

Simple KMP Pattern-Matching on Indeterminate Strings Neerja Mhaskar and W. F. Smyth

Neerja Mhaskar

Dept. of Computing and Software, McMaster University, Canada

Prague Stringology Conference, August 31 – September 2, 2020

- Introduction
- Encoding
- KMP algorithm
- KMP style algorithm for indeterminate strings
- Open problems

Outline Introduction Encoding Pattern matching KMP KMP_INDET Conclusions Introduction Introduction

Given a fixed finite alphabet $\Sigma = \{\lambda_1, \lambda_2, \dots, \lambda_{\sigma}\}.$

A **regular letter**, also called a **character**, is any single element of Σ .

For example, for the DNA alphabet $\Sigma_{DNA} = \{a, c, g, t\}$ - a, c, g, t are all regular letters.

An **indeterminate letter** is any subset of Σ of cardinality greater than one.

Some examples of an indeterminate letter over $\Sigma_{DNA} = \{a, c, g, t\}$ are $\{a, c\}, \{a, g, t\}$, and $\{a, c, g, t\}$.

Outline Introduction Encoding Pattern matching KMP KMP_INDET Conclusions

A regular string x = x[1..n] on Σ is an array of regular letters drawn from Σ .

An indeterminate string x[1..n] on Σ is an array of letters drawn from Σ , of which at least one is indeterminate.

Whenever entries $\boldsymbol{x}[i]$ and $\boldsymbol{x}[j]$, $1 \leq i, j \leq n$, both contain the same character (possibly other characters as well), we say that $\boldsymbol{x}[i]$ matches $\boldsymbol{x}[j]$ and write $\boldsymbol{x}[i] \approx \boldsymbol{x}[j]$.

Encoding for Indeterminate Strings

- We propose a new encoding for indeterminate strings using prime numbers and the GCD operation.
- We make use of a mapping $f: \Sigma \to P$, where P is the set of the first $|\Sigma| = \sigma$ prime numbers, such that each element of Σ uniquely maps to an element of P.

For example, for $\Sigma_{DNA} = \{a, c, g, t\}$, a possible mapping is $f : a \to 2, c \to 3, g \to 5, t \to 7$.

 Then given x = x[1..n] on Σ (the source string), we apply the mapping f to compute y = y[1..n] (the mapped string) according to the following rule:

(R) For every $\boldsymbol{x}[i] = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$, $1 \leq k \leq \sigma$, $1 \leq i \leq n$, where $\lambda_h \in \Sigma, 1 \leq h \leq k$, set

$$\boldsymbol{y}[i] \leftarrow \prod_{h=1}^{k} f(\lambda_h)$$
, where $\lambda_h \in \boldsymbol{x}[i]$.

For example, consider a source string
 x = a{a, c}g{a, t}t{c, g}, over Σ_{DNA}, and σ = 4. Let the
 mapping be f : a → 2, c → 3, g → 5, t → 7.
 Applying Rule (R) for 1 ≤ k ≤ 4, we compute the mapped
 string y = 2/6/5/14/7/15.

Outline	Introduction	Encoding	Pattern matching	KMP	KMP_INDET	Conclusions

- The mapping f and Rule (R) allows an ordering on the indeterminate letters drawn from Σ.
- For example, for the above example and mapping,

$$a = 2 < g = 5 < \{a, c\} = 6 < t = 7 < \{a, t\} = 14 < \{c, g\} = 15.$$

• On the other hand, for the same example, a different mapping (say, $f: t \to 2, c \to 3, a \to 5, g \to 7$) yields y = 5/15/7/10/2/21 with a a quite different ordering,

$$t=2 < a=5 < g=7 < \{a,t\}=10 < \{a,c\}=15 < \{c,g\} < 21.$$

If \boldsymbol{y} is computed from \boldsymbol{x} by Rule (R), then for every $i_1, i_2 \in 1..n$, $\boldsymbol{x}[i_1] \approx \boldsymbol{x}[i_2]$ if and only if $gcd(\boldsymbol{y}[i_1], \boldsymbol{y}[i_2]) > 1$.

Two strings x_1 and x_2 of equal length n are said to be isomorphic if and only if for every $i, j \in \{1, ..., n\}$,

$$\boldsymbol{x_1}[i] \approx \boldsymbol{x_1}[j] \Longleftrightarrow \boldsymbol{x_2}[i] \approx \boldsymbol{x_2}[j].$$
 (1)

We thus have the following observations:

Observation (1)

If x is an indeterminate string on Σ , and y is the numerical string constructed by applying Rule (R) to x, then x and y are isomorphic.

Observation (2)

By virtue of Lemma 1 and (1), y can overwrite the space required for x (and vice versa) with no loss of information.

Mhaskar & Smyth

Outline	Introduction	Encoding	Pattern matching	KMP	KMP_INDET	Conclusions

Observation (3)

Suppose ℓ_1 and ℓ_2 are integers representable in at most B bits. Then $gcd(\ell_1, \ell_2)$ can be computed in $O(M_B \log B)$ time,where M_B denotes the maximum time required to compute $\ell_1 \ell_2$ over all such integers.

Then for example when $\sigma = 4$, corresponding to Σ_{DNA} , $2 \times 3 \times 5 \times 7 = 210 < 256$, and so B = 8 and the matching time is $O(M_8 \log 8) = O(3M_8)$. Similarly for $\sigma = 9$ the time required to match any two indeterminate letters is $O(5M_{32})$

Observation (4)

We assume therefore that, for $\sigma \leq 9$, computing a match between $x[i_1]$ and $x[i_2]$ on Σ (that is, between $y[i_1]$ and $y[i_2]$ computed using Rule (R)) requires time bounded above by a (small) constant.

Pattern matching in strings

A border array $\beta_x = \beta_x[1..n]$ of x is an integer array where for every $i \in [1..n]$, $\beta_x[i]$ is the length of the longest border of x[1..i].

A prefix array $\pi_x = \pi_x[1..n]$ of x is an integer array where for every $i \in [1..n]$, $\pi_x[i]$ is the length of the longest substring starting at position i that matches a prefix of x.

	1	2	3	4	5	6	7	8	9	10	11	12	13
\boldsymbol{x}	а	а	b	а	а	b	а	а	$\{a, b\}$	b	а	а	$\{a, c\}$
$\beta_{\boldsymbol{x}}$	0	1	0	1	2	3	4	5	6	3	4	5	2
$\pi_{\boldsymbol{x}}$	13	1	0	6	1	0	3	5	1	0	2	2	1
- igure tring	igure 1: Border array β_x and prefix array π_x computed for the tring $x = aabaabaa\{a, b\}baa\{a, c\}$.												

Lemma ([AHU74])

The border array and prefix array of a regular string of length n can be computed in O(n) time.

Lemma ([Smy03, SW08])

The border array and prefix array of an indeterminate string of length n can be computed in $O(n^2)$ time in the worst-case, O(n) in the average case.

Lemma ([IR16])

The prefix array of an indeterminate string of length n over a constant-sized alphabet can be computed in $O(n\sqrt{n})$ time and O(n) space.

The Knuth-Morris-Pratt (KMP) Algorithm

- The most famous pattern-matching algorithm.
- It computes the border of every prefix of p; that is, computes the border array of p (BA_p) to compute the shift.

 Outline
 Introduction
 Encoding
 Pattern matching
 KMP
 KMP_INDET
 Conclusions

 The KMP Algorithm - 2

KMP_INDET - Simple KMP style algorithm for indeterminate strings

- KMP_INDET is a hybrid algorithm works for both regular and indeterminate strings.
- If input is regular, $\text{KMP}_{\text{INDET}}$ is the classical KMP algorithm, and uses the border array of p to compute shifts.
- Otherwise, it checks if the matched prefix of p and the matched substring of x are regular.
 - If yes, it uses the border array of p to compute the shift.
 - Otherwise, it constructs a new string p' from the longest proper prefix of the matched pattern p and the longest proper suffix of the matched substring of the text x, and computes the prefix array of p' to compute the shift.

If the matched prefix of p and the matched substring of x are both regular, KMP_INDET uses the border array of p (β_p) to compute the shift.

If p' is indeterminate, KMP_INDET constructs the prefix array of $p'(\pi_{p'})$ to compute the shift.

The shift is the maximum value in the second half of the prefix array $(\pi_{p'})$, say at position k, such that a prefix of p' matches the entire suffix at k.

Mhaskar & Smyth

Outline	Introduction	Encoding	Pattern matching	KMP	KMP_INDET	Conclusions
•	The example $oldsymbol{x} = aabaaba$	below simu $a\{a,b\}baa\{$	lates the execution $[a,c]$ and pattern	on of KN 1 $oldsymbol{p}=aab$	AP_INDET on baa.	the text

	1	2	3	4	5	6	7	8	9	10	11	12	13
x	а	а	b	а	а	b	а	а	$\{a, b\}$	b	а	а	$\{a, c\}$
	а	а	b	а	а								
				а	а	b	а	а					
							а	а	b	х			
								а	а	b	а	а	

- When pattern is aligned at positions 1 and 4, KMP_INDET uses the BA_p to compute the shift.
- When pattern is aligned at position 7, a mismatch occurs at index 10. Also, p' = aba{a,b} is indeterminate. Therefore, we compute the prefix array of p' (π_{p'} = (4,0,2,1)). Since the shift is 2, pattern is aligned at position 8.
- After execution, KMP_INDET returns the list of positions {1,4,8} at which *p* occurs in *x*.

Mhaskar & Smyth

Running time of $\mathrm{KMP}_{-}\mathrm{INDET}$

Theorem (1)

Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of constant size σ , KMP_INDET executes in O(n) time when y and q are both regular; otherwise, when both are indeterminate, the worst-case upper bound is $O(m^2n)$. The algorithm's additional space requirement is O(m), for the pattern q' and corresponding arrays $\beta_{q'}$ and $\pi_{q'}$.

Using Lemma [IR16] we restate Theorem (1) resulting in an improved run time complexity for $\rm KMP_INDET.$

Theorem (1)

Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of constant size σ , KMP_INDET executes in O(n) time when y and q are both regular; otherwise, when both are indeterminate, the worst-case upper bound is $O(nm\sqrt{m})$. The algorithm's additional space requirement is O(m), for the pattern q' and corresponding arrays $\beta_{q'}$ and $\pi_{q'}$.

Pattern matching in conservative indeterminate strings

A conservative indeterminate string is an indeterminate string in which the number of indeterminate letters is bounded above by a constant $k \ge 0$.

- Crochemore et. al in [CIK⁺16] proposed an O(nk) algorithm which uses suffix trees and other auxiliary data structures to search for pattern p in the text x. The number of indeterminate letters in x and p is bounded by a constant k.
- Daykin et. al in [DGG⁺19], proposed a pattern matching algorithm by first constructing the Burrows Wheeler Transform (BWT) of x in O(mn) time, and use it to find all occurrences of p in x in O(km² + q) time, where q is the number of occurrences of the pattern in x.
- KMP_INDET on the other hand, requires $O(n + km^2)$ time in the best case and requires $O(nm^2)$ in the worst case.

- In the paper, we present a simple KMP style pattern matching algorithm (KMP_INDET) for indeterminate strings that is very efficient in cases that arise in practice.
- Further, the algorithm uses negligible $\Theta(m)$ space in all cases.
- We conjecture that a similar approach is feasible for the Boyer-Moore algorithm [BM77], together with its numerous variants (BM-Horspool, BM-Sunday, BM-Galil, Turbo-BM): see [Smy03, Ch. 8] and

https://www-igm.univ-mlv.fr/ lecroq/string/

- As a future research problem, we intend to optimize KMP_INDET for the conservative indeterminate strings.
- We also intend to perform experimental comparison of the running times of existing indeterminate pattern-matching algorithms with those of KMP_INDET, assuming various frequencies of indeterminate letters.

- [AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison–Wesley, 1974.
- [BM77] Robert S. Boyer and J. Strother Moore.A fast string searching algorithm.*Communications of the ACM*, 20(10):762–772, 1977.
- [CIK⁺16] Maxime Crochemore, Costas S. Iliopoulis, Ritu Kundu, Manal Mohamed, and Fatima Vayani.
 Linear algorithm for conservative degenerate pattern matching. *Eng. Appls. of Artificial Intelligence*, 51:109–114, 2016.

Outline	Introduction	Encoding	Pattern matching	KMP	KMP_INDET	Conclusions
Refe	erences	Ш				

[DGG⁺19] J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, L. Mouchard, É. Prieur-Gaston, and B. Watson. Efficient pattern matching in degenerate strings with the Burrows-Wheeler transform.

Information Processing Letters, 147:82-87, 2019.

[IR16] Costas S. Iliopoulos and Jakub Radoszewski.

Truly subquadratic-time extension queries and periodicity detection in strings with uncertainties.

In *CPM*, 2016.

[Smy03] Bill Smyth.

Computing Patterns in Strings. Pearson/Addison–Wesley, 2003.

[SW08] W. F. Smyth and Shu Wang.

New perspectives on the prefix array.

Proc. 15th String Processing & Inform. Retrieval Symp. (SPIRE), 5280:133–143, 2008.

Outline	Introduction	Encoding	Pattern matching	KMP	KMP_INDET	Conclusions

Thank you!