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Objective
Data compression is to represent data with less number of bits. 

Almost all data compression literature is based on prefix codes. 
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How about the non-prefix-free codes?

Are they that much terrible to use ? 

Can they serve for some purpose?

… ?????



PREFIX CODES
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Data Compression : Represent data with less bits 

Prefix-Free Codes: None of the codeword is a prefix of other, e.g., Huffman

Codeword

E 01

R 00

F 100

N 101

I 1110

O 1111

P 1100

X 1101
Prefix-codes are uniquely decodable and require no 

extra effort to mark the codeword boundaries !



NON-PREFIX-FREE (NPF) CODES
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Non-Prefix-Free (NPF) or Not-Uniquely Decodable Codes:  
The assigned codewords can be a prefix of others.

Codeword

E 0

R 1

F 00

N 01

I 10

O 11

P 000

X 001

NPF codes are NOT uniquely decodable and 
REQUIRE extra data structures to mark the 

codeword boundaries !

Surely the average codeword length is better than 
prefix-codes. However, when augmented with extra 

space to mark codeword boundaries, they get worse !



How to efficiently mark codeword boundaries in NPF codes ? 
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1. Use a separate bitmap: R/S dictionaries

Keep this compressed with  
R/S dictionary schemes

Random access  
in O(1)-time via R/S dictionaries !
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2. Use wavelet tree to represent the codeword lengths

Create a wavelet-tree over the  
sequence of codeword lengths L .

Random access  
in O( log log  ) - time !σ

How to efficiently mark codeword boundaries in NPF codes ? 

Any compressed integer representation  of the codeword lengths list is a candidate. 



7

Enumerative coding of integer vectors

L = ⟨ℓ1, ℓ2, ℓ3, …, ℓd⟩

v = ℓ1 + ℓ2 + ℓ3 + ⋯ + ℓd ,

Assuming all distinct L vectors of  given v and k values are ordered,  
the rank of a vector in this ordered list specifies the vector.   

Assume we have a d dimensional integer vector L. 

We also know that the inner sum is v and each dimension is between 1 and k. 

1 ≤ ℓi ≤ k

d = 3, v = 6, k = 3

0 1 2 3
1 1 3 2
2 2 1 3
3 2 2 2
4 2 3 1
5 3 1 2
6 3 2 1

When rank is given as 4,  
the vector is .⟨2,3,1⟩ If the vector is given as  

, then its rank is 5.     ⟨3,1,2⟩
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Number of d-dimensional distinct vectors  such that…
ψ(k, d, v) :
The total number of distinct  dimensional vectors whose 
inner sum is  , where each dimension is in range . 

d
v [1,k]

0 , no such vector since   d ≤ v ≤ k ⋅ d

α =
1, i f v − k(d − 1) ≤ 1
v − k(d − 1), other wise

β =
k, i f v − (d − 1) > k
v − (d − 1), other wise

1, only one way to construct it, either  or ⟨1,1,…,1⟩ ⟨v⟩

i=β

∑
i=α

ψ(k, d − 1,v − i), where

d, There are d ways to construct it 
⟨2,1,1,...,1⟩
⟨1,2,1,...,1⟩

⟨1,1,1,...,2⟩
….. } d items

Iterate over all possible values for one dimension 
and recursively count on the remaining (d-1) 

dimensions with the updated sum v !

otherwise,
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Number of distinct vectors complying with k,d,v parameters 

ψ(k, d, v) :
The total number of distinct  dimensional vectors whose 
inner sum is  , where each dimension is in range . 

d
v [1,k]

This is akin to constructing the d-ary tree of height (k-1), where each 
inner node only creates children that accompany with the restrictions. 

For example, if  d=3, k=3, v=6 then…

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6
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Vector-To-Index
We need methods to map a vector to its rank and vice versa.

Vector-To-Index:    What is the rank (index) of  given that k = 3 ? 

                                 Notice d=3 and v=2+3+1= 6 are immediate from the vector. 

⟨3,2,1⟩

How many  , and 
 vectors? 


How many 2-dim vectors that sum 
up to 5 or 4? 

Iterate the first dimension till 
the actual value

⟨1, * , * ⟩
⟨2, * , * ⟩

What is the index of   ? 

Recurse with the reduced 

dimension….

⟨2,1⟩

ψ(k, d, v) :The total number of distinct  dimensional vectors whose 
inner sum is  , where each dimension is in range . 

d
v [1,k] ?
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Vector-To-Index
We need methods to map a vector to its rank and vice versa.

Vector-To-Index:    What is the rank (index) of  given that k = 3 ? 

                                 Notice d=3 and v=2+3+1= 6 are immediate from the vector. 

⟨3,2,1⟩

How many  2 dim vectors sum up to 5 with k=3? What is the index of   with 
k=3? 

⟨2,1⟩

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6
How many  2 dim vectors sum up to 4 with k=3?
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Index-To-Vector
We need methods to map a vector to its rank and vice versa.

Index-To-Vector:    What is the d=3 dimensional vector with rank 6 and 
inner sum v=6, where each dimension is between 1 and k=3? 

Iteratively find the value of 
each dimension from  to  v1 vd

Count the number of vectors that 
rank before the queried index. 

Adjust the inner sum once   is decided.vi
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Index-To-Vector
We need methods to map a vector to its rank and vice versa.

Vector-To-Index:    What is the 3-dim vector that ranks 5th, whose inner sum is 6  
and each dimension is in [1,3] ?

What should  be ?  3v1

XX
1 2 3

2 31 2 31 2 31

3 2 3 2 1 2 1

0 1 2 3 4 5 6

What should  be ?  1v2

 is then 6-3-1 = 2v3



L 2 2 2 3 1 1 2 2 3 2 1 1 1 3 3

P 6 5 7 4 7

Q 3 5 1 2 0
VectorToIndex(⟨2,2,2⟩) = VectorToIndex(⟨3,1,1⟩) = VectorToIndex(⟨2,2,3⟩) = VectorToIndex(⟨2,1,1⟩) = VectorToIndex(⟨1,3,3⟩) =

NPF The codeword stream

P stream encoding the sum of the codeword lengths in blocks of d

Q stream encoding the index of the corresponding d-dim codeword lengths vector.

Enumerative Compression — Overview



The integers in P are between d and k.d. 

We encode P with adaptive arithmetic 
coding.  

Observed on 100MB 
English text

Number of distinct 
vectors on d=6, k=7

Encoding the P-stream



The value of  is the context of the vector 
index . Therefore, we use again an 

adaptive coder with  context to encode 
the Q-stream, the indices of the d- 

dimensional vectors.

pi
qi

pi

Encoding the Q-stream

Assuming d=6, k=7, for the block size of 15 bits, 
there are 1875 distinct vectors. The frequencies 
of occurrences on English text is shown above. 

 for sure, 

so no encoding
qi = 0



Decoding…

Step 1. Decode  from the P-stream.   
                 …. now we know how many 
bits to read from the codeword stream

pi

Step 2. Decode  from the Q-stream 
by using the decoded  as the 
context   
                 …. now we know the index of 
the d-dim vector, and then  by using the 
IndexToVector(), we generate the vector

qi
pi

Step 3. Decode the symbols from the 
NPF codeword stream  

                 …. since the codeword 
lengths are in the decoded vector, easy 

to  construct the  actual symbols 
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Experimental Results…

• k is defined by the alphabet size k = ⌊log(σ + 1)⌋

• d  is the block size in symbols akin to dimension of the enumerated vectors. 

• Making d larger improves the performance, but computationally gets harder….

Compression ratio is  better than the RS / WT schemes,  
very close and even better than the prefix codes (Huffman, arithmetic) 
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Experimental Results…

With the current model, there is a trade-off between P and Q streams. 

When d increases :   
- compression of  P values gets improved,  
- compression of Q stream gets worse 

(… maybe another modeling for Q would be better ???) 

How many bits are used for the NPF, P and Q streams ?
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Conclusions…

Give a chance :) to non-prefix codes in data compression and   
possibly in other text processing algorithms 

• An initial attempt to investigate not-much-addressed non-prefix-free codes 

• Compression ratio seems compatible with the prefix codes. 

• However computational load needs a lot improvement, current implementation is 
order of magnitudes slower than the prefix alternatives. Algorithm engineering, time-
memory trade off, recursions to be replaced by iterations ?  

• Tight theoretical bounds comparing the compression performances of prefix and 
non-prefix codes needs to be studied.  

• The inherent ambiguity of the NPF codes surely suffering in data compression, but 
they can serve for privacy/security purposes in text processing, e.g, privacy-
preserving text similarity (SISAP’19), reducing the load of encryption (SEA’18), and 
maybe others ?


