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Abstract. We deal with the problem of maintaining the suffix tree indexing structure
for a fully-online collection of strings, where a new character can be prepended to
any string in the collection at any time. The only previously known algorithm for the
problem, recently proposed by Takagi et al. [Algorithmica 82(5): 1346-1377 (2020)],
runs in O(N log σ) time and O(N) space on the word RAM model, where N denotes
the total length of the strings and σ denotes the alphabet size. Their algorithm makes
heavy use of the nearest marked ancestor (NMA) data structure on semi-dynamic
trees, that can answer queries and supports insertion of nodes in O(1) amortized time
on the word RAM model. In this paper, we present a simpler fully-online right-to-left
algorithm that builds the suffix tree for a given string collection in O(N(log σ+ log d))
time and O(N) space, where d is the maximum number of in-coming Weiner links to
a node of the suffix tree. We note that d is bounded by the height of the suffix tree,
which is further bounded by the length of the longest string in the collection. The
advantage of this new algorithm is that it works on the pointer machine model, namely,
it does not use the complicated NMA data structures that involve table look-ups. As a
byproduct, we also obtain a pointer-machine algorithm for building the directed acyclic
word graph (DAWG) for a fully-online left-to-right collection of strings, which runs
in O(N(log σ + log d)) time and O(N) space again without the aid of the NMA data
structures.

1 Introduction

1.1 Suffix trees and DAWGs

Suffix trees are a fundamental string data structure with a myriad of applications [10].
The first efficient construction algorithm for suffix trees, proposed by Weiner [21],
builds the suffix tree for a string in a right-to-left online manner, by updating the
suffix tree each time a new character is prepended to the string. It runs in O(n log σ)
time and O(n) space, where n is the length of the string and σ is the alphabet size.

One of the most interesting features of Weiner’s algorithm is a very close rela-
tionship to Blumer et al.’s algorithm [2] that builds the directed acyclic word graph
(DAWG) in a left-to-right online manner, by updating the DAWG each time a new
character is prepended to the string. It is well known (c.f. [4,5]) that the DAG of
the Weiner links of the suffix tree of T is equivalent to the DAWG of the reversal T
of T , or symmetrically, the suffix link tree of the DAWG of T is equivalent to the
suffix tree of T . Thus, right-to-left online construction of suffix trees is essentially
equivalent to left-to-right construction of DAWGs. This means that Blumer et al.’s
DAWG construction algorithm also runs in O(n log σ) time and O(n) space [2].

DAWGs also support efficient pattern matching queries, and have been applied to
other important string problems such as local alignment [6], pattern matching with
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variable-length don’t cares [14], dynamic dictionary matching [11], compact online
Lempel-Ziv factorization [23], finding minimal absent words [8], and finding gapped
repeats [18].

1.2 Fully online construction of suffix trees and DAWGs

Takagi et al. [17] initiated the generalized problem of maintaining the suffix tree for a
collection of strings in a fully-online manner, where a new character can be prepended
to any string in the collection at any time. This fully-online scenario arises in real-
time database systems e.g. for sensor networks or trajectories. Takagi et al. showed
that a direct application of Weiner’s algorithm [21] to this fully-online setting requires

one to visit Θ(N min(K,
√
N)) nodes, where N is the total length of the strings and

K is the number of strings in the collection. Note that this leads to a worst-case
Θ(N1.5 log σ)-time construction when K = Ω(

√
N).

In their analysis, it was shown that Weiner’s original algorithm applied to a fully-
online string collection visits a total of Θ(N min(K,

√
N)) nodes. This means that

the amortization argument of Weiner’s algorithm for the number of nodes visited in
the climbing process for inserting a new leaf, does not work for multiple strings in the
fully-online setting. To overcome difficulty, Takagi et al. proved the three following
statements: (1) By using σ nearest marked ancestor (NMA) structures [22], one can
skip the last part of the climbing process; (2) All the σ NMA data structures can be
stored in O(n) space; (3) The number of nodes explicitly visited in the remaining part
of each climbing process can be amortized to O(1) per new added character. This led
to their O(N log σ)-time and O(N)-space fully-online right-to-left construction of the
suffix tree for multiple strings.

Takagi et al. [17] also showed that Blumer et al.’s algorithm [2,3] applied to a fully-

online left-to-right DAWG construction requires at least Θ(N min(K,
√
N)) work as

well. They also showed how to maintain an implicit representation of the DAWG
of O(N) space which supports fully-online updates and simulates a DAWG edge
traversal in O(log σ) time each. The key here was again the non-trivial use of the
aforementioned σ NMA data structures over the suffix tree of the reversed strings.

As states above, Takagi et al.’s construction heavily relies on the use of the NMA
data structures [22]. Although NMA data structures are useful and powerful, all
known NMA data structures for (static and dynamic) trees that support O(1) (amor-
tized) time queries and updates [9,12,22] are quite involved, and they are valid only
on the word RAM model as they use look-up tables that explicitly store the answers
for small sub-problems. Hence, in general, it would be preferable if one could achieve
similar efficiency without NMA data structures.

1.3 Our contribution

In this paper, we show how to maintain the suffix tree for a right-to-left fully-online
string collection in O(N(log σ+log d)) time and O(N) space, where d is the maximum
number of in-coming Weiner links to a node of the suffix tree. Our construction does
not use NMA data structures and works in the pointer-machine model [19,20], which
is a simple computational model without address arithmetics. We note that d is
bounded by the height of the suffix tree. Clearly, the height of the suffix tree is at
most the maximum length of the strings. Hence, the d term can be dominated by the
σ term when the strings are over integer alphabets of polynomial size in N , or when a
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large number of strings of similar lengths are treated. To achieve the aforementioned
bounds on the pointer-machine model, we reduce the problem of maintaining in-
coming Weiner links of nodes to the ordered split-insert-find problem, which maintains
dynamic sets of sorted elements allowing for split and insert operations, and find
queries, which can be solved in a total of O(N log d) time and O(N) space.

As a byproduct of the above result, we also obtain the first non-trivial algorithm
that maintains an explicit representation of the DAWG for fully-online left-to-right
multiple strings, which runs in O(N(log σ + log d)) time and O(N) space. By an
explicit representation, we mean that every edge of the DAWG is implemented as a
pointer. This DAWG construction does not require complicated table look-ups and
thus also works on the pointer machine model.

2 Preliminaries

2.1 String notations

Let Σ be a general ordered alphabet. Any element of Σ∗ is called a string. For any
string T , let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. Let
Σ+ = Σ \ {ε}. If T = XY Z, then X, Y , and Z are called a prefix, a substring, and a
suffix of T , respectively. For any 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of
T that begins at position i and ends at position j in T . For any 1 ≤ i ≤ |T |, let T [i]
denote the ith character of T . For any string T , let Suffix(T ) denote the set of suffixes
of T , and for any set T of strings, let Suffix(T ) denote the set of suffixes of all strings
in T . Namely, Suffix(T ) =

⋃
T∈T Suffix(T ). For any string T , let T denote the reversed

string of T , i.e., T = T [|T |] · · ·T [1]. For any set T of strings, let T = {T | T ∈ T }.

2.2 Suffix trees and DAWGs for multiple strings

For ease of description, we assume that each string Ti in the collection T termi-
nates with a unique character $i that does not appear elsewhere in T . However, our
algorithms work without $i symbols at the right end of strings as well.

A compacted trie is a rooted tree such that (1) each edge is labeled by a non-empty
string, (2) each internal node is branching, and (3) the string labels of the out-going
edges of each node begin with mutually distinct characters. The suffix tree [21] for a
text collection T , denoted STree(T ), is a compacted trie which represents Suffix(T ).
The string depth of a node v of Suffix(T ) is the length of the substring that is rep-
resented by v. We sometimes identify node v with the substring it represents. The
suffix tree for a single string T is denoted STree(T ).

STree(T ) has at most 2N − 1 nodes and thus 2N − 2 nodes, since every internal
node of STree(T ) is branching and there are N leaves in STree(T ). By representing
each edge label x with a triple 〈k, i, j〉 of integers such that x = Tk[i..j], STree(T )
can be stored in O(N) space.

We define the suffix link of each non-root node av of STree(T ) with a ∈ Σ and
v ∈ Σ∗, by slink(av) = v. For each explicit node v and a ∈ Σ, we also define the
reversed suffix link (a.k.a. Weiner link) by W linka(v) = avx, where x ∈ Σ∗ is the
shortest string such that avx is a node of STree(T ). W linka(v) is undefined if av is
not a substring of strings in T . A Weiner link W linka(v) = avx is said to be hard if
x = ε, and soft if x ∈ Σ+.

See the left diagram of Figure 1 for an example of STree(T ) and Weiner links.
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Figure 1. Left: STree(T ) for T = {cabaa$1, abaab$2}. The bold dashed arrows represent hard
Weiner links, while the narrow dashed arrows represent soft Weiner links. Not all Weiner links
are shown for simplicity. Right: DAWG(S) for S = T = {$1aabac, $2baaba}. The dashed arrow
represents a suffix link. Not all suffix links are shown for simplicity.

The directed acyclic word graph (DAWG for short) [2,3] of a text collection S,
denoted DAWG(S), is a (partial) DFA which represents Suffix(S). It is proven in [3]
that DAWG(S) has at most 2N − 1 nodes and 3N − 4 edges for N ≥ 3. Since each
DAWG edge is labeled by a single character, DAWG(S) can be stored with O(N)
space. The DAWG for a single string S is denoted DAWG(S).

A node of DAWG(S) corresponds to the substrings in S which share the same
set of ending positions in S. Thus, for each node, there is a unique longest string
represented by that node. For any node v of DAWG(S), let long(v) denote the longest
string represented by v. An edge (u, a, v) in the DAWG is called primary if |long(u)|+
1 = |long(v)|, and is called secondary otherwise. For each node v of DAWG(S) with
|long(v)| ≥ 1, let slink(v) = y, where y is the longest suffix of long(v) which is not
represented by v.

Suppose S = T . It is known (c.f. [2,3,5]) that there is a node v in STree(T ) iff
there is a node x in DAWG(S) such that long(x) = v. Also, the hard Weiner links and
the soft Weiner links of STree(T ) coincide with the primary edges and the secondary
edges of DAWG(S), respectively. In a symmetric view, the reversed suffix links of
DAWG(S) coincide with the suffix tree STree(T ) for T .

See Figure 1 for some concrete examples of the aforementioned symmetry. For
instance, the nodes abaa and baa of STree(T ) correspond to the nodes of DAWG(S)
whose longest strings are abaa = aaba and baa = aab, respectively. Observe that
both STree(T ) and DAWG(S) have 19 nodes each. The Weiner links of STree(T )
labeled by character c correspond to the out-going edges of DAWG(S) labeled by c.
To see another example, the three Weiner links from node a in STree(T ) labeled a,
b, and c correspond to the three out-going edges of node {a} of DAWG(S) labeled
a, b, and c, respectively. For the symmetric view, focus on the suffix link of the
node {$2baab, baab} of DAWG(S) to the node {aab, ab}. This suffix link reversed
corresponds to the edge labeled b$2 from the node baa to the node baab$2 in STree(T ).

We now see that the two following tasks are essentially equivalent:

(A) Building STree(T ) for a fully-online right-to-left text collection T , using hard and
soft Weiner links.

(B) Building DAWG(S) for a fully-online left-to-right text collection S, using suffix
links.
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2.3 Pointer machines

A pointer machine [19,20] is an abstract model of computation such that the state
of computation is stored as a directed graph, where each node can contain a con-
stant amount of data (e.g. integers, symbols) and a constant number of pointers (i.e.
out-going edges to other nodes). The instructions supported by the pointer machine
model are basically creating new nodes and pointers, manipulating data, and per-
forming comparisons. The crucial restriction in the pointer machine model, which
distinguishes it from the word RAM model, is that pointer machines cannot perform
address arithmetics, namely, memory access must be performed only by an explicit
reference to a pointer. While the pointer machine model is apparently weaker than the
word RAM model that supports address arithmetics and unit-cost bit-wise operations,
the pointer machine model serves as a good basis for modeling linked structures such
as trees and graphs, which are exactly our targets in this paper. In addition, pointer-
machines are powerful enough to simulate list-processing based languages such as
LISP and Prolog (and their variants), which have recurrently gained attention.

3 Brief reviews on previous algorithms

To understand why and how our new algorithms to be presented in Section 4 work
efficiently, let us briefly recall the previous related algorithms.

3.1 Weiner’s algorithm and Blumer et al.’s algorithm for a single string

First, we briefly review how Weiner’s algorithm for a single string T adds a new
leaf to the suffix tree when a new character a is prepended to T . Our description of
Weiner’s algorithm slightly differs from the original one, in that we use both hard and
soft Weiner links while Weiner’s original algorithm uses hard Weiner links only and
it instead maintains Boolean vectors indicating the existence of soft Weiner links.

Suppose we have already constructed STree(T ) with hard and soft Weiner links.
Let ` be the leaf that represents T . Given a new character a, Weiner’s algorithm climbs
up the path from the leaf ` until encountering the deepest ancestor v of ` that has a
Weiner link W linka(v) defined. If there is no such ancestor of ` above, then a new leaf
representing aT is inserted from the root r of the suffix tree. Otherwise, the algorithm
follows the Weiner link W linka(v) and arrives at its target node u = W linka(v). There
are two sub-cases:

(1) If W linka(v) is a hard Weiner link, then a new leaf ˆ̀ representing aT is inserted
from u.

(2) If W linka(v) is a soft Weiner link, then the algorithm splits the incoming edge
of u into two edges by inserting a new node y as a new parent of u such that
|y| = |v| + 1 (See also Figure 2). A new leaf representing aT is inserted from
this new internal node y. We also copy each out-going Weiner link W linkc(u)
from u with a character c as an out-going Weiner link W linkc(y) from y so that
their target nodes are the same (i.e. W linkc(u) = W linkc(y)). See also Figure 3.
Then, a new hard Weiner link is created from v to y with label a, in other words,
an old soft Weiner link W linka(v) = u is redirected to a new hard Weiner link
W linka(v) = y. In addition, all the old soft Weiner links of ancestors z of v such
that W linka(z) = u in STree(T ) have to be redirected to new soft Weiner links
W linka(z) = y in STree(aT ). These redirections can be done by keeping climbing
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Figure 3. Illustration of the copy process of the out-going Weiner links of u to its new parent y in
Case (2). Left: Out-going Weiner links of node u before the update. Right: Each out-going Winer
link of node u is copied to its new parent y, represented by a red dashed arrow.

up the path from v until finding the deepest node x that has a hard Weiner link
with character a pointing to the parent of u in STree(T ).

In both Cases (1) and (2) above, new soft Weiner links W linka(x) = ˆ̀ are created
from every node x in the path from ` to the child of v.

The running time analysis of the above algorithm has three phases.

(a) In both Cases (1) and (2), the number of nodes from leaf ` for T to v is bounded
by the number of newly created soft Weiner links. This is amortized O(1) per new
character since the resulting suffix tree has a total of O(n) soft Weiner links [2],
where n = |T |.

(b) In Case (2), the number of out-going Weiner links copied from u to y is bounded
by the number of newly created Weiner links, which is also amortized O(1) per
new character by the same argument as (a).

(c) In Case (2), the number redirected soft Weiner links is bounded by the number of
nodes from v to x. The analysis by Weiner [21] shows that this number of nodes
from v to x can be amortized O(1).
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Wrapping up (a), (b), and (c), the total numbers of visited nodes, created Weiner
links, and redirected Weiner links through constructing STree(T ) by prepending n
characters are O(n). Thus Weiner’s algorithm constructs STree(T ) in a right-to-left
online manner in O(n log σ) time with O(n) space, where the log σ term comes from
the cost of maintaining Weiner links of each node in the lexicographically sorted order
by e.g. a standard balanced binary search tree.

Since this algorithm correctly maintains all (hard and soft) Weiner links, it builds
DAWG(S) for the reversed string S = T in a left-to-right manner, in O(n log σ) time
with O(n) space. In other words, this version of Weiner’s algorithm is equivalent to
Blumer et al.’s DAWG online construction algorithm.

We remark that the aforementioned version of Weiner’s algorithm, and equiva-
lently Blumer et al.’s algorithm, work on the pointer machine model as they do not
use address arithmetics nor table look-ups.

3.2 Takagi et al.’s algorithm for multiple strings on the word RAM

When Weiner’s algorithm is applied to fully-online right-to-left construction of
STree(T ), the amortization in Analysis (c) does not work. Namely, it was shown by

Takagi et al. [17] that the number of redirected soft Weiner links is Θ(N min(K,
√
N))

in the fully-online setting for multiple K strings. A simpler upper bound O(NK)
immediately follows from an observation that the insertion of a new leaf for a string
Ti in T may also increase the depths of the leaves for all the other K − 1 strings
T1, . . . , Ti−1, Ti+1, . . . , TK in T . Takagi et al. then obtained the aforementioned im-
proved O(N min(K,

√
N)) upper bound, and presented a lower bound instance that

indeed requires Ω(N min(K,
√
N)) work. It should also be noted that the original

version of Weiner’s algorithm that only maintains Boolean indicators for the existence
of soft Weiner links, must also visit Θ(N min(K,

√
N)) nodes [17].

Takagi et al. gave a neat way to overcome this difficulty by using the nearest
marked ancestor (NMA) data structure [22] for a rooted tree. This NMA data struc-
ture allows for making unmarked nodes, splitting edges, inserting new leaves, and
answering NMA queries in O(1) amortized time each, in the word RAM model of
machine word size Ω(logN). Takagi et al. showed how to skip the nodes between v
to x in O(1) amortized time using a single NMA query on the NMA data structure
associated to a given character a that is prepended to T . They also showed how to
store σ NMA data structures for all σ distinct characters in O(N) total space. Since
the amortization argument (c) is no more needed by the use of the NMA data struc-
tures, and since the analyses (a) and (b) still hold for fully-online multiple strings,
the total number of visited nodes was reduced to O(N) in their algorithm. This led
to their construction in O(N log σ) time and O(N) space, in the word RAM model.

Takagi et al.’s Θ(N min(K,
√
N)) bound also applies to the number of visited

nodes and that of redirected secondary edges of DAWG(S) for multiple strings in the
fully-online setting. Instead, they showed how to simulate secondary edge traversals of
DAWG(S) inO(log σ) amortized time each, using the aforementioned NMA structures.
We remark that their data structure is only an implicit representation of DAWG(S)
in the sense that the secondary edges are not explicitly stored.
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4 Simple fully-online constructions of suffix trees and
DAWGs on the pointer-machine model

In this section, we present our new algorithms for fully-online construction of suffix
trees and DAWGs for multiple strings, which work on the pointer-machine model.

4.1 Right-to-left suffix tree construction

In this section, we present our new algorithm that constructs the suffix tree for a
fully-online right-to-left string collection.

Consider a collection T ′ = {T1, . . . , TK} of K strings. Suppose that we have built
STree(T ′) and that for each string Ti ∈ T ′ we know the leaf `i that represents Ti.

In our fully-online setting, any new character from Σ can be prepended to any
string in the current string collection T . Suppose that a new character a ∈ Σ is
prepended to a string T in the collection T ′, and let T = (T ′ \ {T}) ∪ {aT} be the
collection after the update. Our task is to update STree(T ′) to STree(T ).

Our approach is to reduce the sub-problem of redirecting Weiner links to the
ordered split-insert-find problem that operates on ordered sets over dynamic universe
of elements, and supports the following operations and queries efficiently:

– Make-set, which creates a new list that consists only of a single element;
– Split, which splits a given set into two disjoint sets, such that the elements in one

set are all smaller than those in the other set;
– Insert, which inserts a new single element into a given set;
– Find, which reports the name of the set that a given element belongs to.

Recall our description of Weiner’s algorithm in Section 3.1 and see Figure 2.
Consider the set of in-coming Weiner links of node u before updates (the left diagram
of Figure 2), and assume that these Weiner links are sorted by the length of the origin
nodes. After arriving at the node v in the climbing up process from the leaf for T , we
take the Weiner link with character a and arrive at node u. Then we access the set of
in-coming Weiner-links of u by a find query. When we create a new internal node y
as the parent of the new leaf for aT , we split this set into two sets, one as the set of
in-coming Weiner links of y, and the other as the set of in-coming Weiner links of u
(see the right diagram of Figure 2). This can be maintained by a single call of a split
operation.

Now we pay our attention to the copying process of Weiner links described in
Figure 3. Observe that each newly copied Weiner link can be inserted by a single
find operation and a single insert operation into the set of in-coming Weiner links of
W linku(c) for each character c where W linku(c) is defined.

Now we prove the next lemma:

Lemma 1. Let f denote the operation and query time of a linear-space algorithm for
the ordered split-insert-find problem. Then, we can build the suffix tree for a fully-
online right-to-left string collection of total length N in a total of O(N(f + log σ))
time and O(N) space.

Proof. The number of split operations is clearly bounded by the number of leaves,
which is N . Since the number of Weiner links is at most 3N −4, the number of insert
operations is also bounded by 3N − 4. The number of find queries is thus bounded
by N + 3N − 4 = 4N − 4. By using a linear-space split-insert-find data structure, we
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can maintain the set of in-coming Weiner links for all nodes in a total of O(Nf) time
with O(N) space.

Given a new character a to prepend to a string T , we climb up the path from the
leaf for T and find the deepest ancestor v of the leaf for which W linka(v) is defined.
This can be checked in O(log σ) time at each visited node, by using a balanced search
tree. Since we do not climb up the nodes z (see Figure 2) for which the soft Weiner
links with a are redirected, we can use the same analysis (a) as in the case of a single
string. This results in that the number of visited nodes in our algorithm is O(N).
Hence we use O(N log σ) total time for finding the deepest node which has a Weiner
link for the prepended character a.

Overall, our algorithm uses O(N(f + log σ)) time and O(N) space. ut

Our ordered split-insert-find problem is a special case of the union-split-find prob-
lem on ordered sets, since each insert operation can be trivially simulated by make-set
and union operations. Link-cut trees of Sleator and Tarjan [15] for a dynamic forest
support make-tree, link, cut operations and find-root queries in O(log d) time each.
Since link-cut trees can be used to path-trees, make-set, insert, split, and find in
the ordered split-insert-find problem can be supported in O(log d) time each. Since
link-cut trees work on the pointer machine model, this leads to a pointer-machine
algorithm for our fully-online right-to-left construction of the suffix tree for multiple
strings with f = O(log d). Here, in our context, d denotes the maximum number of
in-coming Weiner links to a node of the suffix tree.

A potential drawback of using link-cut trees is that in order to achieve O(log d)-
time operations and queries, link-cut trees use some auxiliary data structures such as
splay trees [16] as its building block. Yet, in what follows, we show that our ordered
split-insert-find problem can be solved by a simpler balanced tree, AVL-trees [1],
retaining O(N(log σ + log d))-time and O(N)-space complexities.

Theorem 2. There is an AVL-tree based pointer-machine algorithm that builds
the suffix tree for a fully-online right-to-left multiple strings of total length N in
O(N(log σ + log d)) time with O(N) space, where d is the maximum number of
in-coming Weiner links to a suffix tree node and σ is the alphabet size.

Proof. For each node u of the suffix tree STree(T ′) before update, let S(u) = {|x| |
W linka(x) = u} where a = u[1], namely, S(u) is the set of the string depths of the
origin nodes of the in-coming Weiner links of u. We maintain an AVL tree for S(u)
with the node u, so that each in-coming Weiner link for u points to the corresponding
node in the AVL tree for S(u). The root of the AVL tree is always linked to the suffix
tree node u, and each time another node in the AVL tree becomes the new root as a
result of node rotations, we adjust the link so that it points to u from the new root
of the AVL tree.

This way, a find query for a given Weiner link is reduced to accessing the root of
the AVL tree that contains the given Weiner link, which can be done in O(logS(u)) ⊆
O(log d) time.

Inserting a new element to S(u) can also be done in O(logS(u)) ⊆ O(log d) time.
Given an integer k, let S1 and S2 denote the subset of S(u) such that any element

in S1 is not larger than k, any element in S2 is larger than k, and S1 ∪ S2 = S(u). It
is well known that we can split the AVL tree for S(u) into two AVL trees for S1 and
for S2 in O(logS(u)) ⊆ O(log d) time (c.f. [13]). In our context, k is the string depth
of the deepest node v that is a Weiner link with character a in the upward path from
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the leaf for T . This allows us to maintain S1 = S(y) and S2 = S(u) in O(log d) time
in the updated suffix tree STree(T ).

When we create the in-coming Weiner links labeled a to the new leaf ˆ̀ for aT , we
first perform a make-set operation which builds an AVL tree consisting only of the
root. If we näıvely insert each in-coming Weiner link to the AVL tree one by one, then
it takes a total of O(N log d) time. However, we can actually perform this process in
O(N) total time even on the pointer machine model: Since we climb up the path from
the leaf ` for T , the in-coming Weiner links are already sorted in decreasing order of
the string depths of the origin nodes. We create a family of maximal complete binary
trees of size 2h−1 each, arranged in decreasing order of h. This can be done as follows:
Initially set r ← |S(ˆ̀)|. We then greedily take the largest h such that 2h− 1 ≤ r, and
then update r ← r− (2h− 1) and search for the next largest h and so on. These trees

can be easily created in O(|S(ˆ̀)|) total time by a simple linear scan over the sorted
list of the in-coming Weiner links. Since the heights h of these complete binary search
trees are monotonically decreasing, and since all of these binary search trees are AVL
trees, one can merge all of them into a single AVL tree in time linear in the height
of the final AVL tree (c.f. [13]), which is bounded by O(h) = O(logS(ˆ̀)). Thus, we

can construct the initial AVL tree for the in-coming Weiner links of each new leaf ˆ̀

in O(|S(ˆ̀)|) time. Since the total number of Weiner links is O(N), we can construct
the initial AVL trees for the in-coming Weiner links of all new leaves in O(N) total
time.

Overall, our algorithm works in O(N(log σ + log d)) time with O(N) space. ut

4.2 Left-to-right DAWG construction

The next theorem immediately follows from Theorem 2.

Theorem 3. There is an AVL-tree based pointer-machine algorithm that builds an
explicit representation of the DAWG for a fully-online left-to-right multiple strings
of total length N in O(N(log σ + log d)) time with O(N) space, where d is the max-
imum number of in-coming edges of a DAWG node and σ is the alphabet size. This
representation of the DAWG allows each edge traversal in O(log σ + log d) time.

Proof. The correctness and the complexity of construction are immediate from The-
orem 2.

Given a character a and a node v in the DAWG, we first find the out-going edge
of v labeled a in O(log σ) time. If it does not exist, we terminate. Otherwise, we take
this a-edge and arrive at the corresponding node in the AVL tree for the destination
node u for this a-edge. We then perform a find query on the AVL tree and obtain u
in O(log d) time. ut

We emphasize that Theorem 3 gives the first non-trivial algorithm that builds an
explicit representation of the DAWG for fully-online multiple strings. Recall that a
direct application of Blumer et al.’s algorithm to the case of fully-online K multi-
ple strings requires to visit Θ(N min(K,

√
N)) nodes in the DAWG, which leads to

O(N min(K,
√
N) log σ) = O(N1.5 log σ)-time construction for K = Θ(

√
N).

It should be noted that after all the N characters have been processed, it is easy
to modify, in O(N) time in an offline manner, this representation of the DAWG so
that each edge traversal takes O(log σ) time.
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4.3 On optimality of our algorithms

It is known that sorting a length-N sequence of σ distinct characters is an obvious
lower bound for building the suffix tree [7] or alternatively the DAWG. This is because,
when we build the suffix tree or the DAWG where the out-going edges of each node are
sorted in the lexicographical order, then we can obtain a sorted list of characters at
their root. Thus, Ω(N log σ) is a comparison-based model lower bound for building
the suffix tree or the DAWG. Since Takagi et al.’s O(N log σ)-time algorithm [17]
works only on the word RAM model, in which faster integer sorting algorithms exist,
it would be interesting to explore some cases where our O(N(log σ + log d))-time
algorithms for a weaker model of computation can perform in optimal O(N log σ)
time.

It is clear that the maximum number d of in-coming Weiner links to a node is
bounded by the total length N of the strings. Hence, in case of integer alphabets of
size σ = NO(1), our algorithms run in optimal O(N log σ) = O(N logN) time.

For the case of smaller alphabet size σ = polylog(N), the next lemma can be
useful:

Lemma 4. The maximum number d of in-coming Weiner links is less than the height
of the suffix tree.

Proof. For any node u in the suffix tree, all in-coming Weiner links to u is labeled by
the same character a, which is the first character of the substring represented by u.
Therefore, all in-coming Weiner links to u are from the nodes in the path between
the root and the node u[2..|u|]. ut

We note that the height of the suffix tree for multiple strings is bounded by the
length of the longest string in the collection. In many applications such as time series
from sensor data, it would be natural to assume that all the K strings in the collection
have similar lengths. Hence, when the collection consists of K = N/polylog(N) strings
of length polylog(N) each, we have d = polylog(N). In such cases, our algorithms
run in optimal O(N log σ) = O(N log logN) time.
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Figure 4. Left: The K−1 = d
√
N/2e strings where character b has been prepended only to the first

string T1. Right: The corresponding part of the suffix tree. Dashed arrows represent Weiner links
with character b.

The next lemma shows some instance over a binary alphabet of size σ = 2, which
requires a certain amount of work for the splitting process.



122 Proceedings of the Prague Stringology Conference 2020

baaaaaaaaa$1
baaaaaaaa$2
baaaaaaa$3
baaaaaa$4
baaaaa$5

1 /2 a

a

a

a

a

a

a

a

a

a

a

$1

$4

$5

$3

$2

a

a
a

$1

a

a
a
a

b
b

b

b

b

b

b

b

b

b

$2

$3

$4

$5

Figure 5. Left: The K − 1 = d
√
N/2e strings where character b has been prepended to all of them.

Right: The corresponding part of the suffix tree after the updates. Each time a new leaf is created,
Θ(
√
N) in-coming Weiner links were involved in a split operation on the AVL tree and it takes

O(logN) time.

Lemma 5. There exist a set of fully-online multiple strings over a binary alphabet
such that the node split procedure of our algorithms takes O(

√
N logN) time.

Proof. Let K = 1 + d
√
N/2e.

For the time being, we assume that each string Ti is terminated with a unique
symbol $i. Consider a subset {T1, . . . , TK−1} of K−1 = d

√
N/2e strings such that for

each 1 ≤ i ≤ K−1, Ti = a
√
N−i+1$i. We then prepend the other character b from the

binary alphabet {a, b} to each Ti in increasing order of i = 1, . . . , K − 1. For i = 1,√
N Weiner links to the new leaf for bT1 = ba

√
N$1, each labeled b, are created. See

Figure 4 for illustration of this step.
Then, for each i = 2, . . . , K − 1, inserting a new leaf for bTi requires an insertion

of a new internal node as the parent of the new leaf. This splits the set of in-coming
Weiner links into two sets: one is a singleton consisting of the Winer link from node

a
√
N−i+1, and the other consists of the Weiner links from the shallower nodes. Each

of these K − 2 split operations can be done by a simple deletion operation on the
corresponding AVL tree, using O(log

√
N) = O(logN) time each. See Figure 5 for

illustration.
Observe also that the same analysis holds even if we remove the terminal symbol

$i from each string Ti (in this case, there is a non-branching internal node for each
Ti and we start the climbing up process from this internal node).

The total length of these K−1 strings is approximately 3N/8. We can arbitrarily
choose the last string TK of length approximately 5N/8 so that it does not affect the
above split operations (e.g., a unary string a5N/8 or b5N/8 would suffice).

Thus, there exists an instance over a binary alphabet for which the node split
operations require O(

√
N logN) total time. ut

Since
√
N logN = o(N), the

√
N logN term is always dominated by the N log σ

term. It is left open whether there exists a set of strings with Θ(N) character ad-
ditions, each of which requires splitting a set that involves NO(1) in-coming Weiner
links. If such an instance exists, then our algorithm must take Θ(N logN) time in
the worst case.
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5 Conclusions and future work

In this paper we considered the problem of maintaining the suffix tree and the DAWG
indexing structures for a collection of multiple strings that are updated in a fully-
online manner, where a new character can be added to the left end or the right end
of any string in the collection, respectively. Our contributions are simple pointer-
machine algorithms that work in O(N(log σ+ log d)) time and O(N) space, where N
is the total length of the strings, σ is the alphabet size, and d is the maximum number
of in-coming Weiner links of a node in the suffix tree. The key idea was to reduce
the sub-problem of re-directing in-coming Weiner links to the ordered split-insert-find
problem, which we solved in O(log d) time by AVL trees. We also discussed the cases
where our O(N(log σ + log d))-time solution is optimal.

A major open question regarding the proposed algorithms is whether there exists
an instance over a small alphabet which contains Θ(N) positions each of which re-
quires Θ(logN) time for the split operation, or requires Θ(N) insertions each taking
Θ(logN) time. If such instances exist, then the running time of our algorithms may be
worse than the optimal O(N log σ) for small σ. So far, we have only found an instance

with σ = 2 that takes sub-linear O(
√
N logN) total time for split operations.
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