th round, number of rules : i+j

44

start of algorithm

 first round: f; = O(1) = constant

 maintain the f; most frequent
bigrams

* replace the most frequent bigram

* Update the maintained
frequencies

why updating?

fuzzywuzzyuzi

why updating?

fuzzywuzzyuzl #(uz) =3
#(zz) = 2
#(zy) = 2

why updating?

fuzzywuzzyuzi #(uz

why updating?

A = Uz
fuzzywuzzyuzli #(uz) =3
#(zz) = 2

'
fAzywAzyAl #(zy) = 2

why updating?

A = Uz
fuzzywuzzyuzl +#uzy=3-
' | #(zz2) =0
fAzywAzyAl #(zy) = 2

#(Az) = 2

» for each replaced
occurrence:

- the frequencies of at
most two bigrams are
decremented by one

51

» for each replaced
occurrence:

- the frequencies of at
most two bigrams are
decremented by one

#(fu) =1
#(zz) = 2

fuzz

52

- for each replaced #(fu) = 20

occurrence: #(zz) =21
- the frequencies of at fuzz

most two bigrams are

decremented by one J

TA Z

53

- for each replaced #(fu) = 20

occurrence: #(zz) =21
- the frequencies of at fuzz

most two bigrams are

decremented by one J

=at end of k-th round: fA 7
fk+l = fk+1/2f/< N

54

- for each replaced #(fu) = 40

occurrence: #(zz) =21
- the frequencies of at fuzz

most two bigrams are

decremented by one J

=at end of k-th round: fA 7
fk+l = fk+1/2f/< N

e f.1= (1.5)f; can maintain
- for large k = O(Ig fraction of
f,=0(n) C

cll frequencies%

- for each replaced #(fu) = 40

occurrence: #(zz) =21
- the frequencies of at fuzz

most two bigrams are

decremented by one J

=at end of k-th round: fA 7
fk+l = fk+1/2f/< N

e f.1= (1.5)f; can maintain
- for large k = O(Ig fraction of
f,=0(n) C

cll frequenciesj
= there are O(lg n) rounds

56

time: summary

« computing frequencies of f, bigrams:
O(n2) time + sort(f,) time
= 0O(n2) time (since f, < n)
 compute frequencies O(lg n) times
= O(nz Ig n) time
* how do we get O(n2) time?

57

In-place sorting

- f - length of input integer array

* result:
- O(f,) space (including input)

[Williams'64: heapsort]

O(n?) time

* sSpeed up frequency computation

text after creating i-th rule

e

C T,
=

O(n?) time

* sSpeed up frequency computation
* have f, space

60

O(n?) time

* sSpeed up frequency computation
* have f, space

. divide in blocks B, with |B)| = %f,

vof, Wf Wf Y,

-« < < < -

B B B B

1 2 3 4

vof W, Wf Y

-« < < < -

B B B B

1 P 3 4

vof, Wf. Wf, Wf

-« w< < < -

Bl 5. 5 5
T !

.
compute frequencies of bigrams in T, that appear in B,

vof, Wf. Wf, Wf

.
compute frequencies of bigrams in T, that appear in B,

compute frequencies of bigrams in T, that appear in B,

~ ™~

1 1 1 1 StOre
> /ka > /ka > /ka > /ka - the l/ka MOSt

frequent bigrams

B, B, B, B, % —

compute frequencies of bigrams in T, that appear in B,

compute frequencies of bigrams in T, that appear in B,

65

-

Yof,

-

-

Yof,

<

Yof,

B

1

B

2

B

3

~ ™~
store

the 72 f, most
frequent bigrams

e

=

compute frequencies of bigrams in T. that appear in B,

66

-

Yof,

-

-

Yof,

<

Yof,

B

1

B

2

B

3

~ ™~
store

the 72 f, most
frequent bigrams

e

=

compute frequencies of bigrams in T. that appear in B,

« #merge=#B-1<n/f,|T| <|T|=n

67

vof W, Wf Y

-« < < <

B B, B, B,

1

e
store

the 72 f, most
frequent bigrams

\

7

e

=

compute frequencies of bigrams in T. that appear in B,

merge=#B;-1<n/f, |T| <

[Tl =n

time for bigrams in B; : O(nlg f,) (binary search)

time for each merge: O(f, Ig f,)

total time: O((n (n+f,) lg)/ f) = O((n21g f.)/ f,)

68

total time

total time

have at most O(lg n) rounds

total time

have at most O(lg n) rounds

lg n
(221 sk) = 0n’)
e

f.=1.5%1f =0(1.5%)

total time

have at most O(lg n) rounds

/ - Igf= Ok
n2 /8”\

> 7 8fk=0 (221 Sk) = 0(n*)
e
fi=1.5%1f=0(1.54

total time

have at most O(lg n) rounds

2 Ig f,= O(k)
/8”\

|8fk— (221 Sk) O(n?)
e
fi=1.5¢f=0(1.5%

can we get o(n?) time ?

“fk

bit-parallel algorithm

* machine word size: ©(lg n) bits
» popcount: O(lg Ig Ig n) time per word
» total time:

O(nz lglog.n lglglg n/log, n)
L\ J \ J

original penalty word packing
algorithm

where T := o+T1 : # symbols

= 0(n2) time for T = O(polylog n)

74

arxiv paper

additional content:

» parallel computation

» external memory computation
... In-place or in small space

75

summary

* can compute Re-Pair in-place
- 0O(n3) time : trivial
- 0O(n2) time
* in-place sorting
* pbatch computing frequencies
« assumed that o = O(n)

* general 0: need max(n/clgn, nlg T) + O(lg n) bitsforc > 1
 future work:

-nlg T+ O(lg n) bits

- 0(n2lg n) time and T between w(1) and o(n) ?

thanks for listening - any questions are welcome!

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 7 (6)
	Slide: 7 (7)
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 18
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 20 (5)
	Slide: 20 (6)
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 24 (5)
	Slide: 24 (6)
	Slide: 24 (7)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 26
	Slide: 27
	Slide: 28

