Enumerative Data Compression
with Non-uniquely Decodable

Codes

M. Oguzhan Kiilekci', Yasin Ozturk’, Elif Altunok’, Can Yiimaz Altinigne”

kulekci@itu.edu.tr

"Informatics Institute, Istanbul Technical University, Turkey
? School of Computer and Information Sciences, EPFL, Switzerland

Prague Stringology Conference 2020
PSC’20, 1 September 2020, Prague

1

Objective

Data compression is to represent data with less number of bits.

Almost all data compression literature is based on prefix codes.
How about the non-prefix-free codes?

Are they that much terrible to use ?

Can they serve for some purpose?

e 22972

PREFIX CODES

Data Compression : Represent data with less bits

Prefix-Free Codes: None of the codeword is a prefix of other, e.g., Huffman

Codeword
T = NONPREFIXFREE
01
YIEIR|IF|N| I O | P | X
F:l3l20202]111]1]|1 00
W :101/00{100{101|{1110{1111{1100(1101
N10|12 Huf fman(T) = 1 OO
— 10111111011100000110011101101100000101
101
1110
1111
. . i 1100
Prefix-codes are uniquely decodable and require no
extra effort to mark the codeword boundaries ! 1101

NON-PREFIX-FREE (NPF) CODES

Non-Prefix-Free (NPF) or Not-Uniquely Decodable Codes:
The assigned codewords can be a prefix of others.

01(11)01,000{1|0}00|{10(001|00|1]0]0

NPF(T)

NPF codes are NOT uniquely decodable and
REQUIRE extra data structures to mark the
codeword boundaries !

Surely the average codeword length is better than
prefix-codes. However, when augmented with extra
space to mark codeword boundaries, they get worse !

Codeword

000
001

How to efficiently mark codeword boundaries in NPF codes ?

Y:ER|FIN|TI|O|P|X
W :0]1]00/01/10{11]000{001

T=| N} O] N| P |R|E}] F| I| X FIR|E|E
NPF(T) =|01|11|01|000(1(0|00|10|001(00(1(0]|O
L= 2 2} 2| 3 |11} 2| 2| 3 211111

1. Use a separate bitmap: R/S dictionaries

01110100010001000100100
10101010011101010010111]« Keep this compressed with

R/S dictionary schemes

Random access
. - . - - . P. FERRAGINA AND R. VENTURINI: A simple storage scheme for strings achieving entropy
N 0(1)'tl me via R/S dICtlonarleS ! bounds, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

Society for Industrial and Applied Mathematics, 2007, pp. 690-696.

K. FREDRIKSSON AND F. NIKITIN: Simple compression code supporting random access and fast
string matching, in Experimental Algorithms, Springer, 2007, pp. 203-216.

B. Apas, E. BAYRAKTAR, AND M. O. KULEKCI: Huffman codes versus augmented non-prefiz-
free codes, in Experimental Algorithms, Springer, 2015, pp. 315-326.

How to efficiently mark codeword boundaries in NPF codes ?

Y:ER|FIN|TI|O|P|X
W :0]1]00/01/10{11]000{001

T=| N} O] N| P |R|E}] F| I| X FIR|E|E
NPF(T) =|01|11|01|000(1(0|00|10|001(00(1(0]|O
L= 2 2} 2| 3 |11} 2| 2| 3 211111

2. Use wavelet tree to represent the codeword lengths

0+ {2}, {1,3}>1 _
0001110010411 Create a wavelet-tree over the
sequence of codeword lengths L.

" A g3 Random access
t;] =2 0« 11}, 3t— 1 i .
1001000 in O(loglog o) - time!

M. O. KULEKCI: Uniquely decodable and directly accessible non-prefir-free codes via wavelet
|t; | — 1 |t; | =3 trees, in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, IEEE,
2013, pp. 1969-1973.

B. Apas, E. BAYRAKTAR, AND M. O. KULEKCI: Huffman codes versus augmented non-prefiz-
free codes, in Experimental Algorithms, Springer, 2015, pp. 315-326.

Any compressed integer representation of the codeword lengths list is a candidate.

Enumerative coding of integer vectors

Assume we have a d dimensional integer vector L.

L — <f1, fz, f3, ’fd>
We also know that the inner sum is v and each dimension is between 1 and k.

V=f1+f2+f3+”’+fd, ISflSk

Assuming all distinct L vectors of given v and k values are ordered,
the rank of a vector in this ordered list specifies the vector.

d=3,v=06,k=3

1.2 3
1 3 2
When rank is givenas 4, | | - > 1 13
the vector is (2,3,1). \ """ 5 o o | If the vector is given as
wirs """ - """ - (3,1,2), then its rank is 5.
3 1 2
32 1
!

Number of d-dimensional distinct vectors such that...

Algorithm 1: ¢(k, d,v)

w(k,d,v) :

N

© 00 N O Otk W

10
11
12
13
14
15
16

Input:

k: Maximum value of a
dimension.

d: The number of dimensions.
v: The inner sum of the
vectors.

Output:

Number of distinct d
dimensional

vectors with an inner supx’of v

if (v > k- d)||(v < d) [the
return 0;

if [[d = 1)|(v =d)/
return 1;

if (v =d + 1)| then return d;
if 1 <v+k—k-d) then
a=v+k—k-d

else

a=1

if (k<v—d+1) then
B=k

B=v—d+1
sum = 0;
for (i = a;i < B;i+=1) do
| bum+ =Yk, d—1,v —1);
end

else

O, no such vector since d <v <k-d

The total number of distinct d dimensional vectors whose
inner sum is v, where each dimension is in range [1,k].

1, only one way to construct it, either (1,1,...,1) or (v)

N\

d items

Iterate over all possible values for one dimension
and recursively count on the remaining (d-1)
dimensions with the updated sum v !

return sum;

38

(2,1,1,..,1)
There are d ways to construct it | (1,2.1,....1)
/ d, y Emmmm
(1,1,1,....2)
i=p @ =
otherwise, Z wlk,d—1,v—1i), where
/ I=a B =

l,if v—k(d-1)<1
v—k(d—1), otherwise

k,if v—(d-1)>k
v—(d—-1), otherwise

Number of distinct vectors complying with k,d,v parameters

Algorithm 1: ¥(k, d,v)

N

© 00 N O Otk W

10

12
13
14
15
16

Input:

k: Maximum value of a
dimension.

d: The number of dimensions.
v: The inner sum of the
vectors.

Output:

Number of distinct d
dimensional

vectors with an inner sum of v

if (v > k-d)||(v < d) then
return 0;

if (d =1)||(v =d) then
return 1;

if (v =d+ 1) then return d;

if (1<v+k—k-d) then

a=v+k—k-d

else

a=1

if (k<v—d+1) then

B =k

B=v—d+1
sum = 0;
for (i =a;1 < B;i+=1) do

else

| sum+ =Yk, d—1,v —1i);

end
return sum;

w(k,d,v) :

The total number of distinct d dimensional vectors whose

inner sum is v, where each dimension is in range [1,k].

This is akin to constructing the d-ary tree of height (k-1), where each
inner node only creates children that accompany with the restrictions.
For example, if d=3, k=3, v=6 then...

| T

0 2 ©

Vector-To-Index

We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the rank (index) of (3,2,1) given that k =3 ?
Notice d=3 and v=2+3+1= 6 are immediate from the vector.

Algorithm 2: VectorTolndex({vy, v, ...,vq),d, k)
How many (1, *,*), and
Input: k: Maximum value of a dimension. d: The number of N % % tors?
dimensions. vy - - - vg: Input vector. < > > vectors:
Output: Rank of the input vector among lexicographically sorted How many 2-dim vectors that sum
vectors with the same inner sum of), v; . up to 5 or4?
1 v=v1+v2+...+v4; Iterate the first dimension till
2 if (d=1)[|(v=d) then the actual value
3 index = 0;
4 for (=11 <wvi;i+=1) do
5 | |index+ =qb(k,d—1,v—1);
6 end
7 |index+ = ¥ectorTolndex((v2,vs,...,v4),d —1,k); » What is the index of (2,1) ?
8 return iidex; :
Recurse with the reduced

dimension....
k d _The total number of distinct d dimensional vectors whose
w(k,d,v)

inner sum is v , where each dimension is in range [1,k]. ‘,
10 O

Vector-To-Index

We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the rank (index) of (3,2,1) given that k =3 ?
Notice d=3 and v=2+3+1= 6 are immediate from the vector.

| I I I I I I I
1 1 1 1 1 1 1
\ 1 1 1 1 1 1 1
']] 1 1 1]]
\\\\ 1 1 1 1] 1 1
\
AN N
o 1 2 "3 4 5 6
How many 2 dim vectors sum up to 5 with k=3? What is the index of <2, 1) with
How many 2 dim vectors sum up to 4 with k=3? k=37

11

Index-To-Vector

We need methods to map a vector to its rank and vice versa.

Index-To-Vector: What is the d=3 dimensional vector with rank 6 and
iInner sum v=6, where each dimension is between 1 and k=37

Algorithm 3: IndexToVector(k,d,v,index)

© 0 N0 b WN K

Input: k: Maximum value of a dimension d: The number of
dimensions. v: The inner sum of the vectors. index: The rank
of the vector among all possible vectors.

Output: The (v1,va,...,vq) vector with v1 +v2 + -+ 4+ vqg = v, and

rank index among all possible vectors with inner sum wv.

N lteratively find the value of

for (i =1;i<d;i+=1) do
V; —].;
while (z

each dimension from v; to v,

>
Count the number of vectors that

rank before the queried index.

Adjust the inner sum once v; is decided.

12

Index-To-Vector

We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the 3-dim vector that ranks 5th, whose inner sum is 6
and each dimension is in [1,3] ?

What should v, be ? 3

)/L\ 3 G/GNQ @ © h What should v, be ? 1

O V3 is then 6-3-1 = 2

13

Enumerative Compression — Overview

Y:ER|FIN|T|O| P |X
W :0]1{00/01/10{11]|000|001

NPF(T)
L

ceelalelelaalelelelela a0
H - ; 7 4 7

n VectorTolndex({2,2,2)) = VectorTolndex((3,1,1)) = VectorTolndex({(2,2,3)) = = VectorTolndex({2,1,1)) = VectorTolndex({1,3,3)) =

01111}]01}000|1|0}00(10|001(00|1]0]0O

I
N
N
N
W
-
—
)
N
W
N
—
—
—

3 5 1 2 0

NPF The codeword stream
P stream encoding the sum of the codeword lengths in blocks of d

Q stream encoding the index of the corresponding d-dim codeword lengths vector.

Encoding the P-stream

Algorithm 4:
Encode(T', d)

Input: T = tyto-- -ty is the input data,
where t; € X = {e1,€2,...,¢65}. d
is the chosen block length.

Output: The codeword bit-stream and

the compressed (p;, ¢;) list.

1 r=[71;
2 B=0;
3 Generate the NPF codeword set
W = {wi,wa,...,we};
4 k= |log(c+1)];
5 for (i=0;7i <r;i+=1) do
6 pi = 0;
7 for (j=0;5<d;j+=1) do
8 ehZT[’i-d—I-j—l—l];
9 B + Bwy;
10 vec[j + 1] = |wp|;
11 pi+ = vec[j + 1];
12 end
13 Encode p; into Pstream with an
adaptive coder;
14 if (p; # d)&&(p; # k - d) then
15 qi = VectorTolndex(vec|],d, k) ;
16 Encode ¢; into Q)stream with an

17

adaptive coder by using the
sum value as the context;

end

10000

Number of distinct
7500 vectors on d=6, k=7

5000

2500

Number of possible vectors

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Block Total Bit Length

The integers in P are between d and k.d.

3000000
2250000
- N
§ Observed on 100MB
i ESSE English text
£
750000

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Block Total Bit Length

We encode P with adaptive arithmetic
coding.

Encoding the Q-stream

Algorithm 4:
Encode(T, d)

Input: T = tytg---t, is the input data,
where t; € X = {e1,€2,...,€60}. d
is the chosen block length.

Output: The codeword bit-stream and

the compressed (p;, ¢;) list.

The value of p, is the context of the vector

index g,. Therefore, we use again an

adaptive coder with p; context to encode

the Q-stream, the indices of the d-
dimensional vectors.

30000

Frequency
2
8

7500

0 75 380 525 700 875 1050 1225 1400 18575 91750

— Vector Index

1 r=1[3];

2 B=0;

3 Generate the NPF codeword set

W ={wi,wa,...,ws};

4 k= |log(c+1)];

5 for (:=0;i<r;i+=1) do

6 pi = 0;

7 for (j=0;5<d;j+=1) do

8 epn =T[i-d+ 5+ 1];

9 B < Bwp;
10 vec[j + 1] = |wp|; q; = 0 for sure,
11 pi+ = vec[j + 1]; so no encoding
12 end
13 Encode p; into Pstream

adaptive coder:
14 if (p; # d)&&(p; Z k- d)l then
15 , =|VectorTolndea|(vec|],d, k) ;
16 Encode ¢; into Q)stream with an
adaptive coder by using the
sum value as the context;

17 end

Assuming d=6, k=7, for the block size of 15 bits,
there are 1875 distinct vectors. The frequencies
of occurrences on English text is shown above.

Decoding...

Algorithm 5:
Decode(B, Pstream, Qstream, d,n, W)

© 0N O 0k N =

[y
o

[y
[y

12
13
14
15
16

17

Input: B is the NPF codeword bit stream.
Pstream is the compressed p; values.
Q)stream is the compressed ¢; values.
W = {wi,wa,...,ws} is the NPF
codeword set.

Output: The original data sequence

T = tito---tn
r=1[31;
k= |log(c+1)];
for (1 = 0.7 1+ =1)do

Decode p; from the Pstream:

if p; = d then

(v1,v2,...,vq) = (1,1,...,1);
clse if p; = k- d then
(v1,v2,...,vq) = (k,k,..., k);

clse

Decode ¢; from the Qstream by using
p; as the context ;

(v1,v2,...0q)
IndexT'oVector(k,d,pi,qi) ;

end
for (j =1;5 <d;j+=1) do
wp, < Read next v; bits from B;
li-d+j = €n;
end

end

Step 1. Decode p; from the P-stream.

.... how we know how many
bits to read from the codeword stream

Step 2. Decode ¢, from the Q-stream

by using the decoded p; as the

context
.... how we know the index of
the d-dim vector, and then by using the
IndexToVector(), we generate the vector

Step 3. Decode the symbols from the
NPF codeword stream
.... Since the codeword
lengths are in the decoded vector, easy
to construct the actual symbols

Experimental Results...

Huffman | Arithmetic NPFEF |Non-uniquely decodable
File Size Symbols|Entropy|Stat. Adapt.|Stat. Adapt.] RS WT |d=2 d=4 d=6
sprot34.dat 109MB 66(6)| 4.762 |4.797 4.785 |4.764 4.749 |5.434 5.178|4.869 4.790 4.698
chr22.dna 34MB 5 (k=2)| 2.137 |2.263 2.195 [2.137 1.960 [2.957 2,616(2.468 2.466 2.462
etext99 105MB 146 (k=7)| 4.596 |4.645 4.595 [4.604 4.558 |5.140 4,553|4.632 4.570 4.553
howto 39MB 197 (k=7)| 4.834 [4.891 4.779 [4.845 4.731(5.300 4.215|4.856 4.759 4.736
howto.bwt 39MB 198 (k=7)| 4.834 |4.891 3.650 [4.845 3.471 [5.300 4.215(4.143 3.950 3.949
jdk13c 69MB 113 (k=6)| 5.531 [5.563 5.486 [5.535 5.450 |6.404 5.658|5.577 5.460 5.275
rctail96 114MB 93 (k=6)| 5.154 |5.187 5.172 |5.156 5.139 |5.766 5.408|5.164 5.020 4.818
rfc 116MB 120 (k=6)| 4.623 [4.656 4.573 |4.626 4.529 |5.094 4.853|4.685 4.555 4.463
w3c2 104MB 256 (k=8)| 5.954 [5.984 5.700 |5.960 5.659 [6.648 5.820(5.826 5.686 5.617

Table 1. Compression ratio comparison between the proposed scheme, NPF rank /select and wavelet
tree [1], arithmetic, and Huffman coding in terms of bits/symbol.

Compression ratio is better than the RS / WT schemes,
very close and even better than the prefix codes (Huffman, arithmetic)

e k is defined by the alphabet size k = |log(c + 1) |
e d is the block size in symbols akin to dimension of the enumerated vectors.

e Making d larger improves the performance, but computationally gets harder....

18

Experimental Results...

Pstream

d=2 d=4 d=6

Qstream
d=2 d=4 d=6

1.476 0.909 0.659

0.707 1.196 1.353

0.718 0.504 0.399

0.256 0.468 0.568

1.316 0.789 0.580

0.800 1.265 1.457

1.451 0.885 0.655

0.787 1.256 1.464

1.183 0.781 0.604

0.342 0.552 0.726

1.449 0.871 0.642

0.866 1.327 1.370

1.462 0.893 0.659

0.824 1.250 1.281

1.472 0.911 0.677

0.697 1.128 1.271

Codeword
File Stream

sprot34.dat| 2.686
chr22.dna 1.494
etext99 2.516
howto 2.618
howto.bwt | 2.618
jdk13c 3.263
rctail96 2.878
rfc 2.516
w3c2 3.436

1.548 0.949 0.706

0.841 1.301 1.475

How many bits are used for the NPF, P and Q streams ?

With the current model, there is a trade-off between P and Q streams.

When d increases :

- compression of P values gets improved,
- compression of Q stream gets worse

(... maybe another modeling for Q would be better ?77?)

19

Conclusions...

- An initial attempt to investigate not-much-addressed non-prefix-free codes
- Compression ratio seems compatible with the prefix codes.

- However computational load needs a lot improvement, current implementation is
order of magnitudes slower than the prefix alternatives. Algorithm engineering, time-
memory trade off, recursions to be replaced by iterations ?

* Tight theoretical bounds comparing the compression performances of prefix and
non-prefix codes needs to be studied.

* The inherent ambiguity of the NPF codes surely suffering in data compression, but
they can serve for privacy/security purposes in text processing, e.g, privacy-

preserving text similarity (S/ISAP’19), reducing the load of encryption (SEA’718), and
maybe others ?

Give a chance :) to non-prefix codes in data compression and
possibly in other text processing algorithms

20

