
Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Simple KMP Pattern-Matching on

Indeterminate Strings
Neerja Mhaskar and W. F. Smyth

Neerja Mhaskar

Dept. of Computing and Software, McMaster University, Canada

Prague Stringology Conference,
August 31 – September 2, 2020

Mhaskar & Smyth PSC 2020 Outline - 1 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Outline

Introduction

Encoding

KMP algorithm

KMP style algorithm for indeterminate strings

Open problems

Mhaskar & Smyth PSC 2020 Outline - 1 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Introduction

Given a fixed finite alphabet Σ = {λ1, λ2, . . . , λσ}.

A regular letter, also called a character, is any single
element of Σ.

For example, for the DNA alphabet ΣDNA = {a, c, g, t}
– a, c, , g, t are all regular letters.

An indeterminate letter is any subset of Σ of
cardinality greater than one.

Some examples of an indeterminate letter over
ΣDNA = {a, c, g, t} are {a, c}, {a, g, t}, and {a, c, g, t}.

Mhaskar & Smyth PSC 2020 Introduction - 2 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Introduction

A regular string x = x[1..n] on Σ is an array of regular
letters drawn from Σ.

An indeterminate string x[1..n] on Σ is an array of
letters drawn from Σ, of which at least one is
indeterminate.

Whenever entries x[i] and x[j], 1 ≤ i, j ≤ n, both
contain the same character (possibly other characters as
well), we say that x[i] matches x[j] and write
x[i] ≈ x[j].

Mhaskar & Smyth PSC 2020 Introduction - 3 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Encoding for Indeterminate Strings

We propose a new encoding for indeterminate
strings using prime numbers and the GCD operation.

We make use of a mapping f : Σ→ P , where P is
the set of the first |Σ| = σ prime numbers, such
that each element of Σ uniquely maps to an
element of P .

For example, for ΣDNA = {a, c, g, t}, a possible
mapping is f : a→ 2, c→ 3, g → 5, t→ 7.

Mhaskar & Smyth PSC 2020 Encoding - 4 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Then given x = x[1..n] on Σ (the source string), we apply
the mapping f to compute y = y[1..n] (the mapped string)
according to the following rule:

(R) For every x[i] = {λ1, λ2, . . . , λk}, 1 ≤ k ≤ σ, 1 ≤ i ≤ n,
where λh ∈ Σ, 1 ≤ h ≤ k, set

y[i]←
∏k

h=1 f(λh), where λh ∈ x[i].

For example, consider a source string
x = a{a, c}g{a, t}t{c, g}, over ΣDNA, and σ = 4. Let the
mapping be f : a→ 2, c→ 3, g → 5, t→ 7.

Applying Rule (R) for 1 ≤ k ≤ 4, we compute the mapped
string y = 2/6/5/14/7/15.

Mhaskar & Smyth PSC 2020 Encoding - 5 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

The mapping f and Rule (R) allows an ordering on the
indeterminate letters drawn from Σ.

For example, for the above example and mapping,

a = 2 < g = 5 < {a, c} = 6 < t = 7 < {a, t} = 14 < {c, g} = 15.

On the other hand, for the same example, a different mapping
(say, f : t→ 2, c→ 3, a→ 5, g → 7) yields
y = 5/15/7/10/2/21 with a a quite different ordering,

t = 2 < a = 5 < g = 7 < {a, t} = 10 < {a, c} = 15 < {c, g} < 21.

Mhaskar & Smyth PSC 2020 Encoding - 6 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Lemma (1)

If y is computed from x by Rule (R), then for every i1, i2 ∈ 1..n,
x[i1] ≈ x[i2] if and only if gcd(y[i1],y[i2]) > 1.

Two strings x1 and x2 of equal length n are said to be isomorphic
if and only if for every i, j ∈ {1, . . . , n},

x1[i] ≈ x1[j]⇐⇒ x2[i] ≈ x2[j]. (1)

We thus have the following observations:

Observation (1)

If x is an indeterminate string on Σ, and y is the numerical string
constructed by applying Rule (R) to x, then x and y are isomorphic.

Observation (2)

By virtue of Lemma 1 and (1), y can overwrite the space required
for x (and vice versa) with no loss of information.

Mhaskar & Smyth PSC 2020 Encoding - 7 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Observation (3)

Suppose `1 and `2 are integers representable in at most B bits.
Then gcd(`1, `2) can be computed in O(MB logB) time,where MB

denotes the maximum time required to compute `1`2 over all such
integers.

Then for example when σ = 4, corresponding to ΣDNA,
2× 3× 5× 7 = 210 < 256, and so B = 8 and the matching time is
O(M8 log 8) = O(3M8). Similarly for σ = 9 the time required to
match any two indeterminate letters is O(5M32)

Observation (4)

We assume therefore that, for σ ≤ 9, computing a match between
x[i1] and x[i2] on Σ (that is, between y[i1] and y[i2] computed
using Rule (R)) requires time bounded above by a (small) constant.

Mhaskar & Smyth PSC 2020 Encoding - 8 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Pattern matching in strings

A border array βx = βx[1..n] of x is an integer array where for
every i ∈ [1..n], βx[i] is the length of the longest border of x[1..i].

A prefix array πx = πx[1..n] of x is an integer array where for
every i ∈ [1..n], πx[i] is the length of the longest substring starting
at position i that matches a prefix of x.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
βx 0 1 0 1 2 3 4 5 6 3 4 5 2

πx 13 1 0 6 1 0 3 5 1 0 2 2 1

Figure 1: Border array βx and prefix array πx computed for the
string x = aabaabaa{a, b}baa{a, c}.

Mhaskar & Smyth PSC 2020 Pattern matching - 9 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Lemma ([AHU74])

The border array and prefix array of a regular string of length n can
be computed in O(n) time.

Lemma ([Smy03, SW08])

The border array and prefix array of an indeterminate string of
length n can be computed in O(n2) time in the worst-case, O(n) in
the average case.

Lemma ([IR16])

The prefix array of an indeterminate string of length n over a
constant-sized alphabet can be computed in O(n

√
n) time and

O(n) space.

Mhaskar & Smyth PSC 2020 Pattern matching - 10 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

The Knuth-Morris-Pratt (KMP) Algorithm

The most famous pattern-matching algorithm.

It computes the border of every prefix of p; that is,
computes the border array of p (BAp) to compute
the shift.

x . . .

p

1

b
1 m

. . .

ni
a

. . .

j

match

Mhaskar & Smyth PSC 2020 KMP - 11 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

The KMP Algorithm - 2

x . . .

p

1

b
1 m

. . .

ni
a

. . .

j

Longest border
of [1.. -1]

equal

Mhaskar & Smyth PSC 2020 KMP - 12 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

The KMP Algorithm - 3

x . . .

p

1

b
1 m

. . .

ni
a

. . .

j

compare

Mhaskar & Smyth PSC 2020 KMP - 13 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

KMP Indet - Simple KMP style
algorithm for indeterminate strings

KMP Indet is a hybrid algorithm - works for both regular
and indeterminate strings.

If input is regular, KMP Indet is the classical KMP
algorithm, and uses the border array of p to compute shifts.

Otherwise, it checks if the matched prefix of p and the
matched substring of x are regular.

If yes, it uses the border array of p to compute the shift.
Otherwise, it constructs a new string p′ from the longest
proper prefix of the matched pattern p and the longest
proper suffix of the matched substring of the text x, and
computes the prefix array of p′ to compute the shift.

Mhaskar & Smyth PSC 2020 KMP Indet - 14 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

1 i n
x

p
1 j m

· · · a · · ·

b · · ·

match

If the matched prefix of p and the matched substring of x are both
regular, KMP Indet uses the border array of p (βp) to compute
the shift.

Mhaskar & Smyth PSC 2020 KMP Indet - 15 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

1 i n

x

p
1 j m

p′

· · · a · · ·

b · · ·

length is at most 2(m− 2)

If p′ is indeterminate, KMP Indet constructs the prefix array of p′ (πp′) to
compute the shift.

The shift is the maximum value in the second half of the prefix array (πp′), say
at position k, such that a prefix of p′ matches the entire suffix at k.

Mhaskar & Smyth PSC 2020 KMP Indet - 16 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

The example below simulates the execution of KMP Indet on the text
x = aabaabaa{a, b}baa{a, c} and pattern p = aabaa.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a a b a a b a a {a, b} b a a {a, c}
a a b a a

a a b a a

a a b x

a a b a a

When pattern is aligned at positions 1 and 4, KMP Indet uses the
BAp to compute the shift.

When pattern is aligned at position 7, a mismatch occurs at index 10.
Also, p′ = aba{a, b} is indeterminate. Therefore, we compute the prefix
array of p′ (πp′ = (4, 0, 2, 1)). Since the shift is 2, pattern is aligned at
position 8.

After execution, KMP Indet returns the list of positions {1, 4, 8} at
which p occurs in x.

Mhaskar & Smyth PSC 2020 KMP Indet - 17 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Running time of KMP Indet

Theorem (1)

Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of constant size
σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is
O(m2n). The algorithm’s additional space requirement is O(m), for the pattern
q′ and corresponding arrays βq′ and πq′ .

Using Lemma [IR16] we restate Theorem (1) resulting in an improved run time
complexity for KMP Indet.

Theorem (1)

Given text y = y[1..n] and pattern q = q[1..m] on an alphabet of constant size
σ, KMP Indet executes in O(n) time when y and q are both regular;
otherwise, when both are indeterminate, the worst-case upper bound is
O(nm

√
m). The algorithm’s additional space requirement is O(m), for the

pattern q′ and corresponding arrays βq′ and πq′ .

Mhaskar & Smyth PSC 2020 KMP Indet - 18 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Pattern matching in conservative
indeterminate strings

A conservative indeterminate string is an indeterminate string in which the
number of indeterminate letters is bounded above by a constant k ≥ 0.

Crochemore et. al in [CIK+16] proposed an O(nk) algorithm which uses
suffix trees and other auxiliary data structures to search for pattern p in
the text x. The number of indeterminate letters in x and p is bounded
by a constant k.

Daykin et. al in [DGG+19], proposed a pattern matching algorithm by
first constructing the Burrows Wheeler Transform (BWT) of x in O(mn)
time, and use it to find all occurrences of p in x in O(km2 + q) time,
where q is the number of occurrences of the pattern in x.

KMP Indet on the other hand, requires O(n+ km2) time in the best
case and requires O(nm2) in the worst case.

Mhaskar & Smyth PSC 2020 KMP Indet - 19 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Conclusions

In the paper, we present a simple KMP style pattern matching algorithm
(KMP Indet) for indeterminate strings that is very efficient in cases
that arise in practice.

Further, the algorithm uses negligible Θ(m) space in all cases.

We conjecture that a similar approach is feasible for the Boyer-Moore
algorithm [BM77], together with its numerous variants (BM-Horspool,
BM-Sunday, BM-Galil, Turbo-BM): see [Smy03, Ch. 8] and

https://www-igm.univ-mlv.fr/ lecroq/string/

As a future research problem, we intend to optimize KMP Indet for the
conservative indeterminate strings.

We also intend to perform experimental comparison of the running times
of existing indeterminate pattern-matching algorithms with those of
KMP Indet, assuming various frequencies of indeterminate letters.

Mhaskar & Smyth PSC 2020 Conclusions - 20 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

References I

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman.

The Design and Analysis of Computer Algorithms.

Addison–Wesley, 1974.

[BM77] Robert S. Boyer and J. Strother Moore.

A fast string searching algorithm.

Communications of the ACM, 20(10):762–772, 1977.

[CIK+16] Maxime Crochemore, Costas S. Iliopoulis, Ritu Kundu, Manal
Mohamed, and Fatima Vayani.

Linear algorithm for conservative degenerate pattern matching.

Eng. Appls. of Artificial Intelligence, 51:109–114, 2016.

Mhaskar & Smyth PSC 2020 Conclusions - 21 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

References II

[DGG+19] J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre,
M. Léonard, L. Mouchard, É. Prieur-Gaston, and B. Watson.

Efficient pattern matching in degenerate strings with the
Burrows-Wheeler transform.

Information Processing Letters, 147:82–87, 2019.

[IR16] Costas S. Iliopoulos and Jakub Radoszewski.

Truly subquadratic-time extension queries and periodicity detection
in strings with uncertainties.

In CPM, 2016.

[Smy03] Bill Smyth.

Computing Patterns in Strings.

Pearson/Addison–Wesley, 2003.

Mhaskar & Smyth PSC 2020 Conclusions - 22 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

References III

[SW08] W. F. Smyth and Shu Wang.

New perspectives on the prefix array.

Proc. 15th String Processing & Inform. Retrieval Symp. (SPIRE),
5280:133–143, 2008.

Mhaskar & Smyth PSC 2020 Conclusions - 23 / 24

Outline Introduction Encoding Pattern matching KMP KMP Indet Conclusions

Thank you!

Mhaskar & Smyth PSC 2020 Conclusions - 24 / 24

	Encoding
	Pattern matching
	KMP
	KMP_Indet

