On Arithmetically Progressed Suffix Arrays

Jacqueline W. Daykin® Dominik Képpl?> David Kiibel®
Florian Stober*

!Department of Computer Science, Aberystwyth University, UK; Department of
Information Science, Stellenbosch University, South Africa
2Kyushu University, Japan Society for Promotion of Science, Japan

3University of Bonn, Institute of Computer Science, Germany

4University of Stuttgart, FMI, Germany

PSC 2020

1/12

T = abaababa
n=|T]|

2/12

T = abaababa
n=|T]|

O ~NO Ok~ WwWwN -

abaababa
baababa
aababa
ababa
baba
aba

ba

a

2/12

T = abaababa
n=|T]|

OO NN PEHE O WO

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

OO NN PEHE O WO

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

» V1 :SAt is a permutation.

OO NN PEHE O WO

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

» V1 :SAt is a permutation.

OO NN PEHE O WO

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

» V1 :SAt is a permutation.

OO NN PEHE O WO

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

OO NN PEHE O WO

» V1 :SAt is a permutation.

» A permutation P is arithmetically progressed if
Vi : Pli +1 mod n] = P[i] + k mod n.

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

OO NN PEHE O WO

» V1 :SAt is a permutation.
» A permutation P is arithmetically progressed if
Vi : Pli +1 mod n] = P[i] + k mod n.

» k is co-prime to n.

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

T = abaababa
n=|T]|

SAT=[8,3,6,1,4,7,2,5]

OO NN PEHE O WO

» V1 :SAt is a permutation.

» A permutation P is arithmetically progressed if
Vi : Pli +1 mod n] = P[i] + k mod n.

» k is co-prime to n.

» Pli] = P[1]+ (i — 1)k mod n.

a

aababa
aba
abaababa
ababa
ba
baababa
baba

2/12

Motivation and Outline

» Scenario: distributed suffix array construction

first part of SA
second part of SA

m-th part of SA

Test data with arithmetically progressed suffix array allows
correctness of the result to be verified locally on each node.

Input text

3/12

Motivation and Outline

» Scenario: distributed suffix array construction

first part of SA
second part of SA

m-th part of SA

Test data with arithmetically progressed suffix array allows
correctness of the result to be verified locally on each node.

Input text

» Outline:

1. Characterize all strings whose suffix arrays are arithmetically
progressed.

3/12

Motivation and Outline

» Scenario: distributed suffix array construction

first part of SA
second part of SA

m-th part of SA

Test data with arithmetically progressed suffix array allows
correctness of the result to be verified locally on each node.

Input text

» Outline:

1. Characterize all strings whose suffix arrays are arithmetically
progressed.

2. Describe the Burrows-Wheeler Transform (BWT) of those
strings. Many have a simple BWT.

3/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays
p—[p | b |

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays
p=[p [lpkdpd ||k [n [] P |
A B C

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays
p=[p [lpkdpd ||k [n [] P |
A B C
» Example P=[2,7,4,1,6,3,8,5]

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays
p=[p [lpkdlpt [--[nk [n [] P |
A B C
» Example P=[2,7,4|1,6,3,8,5]

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays
P=[P ||pkA pt ||k | n | --] Po |
A B C
» Example P=[2,7,4]1,6,3]|8,5]

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

Pl o | ok i [ok 7 [7]
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T:T§§Z§€7§ Tlpil:=<¢b if p; € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P:| p1 ‘-~-‘p1—k—1| pi—1 “ n—k| n “ Pn |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T:T%§Z§€7§ Tlpil:=<¢b if p; € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P:| p1 ‘-~-‘p1—k—1| pi—1 “ n—k| n “ Pn |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T:T%§Z§€%§ Tlpil:=<¢b if p; € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P:| p1 ‘-~-‘p1—k—1| pi—1 “ n—k| n “ Pn |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T:T%E%Eggg Tlpil:=<¢b if p; € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P o | ki i [nk] 7] P |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T:%%g%gg%g Tlpil:=<¢b if pi € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P b | Jookd i [k| 7 [P |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
TZ%%;%g%%g Tlpil:=<¢b if pi € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P b | Jookd i [k| 7 [P |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
TZ%%%%%% Tlpil:=<¢b if pi € B, or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P b | Jookd i [k| 7 [P |
A B C
» Example P=[2,7,4]1,6,3]|8,5]
A B C
a ifpeA or
T =baba bag Tlp]:={b ifp eB,or
c ifpecC.

4/12

Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.

» For P=[n,n—1,...,1] we have T = a".
» Else split P into subarrays

P o | ki i [nk] 7] P |
A B C
» Example P=[2,7,4]1,6,3|8, 5]
A B C
a ifpeA or
T =babdbac Tlp]:==<{b ifpieB, or
c ifpecC.

4/12

P=[pm [[pk1] p1 |- nk | n [-] P |
A B C
» Example P=[2,7,4]1,6,3[8,5], T =babacbac

[——

A B C

5/12

P=[pm [[pk1] p1 |- nk | n [-] P |
A B C
» Example P=[2,7,4]1,6,3[8,5], T =babacbac

[——

A B C

abacbac
ac

acbac
babacbac
bac
bacbac

c

cbac

C1 00O WO R NN

5/12

P=[pm [[pk1] p1 |- nk | n [-] P |
A B C
» Example P=[2,7,4]1,6,3[8,5], T =babacbac

[——

A B C

abacbac
ac

acbac
babacbac
bac
bacbac

c

cbac

Split between n—k and n, else
T[n] is a prefix of T[n—k..n].

C1 00O WO R NN

5/12

P=[7 - Tndd ot [[v [oo]

A B C
» Example P=[2,7,4]1,6,3[8,5], T =babacbac
A B C

2 abacbac
7 ac

Split between p;—k—1 and p1—1 4 acbac

as T[p1—Kk|=T|pa|>T[p1]. 1 babacbac
6 bac

Split between n—k and n, else 3 Dbacbac

T[n] is a prefix of T[n—k..n]. 8 ¢
5 cbhac

5/12

P=[7 - Tndd ot [[v [oo]

A B C
» Example P=[2,7,4]1,6,3[8,5], T =babacbac
A B C
2 abacbac
7 ac
Split between p;—k—1 and p1—1 4 acbac
as T[p1—Kk|=T|pa|>T[p1]. 1 babacbac
6 bac
Split between n—k and n, else 3 Dbacbac
T[n] is a prefix of T[n—k..n]. 8 ¢
5 cbhac
> Note: If n < p; — 1 mod n then
p=[p | ok n [kl pri] [»]
A B C

5/12

p=[p [k p1][k] n [--] P |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

6/12

p=[p [k p1][k] n [--] P |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

» Assume that there is another string S # T with SAs = P.

6/12

p=[p [k p1][k] n [--] P |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

» Assume that there is another string S # T with SAs = P.
» SAs with can be split into subarrays A, B and C.

6/12

p=[p [k p1][k] n [--] P |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

» Assume that there is another string S # T with SAs = P.
» SAs with can be split into subarrays A, B and C.
> S £ T implies different splitting positions.

6/12

P:| P1 ""‘Pl_k_l| p1—1 “ n—k| n “ Pn |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

» Assume that there is another string S # T with SAs = P.
» SAs with can be split into subarrays A, B and C.
> S £ T implies different splitting positions.

» S[p1 — k — 1] = S[p1 — 1] or S[n — k] = S[n] lead to the
contradiction SAg # P.

6/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

7/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

7/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

>p1:k+12
e 3 L N
A B C

7/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

>p1:k+12
P=lp=ktl] -+ [k [n |k | P |
A B C
Example:
P=16,3|8(5,2,7,4,1] 6 acb
3 accacb
T = ccaccacb
8 b
5 cacb
2 caccacb
7 cb
4 ccacb
1 ccaccacb

7/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

>p1:k+12
P=lp=ktl] -+ [k [n |k | P |
A B C
Example:
P=16,3|8(5,2,7,4,1] 6 acb
3 accacb
T = ccaccacb
8 b
5 cacb
2 caccacb
7 cb
4 ccacb
1 ccaccacb

7/12

Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
[n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

> pp=k+1:
A B
Example:
P=[6,3|8,5,2,7,4,1] g al;l; "
T = bbabbabb abba
8 b
5 Dbabb
2 babbabb
7 bb
4 bbabb
1 bbabbabb

7/12

Relation between Permutation and Min. Alphabet Size

p1 ‘ k Min. Size of ¥ Properties
1 2 Lyndon word, simple BWT
k+1 2 period (n — k)*
n #(n-1) 2 period (n — k)*, simple BWT
n ‘ =(n-1) 1 trivially periodic*, simple BWT
Z{l,k+1n} | 3 simple BWT

Characterization of strings over the alphabet ¥ whose suffix array
is an arithmetically progressed with ration k.

All words are unique over an alphabet of minimal size.

Properties marked with * only apply to the word over the minimal
alphabet.

8/12

T = babbabac

9/12

T = babbabac BWT matrix
babbabac
abbabacb
bbabacba
babacbab
abacbabb
bacbabba
acbabbab
cbabbaba

9/12

T = babbabac BWT matrix
abacbabb
abbabacb
acbabbab
babacbab
babbabac
bacbabba
bbabacba
cbabbaba

9/12

T = babbabac BWT matrix
abacbabb
abbabacb
acbabbab
babacbab
babbabac
bacbabba
bbabacba
cbabbaba

BV\/Tmatrix = b4C3.3

9/12

BWT matrix

T = babbabac
abacbabb
abbabachb
acbabbab
SA =1[5,2,7,4,1,6,3,8] babacbab
. _ babbabac
BWT](i] = T[SA[i] — 1 mod n] bacbabba
BWT = b*ca3 bbabacba
cbabbaba

BV\/Tmatrix = b4ca3

9/12

BWT matrix

T = babbabac
abacbabb
abbabachb
acbabbab
SA =1[5,2,7,4,1,6,3,8] babacbab
. _ babbabac
BWT](i] = T[SA[i] — 1 mod n] bacbabba
BWT = b*ca3 bbabacba
cbabbaba

BWT matrix = b*ca’

Theorem (5)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[py — k — 1] # T[p1 — 1].
Then the BWT of T defined on the BWT matrix coincides with
the BWT of T defined on the suffix array.

9/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
T[SA[1]] --- TI[SA[t]] T[SA[t+1]] --- TI[SA[n]]

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

> SA=| P [epkd p1 [[P |
Tlpd oo Tlpk-1] Tp=1] - Tlpd)

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)] Tlm] - T[pr—k-1]

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)] Tlm] - T[pr—k-1]

» Consider P' := [p}, ..., p,] with p} = pj — 1 mod n.

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)] Tlm] - T[pr—k-1]

» Consider P' := [p}, ..., p,] with p} = pj — 1 mod n.

» P’ is arithmetically progressed with ratio k and p; = p1 — 1.

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)] Tlm] - T[pr—k-1]

» Consider P' := [p}, ..., p,] with p} = pj — 1 mod n.
» P’ is arithmetically progressed with ratio k and p; = p1 — 1.

» P’ is the t-th rotation of SA:
Pr=| p1 |- o | P | | prk |

10/12

Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [pepkd p1 [[P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)] Tlm] - T[pr—k-1]

» Consider P' := [p}, ..., p,] with p} = pj — 1 mod n.
» P’ is arithmetically progressed with ratio k and p; = p1 — 1.
» P’ is the t-th rotation of SA:
P=[p1 [p | m [[pkt]
» BWT+[i] = T[pi — 1 mod n] = T[p/].

10/12

Corollary (7)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.

11/12

Corollary (7)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.

Case SA:| p1 ‘~~~‘prk71| pi—1 “ n—k| n “ Pn |
A B I
P’:| p1—1 “ n—k | n “ Pn | p1 ‘---‘pl—k—1|
B C A
BWT = b71¢?2a%3 with > o; = n.

11/12

Corollary (7)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.

Case SA:| p1 ‘~~~‘prk71| pr—1 “ n—k| n “ Pn |
A B C
P’:| p1—1 “ n—k | n “ Pn | p1 ‘---‘pl—k—1|
B C A
BWT = b71¢?2a%3 with > o; = n.
Case AL P [[ok | o [kAt [br]
A B C
,D’:| p1i—1 “ Pn | p1 “ n—k | n ‘~-‘p1—k—1|
C A B

BWT = ¢?1372b%3 with > o; = n.

11/12

Summary

» For an arithmetically progressed permutation P there is a
string T over a unary, binary or ternary alphabet with
SAt = P.

» We described a class of strings for which the shape of the
suffix array (and BWT) is known.

» Qutlook
P Arithmetic properties can be considered for other integer
arrays, such as the LCP array, prefix table, border table, ...

12/12

