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» V1 :SAt is a permutation.

» A permutation P is arithmetically progressed if
Vi : Pli +1 mod n] = P[i] + k mod n.

» k is co-prime to n.
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Motivation and Outline

» Scenario: distributed suffix array construction

first part of SA
second part of SA

m-th part of SA

Test data with arithmetically progressed suffix array allows
correctness of the result to be verified locally on each node.

Input text
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Motivation and Outline

» Scenario: distributed suffix array construction

first part of SA
second part of SA

m-th part of SA

Test data with arithmetically progressed suffix array allows
correctness of the result to be verified locally on each node.

Input text

» Outline:

1. Characterize all strings whose suffix arrays are arithmetically
progressed.

2. Describe the Burrows-Wheeler Transform (BWT) of those
strings. Many have a simple BWT.
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Theorem (4)

Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k, there exists a string T over a ternary alphabet such
that SAt = P.
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7 ac

Split between p;—k—1 and p1—1 4 acbac

as T[p1—Kk|=T|pa|>T[p1]. 1 babacbac
6 bac

Split between n—k and n, else 3 Dbacbac

T[n] is a prefix of T[n—k..n]. 8 ¢
5 cbhac
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A B C
2 abacbac
7 ac
Split between p;—k—1 and p1—1 4 acbac
as T[p1—Kk|=T|pa|>T[p1]. 1 babacbac
6 bac
Split between n—k and n, else 3 Dbacbac
T[n] is a prefix of T[n—k..n]. 8 ¢
5 cbhac
> Note: If n < p; — 1 mod n then
p=[p | ok n [kl pri] [ »]
A B C
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P:| P1 ""‘Pl_k_l| p1—1 “ n—k| n “ Pn |

A B C
a ifpeA, or
Tlpil:=<b ifp;eB,or
c ifpecC.
Theorem (8)
Given an arithmetically progressed permutation P := [p1, ..., pn]

with ratio k such that p; & {1, k + 1, n}, the string T is unique.

» Assume that there is another string S # T with SAs = P.
» SAs with can be split into subarrays A, B and C.
> S £ T implies different splitting positions.

» S[p1 — k — 1] = S[p1 — 1] or S[n — k] = S[n] lead to the
contradiction SAg # P.
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Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
# [n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.
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Theorem (10,11)

Given an arithmetically progressed permutation P := [p1, ..., pn]
# [n,n—1,...,1] with ratio k, such that p; € {1, k + 1, n}, there
exists a unique string T over a binary alphabet such that SAt = P.

» p1 € {1, n}: One of the subarrays is empty.

> pp=k+1:
A B
Example:
P=[6,3|8,5,2,7,4,1] g al;l; "
T = bbabbabb abba
8 b
5 Dbabb
2 babbabb
7 bb
4 bbabb
1 bbabbabb
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Relation between Permutation and Min. Alphabet Size

p1 ‘ k Min. Size of ¥ Properties
1 2 Lyndon word, simple BWT
k+1 2 period (n — k)*
n #(n-1) 2 period (n — k)*, simple BWT
n ‘ =(n-1) 1 trivially periodic*, simple BWT
Z{l,k+1n} | 3 simple BWT

Characterization of strings over the alphabet ¥ whose suffix array
is an arithmetically progressed with ration k.

All words are unique over an alphabet of minimal size.

Properties marked with * only apply to the word over the minimal
alphabet.
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T = babbabac BWT matrix
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BV\/Tmatrix = b4C3.3
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BWT matrix

T = babbabac
abacbabb
abbabachb
acbabbab
SA =1[5,2,7,4,1,6,3,8] babacbab
. _ babbabac
BWT](i] = T[SA[i] — 1 mod n] bacbabba
BWT = b*ca3 bbabacba
cbabbaba

BV\/Tmatrix = b4ca3
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BWT matrix

T = babbabac
abacbabb
abbabachb
acbabbab
SA =1[5,2,7,4,1,6,3,8] babacbab
. _ babbabac
BWT](i] = T[SA[i] — 1 mod n] bacbabba
BWT = b*ca3 bbabacba
cbabbaba

BWT matrix = b*ca’

Theorem (5)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[py — k — 1] # T[p1 — 1].
Then the BWT of T defined on the BWT matrix coincides with
the BWT of T defined on the suffix array.
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Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].
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Lemma (6)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1,...,pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Let t be the index of py — k — 1 mod n in SA.

Then the BWT of T is the t-th rotation of T[SA[1]] --- T[SA[n]],
i.e., BWT[i] = T[SA[i + t mod n]] for i € [1..n].

» SA=| P [ pepkd p1 [ [ P |
Tlpl -+ Tlp—k-1] Tlp=1] -+ Tlpi
BWT =T[pi—1] -+ Tlp)]  Tlm] - T[pr—k-1]

» Consider P' := [p}, ..., p,] with p} = pj — 1 mod n.
» P’ is arithmetically progressed with ratio k and p; = p1 — 1.
» P’ is the t-th rotation of SA:
P=[p1 [ p | m [ [pkt]
» BWT+[i] = T[pi — 1 mod n] = T[p/].
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Corollary (7)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.
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Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.

Case SA:| p1 ‘~~~‘prk71| pi—1 “ n—k| n “ Pn |
A B I
P’:| p1—1 “ n—k | n “ Pn | p1 ‘---‘pl—k—1|
B C A
BWT = b71¢?2a%3 with > o; = n.
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Corollary (7)

Let T be a string with an arithmetically progressed suffix array
SA :=[p1, ..., pn] with ratio k and T[p1 — k — 1] # T[p1 — 1].
Then the BWT of T is simple, i.e. has the minimal number of runs.

Case SA:| p1 ‘~~~‘prk71| pr—1 “ n—k| n “ Pn |
A B C
P’:| p1—1 “ n—k | n “ Pn | p1 ‘---‘pl—k—1|
B C A
BWT = b71¢?2a%3 with > o; = n.
Case AL P [ [ ok | o [ kAt [ br ]
A B C
,D’:| p1i—1 “ Pn | p1 “ n—k | n ‘~-‘p1—k—1|
C A B

BWT = ¢?1372b%3 with > o; = n.
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Summary

» For an arithmetically progressed permutation P there is a
string T over a unary, binary or ternary alphabet with
SAt = P.

» We described a class of strings for which the shape of the
suffix array (and BWT) is known.

» Qutlook
P Arithmetic properties can be considered for other integer
arrays, such as the LCP array, prefix table, border table, ...
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