On Arithmetically Progressed Suffix Arrays

Jacqueline W. Daykin¹ Dominik Köppl² David Kübel³ Florian Stober⁴

¹Department of Computer Science, Aberystwyth University, UK; Department of Information Science, Stellenbosch University, South Africa

²Kyushu University, Japan Society for Promotion of Science, Japan

³University of Bonn, Institute of Computer Science, Germany

⁴University of Stuttgart, FMI, Germany

PSC 2020

T = abaababa n = |T|

T = abaababan = |T|

- l abaababa
- 2 baababa
- 3 aababa
- 4 ababa
- 5 baba
- 6 aba
 - 7 ba
- 8 a

T = abaababan = |T|

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
 - 7 ba
- 2 baababa
- 5 baba

$$T = abaababa$$

 $n = |T|$

$$SA_T = [\, 8\,,\, 3\,,\, 6\,,\, 1\,,\, 4\,,\, 7\,,\, 2\,,\, 5\,]$$

- 8 a
 - 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
 - 7 ba
- 2 baababa
- 5 baba

$$T = abaababa$$

 $n = |T|$

$$\mathsf{SA}_\mathsf{T} = [\, 8\,,\, 3\,,\, 6\,,\, 1\,,\, 4\,,\, 7\,,\, 2\,,\, 5\,]$$

 $ightharpoonup \forall T : \mathsf{SA}_\mathsf{T} \text{ is a permutation.}$

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
- 7 ba
- 2 baababa
- 5 baba

$$T = abaababa$$
 $n = |T|$

$$SA_T = [8, 3, 6, 1, 4, 7, 2, 5]$$

 $ightharpoonup \forall T : \mathsf{SA}_\mathsf{T} \text{ is a permutation.}$

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
- 7 ba
- 2 baababa
- 5 baba

$$T = abaababa$$
 $n = |T|$

$$SA_T = [8, 3, 6, 1, 4, 7, 2, 5]$$

 $ightharpoonup \forall T : SA_T \text{ is a permutation.}$

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
- 7 ba
- 2 baababa
- 5 baba

T = abaababa
$$n = |T|$$
 SA_T = [8, 3, 6, 1, 4, 7, 2, 5] $+3+3$

8 a
3 aababa
6 aba
1 abaababa
4 ababa
7 ba
2 baababa

baba

5

- $ightharpoonup \forall T : \mathsf{SA}_\mathsf{T} \text{ is a permutation.}$
- A permutation P is arithmetically progressed if $\exists_k \forall_i : P[i+1 \bmod n] = P[i] + k \bmod n$.

$$T = abaababa$$

 $n = |T|$

$$SA_T = [8, 3, 6, 1, 4, 7, 2, 5]$$

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
- 7 ba
- 2 baababa
- 5 baba

- $ightharpoonup \forall T : \mathsf{SA}_\mathsf{T} \text{ is a permutation.}$
- A permutation P is arithmetically progressed if $\exists_k \forall_i : P[i+1 \mod n] = P[i] + k \mod n$.
- \triangleright *k* is co-prime to *n*.

$$T = abaababa$$

 $n = |T|$

$$SA_T = [8, 3, 6, 1, 4, 7, 2, 5]$$

- 8 a
- 3 aababa
- 6 aba
- 1 abaababa
- 4 ababa
- 7 ba
- 2 baababa
- 5 baba

- $ightharpoonup \forall T : \mathsf{SA}_\mathsf{T} \text{ is a permutation.}$
- A permutation P is arithmetically progressed if $\exists_k \forall_i : P[i+1 \mod n] = P[i] + k \mod n$.
- \triangleright *k* is co-prime to *n*.
- $P[i] = P[1] + (i-1)k \mod n.$

Motivation and Outline

Scenario: distributed suffix array construction

Test data with arithmetically progressed suffix array allows correctness of the result to be verified locally on each node.

Motivation and Outline

► Scenario: distributed suffix array construction

Test data with arithmetically progressed suffix array allows correctness of the result to be verified locally on each node.

Outline:

1. Characterize all strings whose suffix arrays are arithmetically progressed.

Motivation and Outline

Scenario: distributed suffix array construction

Test data with arithmetically progressed suffix array allows correctness of the result to be verified locally on each node.

Outline:

- 1. Characterize all strings whose suffix arrays are arithmetically progressed.
- 2. Describe the Burrows-Wheeler Transform (BWT) of those strings. Many have a simple BWT.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

For $P = [n, n-1, \dots, 1]$ we have $T = a^n$.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

ightharpoonup Example P = [2, 7, 4, 1, 6, 3, 8, 5]

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- Else split P into subarrays

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

ightharpoonup Example P = [2, 7, 4 | 1, 6, 3 | 8, 5]

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \frac{1}{12345678}$$

$$T[p_i] := \begin{cases} a & \text{if } p_i \in A, \text{ or } b & \text{if } p_i \in B, \text{ or } c & \text{if } p_i \in C. \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{\mathbf{a}}{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8}}_{1\ 2\ 3} \qquad \qquad \mathsf{T}[p_i] := \begin{cases} \mathbf{a} & \text{if } p_i \in A, \text{ or } \\ \mathbf{b} & \text{if } p_i \in B, \text{ or } \\ \mathbf{c} & \text{if } p_i \in C. \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \frac{\mathbf{a}}{12345678}$$

$$T[p_i] := \begin{cases} \mathbf{a} & \text{if } p_i \in A, \text{ or } \\ \mathbf{b} & \text{if } p_i \in B, \text{ or } \\ \mathbf{c} & \text{if } p_i \in C. \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{\mathbf{a}}{12345678}}_{\mathbf{a}} \underbrace{\frac{\mathbf{a}}{678}}_{\mathbf{a}} \qquad \qquad \mathsf{T}[p_i] := \begin{cases} \mathbf{a} & \text{if } p_i \in A, \text{ or } \\ \mathbf{b} & \text{if } p_i \in B, \text{ or } \\ \mathbf{c} & \text{if } p_i \in C. \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{b}{1} \frac{a}{2} \frac{a}{3} \frac{a}{4} \frac{a}{5} \frac{a}{6} \frac{a}{7} \frac{a}{8}}_{\text{T}} \qquad \qquad T[p_i] := \begin{cases} a & \text{if } p_i \in A, \text{ or } \\ b & \text{if } p_i \in B, \text{ or } \\ c & \text{if } p_i \in C. \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{b}{1} \underbrace{\frac{a}{2}}_{3} \underbrace{\frac{b}{4} \underbrace{\frac{b}{5}}_{6} \underbrace{\frac{a}{7}}_{8}}_{\text{f } if p_{i}} \underbrace{\frac{b}{6}}_{7} \underbrace{\frac{a}{8}}_{\text{f } if p_{i}} \underbrace{\frac{a}{5}}_{6} \underbrace{\frac{b}{7}}_{8} \underbrace{\frac{a}{5}}_{6} \underbrace{\frac{a}{7}}_{8} \underbrace{\frac{b}{5}}_{6} \underbrace{\frac{a}{7}}_{8} \underbrace{\frac{a}{5}}_{6} \underbrace{\frac{a}{7}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{b}{1}}_{2} \underbrace{\frac{a}{3}}_{4} \underbrace{\frac{b}{5}}_{6} \underbrace{\frac{a}{7}}_{8}$$

$$T[p_{i}] := \begin{cases} a & \text{if } p_{i} \in A, \text{ or } b \\ b & \text{if } p_{i} \in B, \text{ or } c \end{cases}$$

$$c & \text{if } p_{i} \in C.$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{b}{1}}_{2} \underbrace{\frac{a}{3}}_{4} \underbrace{\frac{b}{5}}_{6} \underbrace{\frac{a}{7}}_{8} \mathbf{c}$$

$$T[p_{i}] := \begin{cases} a & \text{if } p_{i} \in A, \text{ or } b \\ b & \text{if } p_{i} \in B, \text{ or } c \end{cases}$$

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k, there exists a string T over a ternary alphabet such that $SA_T = P$.

- For P = [n, n-1, ..., 1] we have $T = a^n$.
- ► Else split *P* into subarrays

$$T = \underbrace{\frac{b}{1}}_{2} \underbrace{\frac{a}{3}}_{4} \underbrace{\frac{b}{5}}_{6} \underbrace{\frac{a}{7}}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{a}_{7} \underbrace{c}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{a}_{7} \underbrace{c}_{8} \underbrace{b}_{7} \underbrace{a}_{7} \underbrace{c}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{c}_{8} \underbrace{c}_{7} \underbrace{b}_{8} \underbrace{c}_{7} \underbrace{c}_{8} \underbrace{c}_{8} \underbrace{c}_{7} \underbrace{c}_{8} \underbrace{c}_{8}$$

Example
$$P = [2, 7, 4 | 1, 6, 3 | 8, 5]$$
, $T = babacbac$

- Example P = [2, 7, 4 | 1, 6, 3 | 8, 5], T = babacbac
 - 2 abacbac
 - 7 ac
 - acbac
 - 1 babacbac
 - 6 bac
 - 3 bacbac
 - 8 c
 - 5 cbac

- Example P = [2, 7, 4 | 1, 6, 3 | 8, 5], T = babacbac
 - abacbac
 - ac
 - acbac
 - babacbac
 - bac

 - bacbac
 - cbac

- Example $P = \underbrace{[2,7,4]}_{A} \underbrace{[1,6,3]}_{B} \underbrace{[8,5]}_{C}$, T = babacbac
 - 2 abacbac
 - 7 ac
 - Split between p_1-k-1 and p_1-1 4 acbac
 - as $T[p_1-k]=T[p_n]>T[p_1]$. 1 babacbac
 - 6 bac
 - Split between n-k and n, else ____ 3 bacbac
 - T[n] is a prefix of T[n-k..n]. \longrightarrow 8 c
 - 5 cbac

• Example P = [2, 7, 4 | 1, 6, 3 | 8, 5], T = babacbac

Split between
$$p_1-k-1$$
 and p_1-1 ac solution as $T[p_1-k]=T[p_n]>T[p_1]$. Split between $n-k$ and n , else $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$. Split between $T[n]$ is a prefix of $T[n-k..n]$.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k such that $p_1 \notin \{1, k+1, n\}$, the string T is unique.

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n]$ with ratio k such that $p_1 \notin \{1, k+1, n\}$, the string T is unique.

▶ Assume that there is another string $S \neq T$ with $SA_S = P$.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k such that $p_1 \notin \{1, k+1, n\}$, the string T is unique.

- Assume that there is another string $S \neq T$ with $SA_S = P$.
- ► SA_S with can be split into subarrays A, B and C.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k such that $p_1 \notin \{1, k+1, n\}$, the string T is unique.

- Assume that there is another string $S \neq T$ with $SA_S = P$.
- ► SA_S with can be split into subarrays A, B and C.
- $ightharpoonup S \neq T$ implies different splitting positions.

Given an arithmetically progressed permutation $P := [p_1, ..., p_n]$ with ratio k such that $p_1 \notin \{1, k+1, n\}$, the string T is unique.

- Assume that there is another string $S \neq T$ with $SA_S = P$.
- ► SA_S with can be split into subarrays A, B and C.
- $ightharpoonup S \neq T$ implies different splitting positions.
- ▶ $S[p_1 k 1] = S[p_1 1]$ or S[n k] = S[n] lead to the contradiction $SA_S \neq P$.

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $SA_T = P$.

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $\mathsf{SA}_\mathsf{T} = P$.

▶ $p_1 \in \{1, n\}$: One of the subarrays is empty.

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $\mathsf{SA}_\mathsf{T} = P$.

- ▶ $p_1 \in \{1, n\}$: One of the subarrays is empty.
- $ightharpoonup p_1 = k + 1$:

$$P = \underbrace{\begin{bmatrix} p_1 = k+1 & \cdots & n-k & n & k=p_1-1 & \cdots & p_n \\ & \mathring{A} & & \mathring{B} & & \mathring{C} \end{bmatrix}}_{A}$$

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $\mathsf{SA}_\mathsf{T} = P$.

- ▶ $p_1 \in \{1, n\}$: One of the subarrays is empty.
- $p_1 = k + 1$:

$$P = \underbrace{ \begin{bmatrix} p_1 = k+1 \end{bmatrix} \quad \cdots \quad n-k \quad n \quad k = p_1-1 \quad \cdots \quad p_n}_{\hat{A} \qquad \hat{B} \qquad \hat{C}}$$

Example:

$$P = [\,6\,,\,3\,|\,8\,|\,5\,,\,2\,,\,7\,,\,4\,,\,1\,]$$

 $\mathsf{T}=\mathtt{ccaccacb}$

- 6 acb
- 3 accacb
- 8 b
- 5 cacb
- 2 caccacb
- 7 cb
- 4 ccacb
- ccaccacb

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $SA_T = P$.

- ▶ $p_1 \in \{1, n\}$: One of the subarrays is empty.
- $ightharpoonup p_1 = k + 1$:

$$P = \underbrace{ \begin{bmatrix} p_1 = k+1 \end{bmatrix} \quad \cdots \quad n-k \quad n \quad k = p_1-1 \quad \cdots \quad p_n}_{\hat{A} \qquad \hat{B} \qquad \hat{C}}$$

Example:

$$P = [6, 3 | 8 | 5, 2, 7, 4, 1]$$

 $\mathsf{T}=\mathtt{ccaccacb}$

- 6 acb
- 3 accacb
- 8 b
- 5 cacb
- 2 caccacb
- 7 cb
- 4 ccacb
- ccaccacb

Given an arithmetically progressed permutation $P := [p_1, \dots, p_n] \neq [n, n-1, \dots, 1]$ with ratio k, such that $p_1 \in \{1, k+1, n\}$, there exists a unique string T over a binary alphabet such that $\mathsf{SA}_\mathsf{T} = P$.

- ▶ $p_1 \in \{1, n\}$: One of the subarrays is empty.
- $ightharpoonup p_1 = k + 1$:

$$P = \underbrace{ \begin{bmatrix} p_1 = k+1 \\ & A \end{bmatrix} \quad \begin{matrix} n \\ & k = p_1 - 1 \end{matrix} \quad \begin{matrix} \ddots \\ & B \end{matrix}}_{\hat{B}}$$

Example:

$$P = [\,6\,,\,3\,|\,8\,,\,5\,,\,2\,,\,7\,,\,4\,,\,1\,]$$

T = bbabbabb

- 6 abb
- 3 abbabb
- 8 b
- 5 babb
- 2 babbabb
- 7 bb
- 4 bbabb
- l bbabbabb

Relation between Permutation and Min. Alphabet Size

p_1	k	Min. Size of $\boldsymbol{\Sigma}$	Properties
1		2	Lyndon word, simple BWT
k+1		2	period $(n-k)^*$
n	$\neq (n-1)$	2	period $(n-k)^*$, simple BWT
n	= (n-1)	1	trivially periodic*, simple BWT
$\not\in \{1, k+1, n\}$		3	simple BWT

Characterization of strings over the alphabet Σ whose suffix array is an arithmetically progressed with ration k.

All words are unique over an alphabet of minimal size.

Properties marked with * only apply to the word over the minimal alphabet.

 $\mathsf{T} = \mathtt{babbabac}$

BWT matrix

BWT matrix

abacbabb
abbabacb
babacbab
babbabac
bacbabba
bbabacba
cbabbaba

BWT matrix

abacbabb abacbab babbabac bacbabba babacba cbabbaba cbabbaba cbabbaba

$$BWT_{matrix} = b^4 ca^3$$

BWT matrix

SA =	[5, 2, 7	7, 4, 1	, 6, 3, 8]
• .	L~, —, .	. , ., –	$, \circ, \circ, \circ]$

$$\mathsf{BWT}[i] = \mathsf{T}[\mathsf{SA}[i] - 1 \bmod n]$$

$$\mathsf{BWT}=\mathtt{b^4ca^3}$$

$$\mathsf{BWT}_{\mathsf{matrix}} = \mathtt{b^4} \mathtt{ca^3}$$

$$T = babbabac$$

BWT matrix

SA = [5, 2, 7, 4, 1, 6, 3, 8]
$BWT[i] = T[SA[i] - 1 \bmod n]$ $BWT = b^4 ca^3$

abacbabb
abbabacb
babacbab
babbabac
bacbabba
bababacbac
bacbabba
cbabbaba

 $\mathsf{BWT}_{\mathsf{matrix}} = \mathtt{b^4} \mathtt{ca^3}$

Theorem (5)

Let T be a string with an arithmetically progressed suffix array $\mathsf{SA} := [p_1, \dots, p_n] \text{ with ratio } k \text{ and } \mathsf{T}[p_1-k-1] \neq \mathsf{T}[p_1-1].$ Then the BWT of T defined on the BWT matrix coincides with the BWT of T defined on the suffix array.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1 \mod n$ in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., $BWT[i] = T[SA[i + t \mod n]]$ for $i \in [1..n]$.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i + t mod n]] for $i \in [1..n]$.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i + t mod n]] for $i \in [1..n]$.

SA =
$$\begin{bmatrix} p_1 & \cdots & p_t = p_1 - k - 1 & p_1 - 1 & \cdots & p_n \\ T[p_1] & \cdots & T[p_1 - k - 1] & T[p_1 - 1] & \cdots & T[p_n] \end{bmatrix}$$

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, ..., p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i + t mod n]] for $i \in [1..n]$.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i + t mod n]] for $i \in [1..n]$.

▶ Consider $P' := [p'_1, \dots, p'_n]$ with $p'_i = p_i - 1 \mod n$.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA. Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$,

Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i+t mod n]] for $i \in [1..n]$.

SA =
$$\begin{bmatrix} p_1 & \cdots & p_t = p_1 - k - 1 & p_1 - 1 & \cdots & p_n \end{bmatrix}$$

$$T[p_1] & \cdots & T[p_1 - k - 1] & T[p_1 - 1] & \cdots & T[p_n]$$

$$T[p_1] & \cdots & T[p_n] & T[p_1] & \cdots & T[p_1 - k - 1]$$
BWT = $T[p_1 - 1]$ \cdots $T[p_n]$ $T[p_1]$ \cdots $T[p_1 - k - 1]$

- ▶ Consider $P' := [p'_1, \dots, p'_n]$ with $p'_i = p_i 1 \mod n$.
- ▶ P' is arithmetically progressed with ratio k and $p'_1 = p_1 1$.

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA.

Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i+t mod n]] for $i \in [1..n]$.

SA =
$$\begin{bmatrix} p_1 & \cdots & p_t = p_1 - k - 1 & p_1 - 1 & \cdots & p_n \end{bmatrix}$$

$$T[p_1] & \cdots & T[p_1 - k - 1] & T[p_1 - 1] & \cdots & T[p_n]$$

$$T[p_1] & \cdots & T[p_n] & T[p_1] & \cdots & T[p_1 - k - 1]$$
BWT = $T[p_1 - 1]$ \cdots $T[p_n]$ $T[p_1]$ \cdots $T[p_1 - k - 1]$

- ► Consider $P' := [p'_1, \ldots, p'_n]$ with $p'_i = p_i 1 \mod n$.
- ightharpoonup P' is arithmetically progressed with ratio k and $p'_1 = p_1 1$.
- \triangleright P' is the t-th rotation of SA:

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Let t be the index of $p_1 - k - 1$ mod n in SA.

Then the BWT of T is the t-th rotation of $T[SA[1]] \cdots T[SA[n]]$, i.e., BWT[i] = T[SA[i+t mod n]] for $i \in [1..n]$.

SA =
$$\begin{bmatrix} p_1 & \cdots & p_t = p_1 - k - 1 & p_1 - 1 & \cdots & p_n \end{bmatrix}$$

$$T[p_1] & \cdots & T[p_1 - k - 1] & T[p_1 - 1] & \cdots & T[p_n]$$

$$T[p_1] & \cdots & T[p_n] & T[p_1] & \cdots & T[p_1 - k - 1]$$
BWT = $T[p_1 - 1]$ \cdots $T[p_n]$ $T[p_1]$ \cdots $T[p_1 - k - 1]$

- ▶ Consider $P' := [p'_1, \dots, p'_n]$ with $p'_i = p_i 1 \mod n$.
- ▶ P' is arithmetically progressed with ratio k and $p'_1 = p_1 1$.
- $\blacktriangleright \mathsf{BWT}_{\mathsf{T}}[i] = \mathsf{T}[p_i 1 \bmod n] = \mathsf{T}[p_i'].$

Corollary (7)

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Then the BWT of T is simple, i.e. has the minimal number of runs.

Corollary (7)

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Then the BWT of T is simple, i.e. has the minimal number of runs.

Corollary (7)

Let T be a string with an arithmetically progressed suffix array $SA := [p_1, \ldots, p_n]$ with ratio k and $T[p_1 - k - 1] \neq T[p_1 - 1]$. Then the BWT of T is simple, i.e. has the minimal number of runs.

Summary

- For an arithmetically progressed permutation P there is a string T over a unary, binary or ternary alphabet with SA_T = P.
- We described a class of strings for which the shape of the suffix array (and BWT) is known.
- Outlook
 - Arithmetic properties can be considered for other integer arrays, such as the LCP array, prefix table, border table, ...