
Enumerative Data Compression
with Non-uniquely Decodable

Codes

M. Oğuzhan Külekci1, Yasin Öztürk1, Elif Altunok1, Can Yılmaz Altıniğne2

kulekci@itu.edu.tr

1 Informatics Institute, Istanbul Technical University, Turkey

2 School of Computer and Information Sciences, EPFL, Switzerland

Prague Stringology Conference 2020
PSC’20, 1 September 2020, Praque

1

Objective
Data compression is to represent data with less number of bits.

Almost all data compression literature is based on prefix codes.

2

How about the non-prefix-free codes?

Are they that much terrible to use ?

Can they serve for some purpose?

… ?????

PREFIX CODES

3

Data Compression : Represent data with less bits

Prefix-Free Codes: None of the codeword is a prefix of other, e.g., Huffman

Codeword

E 01

R 00

F 100

N 101

I 1110

O 1111

P 1100

X 1101
Prefix-codes are uniquely decodable and require no

extra effort to mark the codeword boundaries !

NON-PREFIX-FREE (NPF) CODES

4

Non-Prefix-Free (NPF) or Not-Uniquely Decodable Codes:
The assigned codewords can be a prefix of others.

Codeword

E 0

R 1

F 00

N 01

I 10

O 11

P 000

X 001

NPF codes are NOT uniquely decodable and
REQUIRE extra data structures to mark the

codeword boundaries !

Surely the average codeword length is better than
prefix-codes. However, when augmented with extra

space to mark codeword boundaries, they get worse !

How to efficiently mark codeword boundaries in NPF codes ?

5

1. Use a separate bitmap: R/S dictionaries

Keep this compressed with
R/S dictionary schemes

Random access
in O(1)-time via R/S dictionaries !

6

2. Use wavelet tree to represent the codeword lengths

Create a wavelet-tree over the
sequence of codeword lengths L .

Random access
in O(log log) - time !σ

How to efficiently mark codeword boundaries in NPF codes ?

Any compressed integer representation of the codeword lengths list is a candidate.

7

Enumerative coding of integer vectors

L = ⟨ℓ1, ℓ2, ℓ3, …, ℓd⟩

v = ℓ1 + ℓ2 + ℓ3 + ⋯ + ℓd ,

Assuming all distinct L vectors of given v and k values are ordered,
the rank of a vector in this ordered list specifies the vector.

Assume we have a d dimensional integer vector L.

We also know that the inner sum is v and each dimension is between 1 and k.

1 ≤ ℓi ≤ k

d = 3, v = 6, k = 3

0 1 2 3
1 1 3 2
2 2 1 3
3 2 2 2
4 2 3 1
5 3 1 2
6 3 2 1

When rank is given as 4,
the vector is .⟨2,3,1⟩ If the vector is given as

, then its rank is 5. ⟨3,1,2⟩

8

Number of d-dimensional distinct vectors such that…
ψ(k, d, v) :
The total number of distinct dimensional vectors whose
inner sum is , where each dimension is in range .

d
v [1,k]

0 , no such vector since d ≤ v ≤ k ⋅ d

α =
1, i f v − k(d − 1) ≤ 1
v − k(d − 1), other wise

β =
k, i f v − (d − 1) > k
v − (d − 1), other wise

1, only one way to construct it, either or ⟨1,1,…,1⟩ ⟨v⟩

i=β

∑
i=α

ψ(k, d − 1,v − i), where

d, There are d ways to construct it
⟨2,1,1,...,1⟩
⟨1,2,1,...,1⟩

⟨1,1,1,...,2⟩
….. } d items

Iterate over all possible values for one dimension
and recursively count on the remaining (d-1)

dimensions with the updated sum v !

otherwise,

9

Number of distinct vectors complying with k,d,v parameters

ψ(k, d, v) :
The total number of distinct dimensional vectors whose
inner sum is , where each dimension is in range .

d
v [1,k]

This is akin to constructing the d-ary tree of height (k-1), where each
inner node only creates children that accompany with the restrictions.

For example, if d=3, k=3, v=6 then…

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6

10

Vector-To-Index
We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the rank (index) of given that k = 3 ?

 Notice d=3 and v=2+3+1= 6 are immediate from the vector.

⟨3,2,1⟩

How many , and
 vectors?

How many 2-dim vectors that sum
up to 5 or 4?

Iterate the first dimension till
the actual value

⟨1, * , * ⟩
⟨2, * , * ⟩

What is the index of ?

Recurse with the reduced

dimension….

⟨2,1⟩

ψ(k, d, v) :The total number of distinct dimensional vectors whose
inner sum is , where each dimension is in range .

d
v [1,k] ?

11

Vector-To-Index
We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the rank (index) of given that k = 3 ?

 Notice d=3 and v=2+3+1= 6 are immediate from the vector.

⟨3,2,1⟩

How many 2 dim vectors sum up to 5 with k=3? What is the index of with
k=3?

⟨2,1⟩

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6
How many 2 dim vectors sum up to 4 with k=3?

12

Index-To-Vector
We need methods to map a vector to its rank and vice versa.

Index-To-Vector: What is the d=3 dimensional vector with rank 6 and
inner sum v=6, where each dimension is between 1 and k=3?

Iteratively find the value of
each dimension from to v1 vd

Count the number of vectors that
rank before the queried index.

Adjust the inner sum once is decided.vi

13

Index-To-Vector
We need methods to map a vector to its rank and vice versa.

Vector-To-Index: What is the 3-dim vector that ranks 5th, whose inner sum is 6
and each dimension is in [1,3] ?

What should be ? 3v1

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6

What should be ? 1v2

 is then 6-3-1 = 2v3

L 2 2 2 3 1 1 2 2 3 2 1 1 1 3 3

P 6 5 7 4 7

Q 3 5 1 2 0
VectorToIndex(⟨2,2,2⟩) = VectorToIndex(⟨3,1,1⟩) = VectorToIndex(⟨2,2,3⟩) = VectorToIndex(⟨2,1,1⟩) = VectorToIndex(⟨1,3,3⟩) =

NPF The codeword stream

P stream encoding the sum of the codeword lengths in blocks of d

Q stream encoding the index of the corresponding d-dim codeword lengths vector.

Enumerative Compression — Overview

The integers in P are between d and k.d.

We encode P with adaptive arithmetic
coding.

Observed on 100MB
English text

Number of distinct
vectors on d=6, k=7

Encoding the P-stream

The value of is the context of the vector
index . Therefore, we use again an

adaptive coder with context to encode
the Q-stream, the indices of the d-

dimensional vectors.

pi
qi

pi

Encoding the Q-stream

Assuming d=6, k=7, for the block size of 15 bits,
there are 1875 distinct vectors. The frequencies
of occurrences on English text is shown above.

 for sure,

so no encoding
qi = 0

Decoding…

Step 1. Decode from the P-stream.
 …. now we know how many
bits to read from the codeword stream

pi

Step 2. Decode from the Q-stream
by using the decoded as the
context
 …. now we know the index of
the d-dim vector, and then by using the
IndexToVector(), we generate the vector

qi
pi

Step 3. Decode the symbols from the
NPF codeword stream

 …. since the codeword
lengths are in the decoded vector, easy

to construct the actual symbols

18

Experimental Results…

• k is defined by the alphabet size k = ⌊log(σ + 1)⌋

• d is the block size in symbols akin to dimension of the enumerated vectors.

• Making d larger improves the performance, but computationally gets harder….

Compression ratio is better than the RS / WT schemes,
very close and even better than the prefix codes (Huffman, arithmetic)

19

Experimental Results…

With the current model, there is a trade-off between P and Q streams.

When d increases :
- compression of P values gets improved,
- compression of Q stream gets worse

(… maybe another modeling for Q would be better ???)

How many bits are used for the NPF, P and Q streams ?

20

Conclusions…

Give a chance :) to non-prefix codes in data compression and
possibly in other text processing algorithms

• An initial attempt to investigate not-much-addressed non-prefix-free codes

• Compression ratio seems compatible with the prefix codes.

• However computational load needs a lot improvement, current implementation is
order of magnitudes slower than the prefix alternatives. Algorithm engineering, time-
memory trade off, recursions to be replaced by iterations ?

• Tight theoretical bounds comparing the compression performances of prefix and
non-prefix codes needs to be studied.

• The inherent ambiguity of the NPF codes surely suffering in data compression, but
they can serve for privacy/security purposes in text processing, e.g, privacy-
preserving text similarity (SISAP’19), reducing the load of encryption (SEA’18), and
maybe others ?

