
Optimal Time and Space Construction of Suffix Arrays
and LCP Arrays for Integer Alphabets

PSC 2019
Keisuke Goto

Fujitsu Laboratories Ltd.

0

Suffix Arrays and LCP Arrays
nSuffix arrays sort all suffixes and store their starting positions
nLCP arrays store the length of longest common prefix of the

consecutive suffixes in the suffix array

i LCP SA TSA[i]

1 0 7 $

2 0 6 a$

3 1 4 ana$

4 3 2 anana$

5 0 1 banana$

6 0 5 na$

7 2 3 nana$

suffix array and LCP array of T
1 2 3 4 5 6 7
b a n a n a $T

1

Problems

T
SA

SA
LCP

Input Output
Problem 1

Problem 2

2

Assumption
l T is read-only string of length N
l Word RAM mode of word size log N
l T consists of an integer alphabet [1…σ]
l all σ characters appear in T

Example
T = banana$ from
{$←1, a←2, b←3, n←4}

Stronger assumption than previous research

Our Contributions
Time Extra Words

[Manber and Mayers,1990] O(N log N) O(N)
[Kim+, 2003], [Ko and Aluru, 2003],

[Karkkainen Sanders, 2003] O(N) O(N)

[Franceschini and
Muthukrishnan, 2007] O(N log N) O(1)

[Nong, 2013] O(N) σ + O(1)

Ours O(N) O(1)

Problem 1: Construction of SA

Space except for input
and output space

3

Recent and Independent Works

4

n[Li et al., 2018] also proposed an optimal time and space
algorithm for Problem 1 (Construction of SA)

[Li et al., 2018] Ours
Alphabet size σ ∈ O(N) σ ≦ N

All characters appear
in T? May not Must

Framework Induced sorting Induced sorting

Main complex
external tools

In-place Merging for two
sorted arrays [Chen 2003]
Succinct data structures for

select queries [Jacobson, 1989]

In-place Merging for two
sorted arrays [Chen 2003]

Recent and Independent Works

5

Our work may contribute to develop practical time and space
efficient implementations for Problem 1

[Li et al., 2018] Ours
Alphabet size σ ∈ O(N) σ ≦ N

All characters appear
in T? May not Must

Framework Induced sorting Induced sorting

Main complex
external tools

In-place Merging for two
sorted arrays [Chen 2003]
Succinct data structures for

select queries [Jacobson, 1989]

In-place Merging for two
sorted arrays [Chen 2003]

Our Contributions
Time Extra Words

[Manber and Mayers,1990] O(N log N) O(N)
[Kim+, 2003], [Ko and Aluru, 2003],

[Karkkainen Sanders, 2003] O(N) O(N)

[Franceschini and
Muthukrishnan, 2007] O(N log N) O(1)

[Nong, 2013] O(N) σ + O(1)

Ours O(N) O(1)

Time Extra Words
[Kasai+, 2001] O(N) N + O(1)
[Manzini, 2004] O(N) σ + O(1)
[Nong, 2013] +
[Manzini, 2004] O(N) σ + O(1)

Input: T and SA
Output: LCP

Input: T
Output: SA and LCP

Problem 2: Construction of SA + LCP

Problem 1: Construction of SA

Ours O(N) O(1)

Space except for input
and output space

6

Focus on Problem 1 in
this talk

nProblems
nInduced Sorting Framework
nOptimal Time and Space Algorithm
nSummary

7

Induced Sorting Frameworks
nSort suffixes from sorted suffixes of smaller size

Suffixes

L-suffixes S-suffixes

LMS-suffixes
sort

sort

• Make T’ such that SA of T’ equals SA
of LMS-suffixes

• Compute SA of T’ recursively

of T’

We focus on this core part

8

[Ko and Aluru, 2003]
[Nong et al., 2011]

Type of Suffixes
nSuffix Ti (T[i..N]) is an L(arger)-suffix if Ti > Ti+1

nSuffix Ti (T[i..N]) is an S(maller)-suffix if Ti < Ti+1

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T

a $ $>

aabba$ < abba$

type

Left-most S-suffix (LMS-suffix)

9

Type of Suffixes
nSuffix Ti (T[i..N]) is an L(arger)-suffix if Ti > Ti+1

nSuffix Ti (T[i..N]) is an S(maller)-suffix if Ti < Ti+1

TSA[i]

$
a$
aabba$
abba$
ba$
baabba$
bba$

SAof T

In each interval, L-suffixes
must appear before S-suffixes

$-interval

a-interval

b-interval

L-suffix must appear after the
succeeding suffix

S-suffix must appear before the
succeeding suffix

10

Sorting L-suffixes from sorted LMS-suffixes

A TSA[i]

$ $
a$
aabba$

aabba$ abba$
ba$
baabba$
bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

Use three arrays
pA: will be SA
pLE: indicate the leftmost empty

position of each interval
ptype: store the type of each

suffix
Preliminary, we store sorted
LMS-suffixes in the tail of each
interval

σ extra words

N / log N extra words

11

Sorting L-suffixes from sorted LMS-suffixes

A TSA[i]

$ $
a$
aabba$

aabba$ abba$
ba$
baabba$
bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

With a left-to-right scan on A
pRead a suffix A[i]=Tj,

lexicographically
pJudge Tj-1 is L-suffix or not
pIf so, we store Tj-1 at the

leftmost empty position LE[tj-1]
of tj-1-interval

tj-1: Starting character of Tj-1

12

Sorting L-suffixes from sorted LMS-suffixes

A TSA[i]

$ $
a$ a$

aabba$
aabba$ abba$

ba$
baabba$
bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

With a left-to-right scan on A
pRead a suffix A[i]=Tj,

lexicographically
pJudge Tj-1 is L-suffix or not
pIf so, we store Tj-1 at the

leftmost empty position LE[tj-1]
of tj-1-interval

tj-1: Starting character of Tj-1

13

Sorting L-suffixes from sorted LMS-suffixes

A TSA[i]

$ $
a$ a$

aabba$
aabba$ abba$

ba$
baabba$
bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

With a left-to-right scan on A
pRead a suffix A[i]=Tj,

lexicographically
pJudge Tj-1 is L-suffix or not
pIf so, we store Tj-1 at the

leftmost empty position LE[tj-1]
of tj-1-interval

tj-1: Starting character of Tj-1

14

Sorting L-suffixes from sorted LMS-suffixes

A TSA[i]

$ $
a$ a$

aabba$
aabba$ abba$
ba$ ba$
baabba$ baabba$
bba$ bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

With a left-to-right scan on A
pRead a suffix A[i]=Tj,

lexicographically
pJudge Tj-1 is L-suffix or not
pIf so, we store Tj-1 at the

leftmost empty position LE[tj-1]
of tj-1-interval

tj-1: Starting character of Tj-1

15

Correctness

A TSA[i]

$ $
a$ a$

aabba$
aabba$ abba$
ba$ ba$
baabba$ baabba$
bba$ bba$

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

LE
a
b

nWe don’t miss any L-suffixes
nWe keep an invariant that

suffixes in A are always sorted
during the step

Induced sorting framework
runs in O(N) time and uses
σ + N / log N extra words

16

nProblems
nInduced Sorting Framework
nOptimal Time and Space Algorithm
nSummary

17

Observations
nInduced sorting framework

pGood: run in O(N) time
pBad: use σ + N / log N extra words for LE and type

I’d like to remove LE and type,
but constructing SA without them

seems TOO difficult

I was thinking …

18

Observations

One day,
I came up with a good idea!

Use only LE, BUT we store it in A, so
we require no extra space

LE typeLEA

Is it so easy? Of course not
19

Observations

NOOO! some LE-values, which will
be needed, are overwritten by induced

suffixes

LE typeLEA

suffixes

20

Observations

LE typeLEA

Our algorithm store LE in A and overwrite
LE-values only when they will be no longer used.

It runs in O(N) time and uses O(1) extra words space!

suffixes

21

Overview of Our Algorithm
nWe use three internal sub-arrays in A
nPreliminary, Y store LE-values and some LMS-suffixes
nZ stores the other LMS-suffixes

X ZA

LE-valuesY of length σ

S-suffix

22

Overview of Our Algorithm
nOur goal is to store sorted L-suffixes separatory in X and Y
nFinally, we merge them

A

X Y Z

X ZA
LE-values

A

Sorted L-suffixes

Y of length σ

L-suffix

S-suffix

23

Detail Layout of Suffixes

X Z

j
i

l

j ji i k l m

m

ji
k

j k l mi-interval

・・・ ・・・SA

A
X stores each interval
by shifting one to left

Y stores the largest L-
suffix in each interval

Y stores the smallest S-suffix in
each interval if there is no L-suffix

24

Y
i j k l m

Initial State

X Z

j
i

l
m

ji
k

A
i j k l m

25

Y
LE-values, which will be needed,

are not overwritten

Step 1: Lexicographically read L- and LMS-suffixes Tj
pLeft-to-right scan on X, Y, and Z, respectively
pCompare their starting characters and choose the smallest one in

priority over X, Y, and Z

X ZA

26

Step2: Judge Tj-1 is L-suffix or not

27

Key Property [Nong et al., 2011]
For Tj-1 and Tj, if tj-1 = tj, the type of Tj-1 equals one of Tj

1 2 3 4 5 6 7
b a a b b a $
L S S L L L S

T
type

Step2: Judge Tj-1 is L-suffix or not
nTj-1 is L-suffix only if

pTj is read from X and tj-1 ≧ tj

pOr, Tj is read from Z and tj-1 > tj

pOr, Tj is read from Y and tj-1 > tj

We know the type of Tj, soWe know the type of Tj

their starting characters must be
different since Tj is the largest L-
suffix or the smallest LMS-suffix

28

Step3: Store Tj-1If It is L-suffix
nWe try to store Tj-1 in X[LE[tj-1]]

pIf X[LE[tj-1]] is EMPTY,
then we store Tj-1 in X[LE[tj-1]]

potherwise, X[LE[tj-1]] has a suffix
then we compare their starting characters,
and store the smallest one in Y and store the other in X[LE[tj-1]]

LE-value for the smallest one is no
longer used since it is the largest

one in its interval

29

Correctness
nOur algorithm simulates induced sorting framework without errors

30

A

X Y Z

X ZA

Y of length σ

Our algorithm runs in O(N) time and
uses O(1) extra words space

Summary
nProposed an algorithm for constructing SA in optimal time and

space
nProposed an algorithm for constructing both SA and LCP in

optimal time and space (see our paper)

Future work?
nUsing some techniques or observations in this work,

develop practical implementations

31

