## Bidirectional Adaptive Compression

Aharon Fruchtman
Shmuel T. Klein
Dana Shapira



### Data Compression



- Static
  - The model the distribution of the encoded elements
    - Given in advance
    - Gathered in a first scan
- Adaptive
  - The model learned incrementally.

## Data Compression



- Statistical
  - Huffman
  - Arithmetic
- Dictionary Based
  - Lempel Ziv.

## Adaptive Algorithms



- Backward looking:
  - Base the current model on what has already been seen.
  - The past is a good approximation of the future
- Forward looking:
  - Exact statistics
  - Uses the model's knowledge of what is still to come.

#### Differences



- Backward:
  - Increments the frequency
  - "Selfish" behavior
- Forward:
  - "Altruistic" approach
  - Decrements the frequency

## Backward Looking Example



Vitter's dynamic Huffman variant

NYT - Not Yet Transmitted



T = BANANAS









ASCII(B)

 $\mathcal{E}(T) = \frac{01000010}{0}$ 

T = BANANAS





$$\mathcal{E}(T) = \frac{01000010}{0}$$



T = BANANAS





 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001$ 



T = BANANAS





NYT ASCII(A)

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001$ 

T = BANANAS





NYT ASCII(N)

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110$ 

T = BANANAS





NYT ASCII(N)

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110$ 

T = BANANAS





 $\mathcal{E}(A)$ 

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10$ 

T = BANANAS





 $\mathcal{E}(A)$ 

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10$ 

T = BANANAS





 $\mathcal{E}(N)$ 

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10 \ 111$ 

T = BANANAS





 $\mathcal{E}(N)$ 

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10 \ 111$ 

T = BANANAS





 $\mathcal{E}(A)$ 

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10 \ 111 \ 0$ 

T = BANANAS





#### NYT ASCII(S)

 $\mathcal{E}(T) = 01000010 \ 0 \ 01000001 \ 10 \ 01001110 \ 10 \ 111 \ 0 \ 100 \ 01010011$ 

T = BANANAS





NYT ASCII(S)

## Forward - previous results



• Best known bound for dynamic is  $\leq n$  bits + Static

 For a given distribution of frequencies, the average codeword length of FORWARD is at least as good as the average codeword length of STATIC

Classic might produce a file twice the size of Forward

T = BANANAS





T = BANANAS





$$T = BANANAS$$



$$\mathcal{E}(T) = 101$$

$$\mathcal{E}(B)$$



$$T = BANANAS$$



$$\mathcal{E}(T) = 101 \, 0$$

$$\mathcal{E}(A)$$



$$T = BANANAS$$



$$\mathcal{E}(T) = 101 \ 0 \ 11$$

$$\mathcal{E}(N)$$



$$T = BANANAS$$



$$\mathcal{E}(T) = 101 \ 0 \ 11 \ 0$$

$$\mathcal{E}(A)$$



$$T = BANANAS$$



$$\mathcal{E}(T) = 101 \ 0 \ 11 \ 0 \ 11$$

$$\mathcal{E}(N)$$



$$T = BANANAS$$





$$\mathcal{E}(T) = 101\ 0\ 11\ 0\ 11\ 0$$

$$\mathcal{E}(A)$$





$$T = BANANAS$$

$$\mathcal{E}(T) = 101\ 0\ 11\ 0\ 11\ 0$$

No Need to transmit S

## Drawbacks of current methods



- Backward and Forward use information about the distribution which isn't necessarily needed.
  - Static frequencies of the characters in the entire text.
  - String of characters {a, b, ..., z} followed by numbers {0,...,9}.

## A new Hybrid coding

- NYT Not Yet Transmitted
- Encoding the model
  - Forward exact frequencies
     at the beginning of the process
  - Backward incrementally



Hybrid - NYT+ASCII+freq





$$T = BANANAS$$









$$T = BANANAS$$

$$\mathcal{E}(T) = 01000010 \ 1 \ 01000001 \ 0101$$
ASCII(A)  $c_{\delta}(3)$ 

T = BANANAS





 $\mathcal{E}(T) = 01000010 \ 1 \ 01000001 \ 0101$ 

 $ASCII(A) c_{\delta}(3)$ 

T = BANANAS





 $\mathcal{E}(T) = 01000010 \ 1 \ 01000001 \ 0101 \ 0 \ 01001110 \ 0100$ 

NYT ASCII(N)  $c_{\delta}(2)$ 

T = BANANAS





 $\mathcal{E}(T) = 01000010 \ 1 \ 01000001 \ 0101 \ 0 \ 01001110 \ 0100 \ 0$ 

 $\mathcal{E}(A)$ 

T = BANANAS





 $\mathcal{E}(N)$ 

T = BANANAS





T = BANANAS





 $\mathcal{E}(A)$ 





T = BANANAS

ASCII(S)  $c_{\delta}(1)$ 

# Generic Hybrid-ENCODE $(T = x_1 \cdots x_n)$

```
Preprocess T to get freq(\sigma_i), \forall \sigma_i \in \Sigma
Initialize the model with NYT with freq(NYT) \leftarrow |\Sigma|
Encode freq(NYT)
for i \leftarrow 1 to n do
   if x_i has already appeared earlier then
        encode x_i according to current model
        freq(x_i) \leftarrow freq(x_i)-1
   else
        encode NYT according to current model
        freq(NYT) \leftarrow freq(NYT)-1
        output ASCII(x_i)
        encode freq(x_i)
        Update the model with x_i, freq(x_i) and freq(NYT)
                                                 The Prague Stringology Conference (PSC-2019)
```

42

#### Theorem



 The expected performance of HYBRID is at least as good as FORWARD



#### Theorem



 The expected performance of HYBRID is at least as good as FORWARD



Huffman code built for  $P = \{p_{\sigma} | \sigma \in \Sigma_r\}$ 

#### Remarks



- Not necessarily true that  $h_j \leq f_j$  for j < t
- Moderate expected savings by using HYBRID instead of FORWARD
  - J and Q appear with probability 0.002

Main contribution: improve a method which already seems better than one considered "optimal"





| File     | Full Size  | Size of Encoded File |            |            |              |
|----------|------------|----------------------|------------|------------|--------------|
|          |            | Static               | Adaptive   | Forward    | Hybrid       |
| ebib     | 3,711,020  | 1,940,573            | 1,941,321  | 1,940,527  | 1,940,268    |
| exe      | 48,640     | 31,296               | 31,851     | 31,132     | 28,930       |
| ftxt     | 7,648,930  | 4,443,525            | 4,444,660  | 4,443,419  | 4,442,447    |
| eng      | 52,428,800 | 29,914,197           | 29,915,562 | 29,914,021 | 29, 912, 644 |
| dig - ch | 3,726,683  | 1,969,884            | 1,970,694  | 1,969,830  | 1,945,310    |





yright 1996 Randy Glasbergen. www.glasbergen.com



"Never touch the screen while you're compressing a file!"

The Prague Stringology Conference (PSC-2019)