Fast SIMD-Based Chunking Algorithm Yehonatan Dude, Michael Hirsch, Yair Toaff

toganet»orks

- 1. Background
- 2. Chunking Problem
- 3. Traditional Solutions
- 4. Our Solution
- 5. Future Work

Background - Deduplication

Deduplication is a technique for eliminating duplicate copies of repeating data.

Deduplication process in a nutshell 1. Divide into chunks 2. Calculate the chunks' hashes 3. Store chunks uniquely

Background - Chunking Methods

How to chunk the input data

- 1. Simple fixed size.
- 2. Content aware files, objects, applications.
- 3. Content sensitive rolling hash.

The Opera ghost really existed.	He was not, as
, a creature of the imagination	of the artists,
of the managers, or a product o	f the <mark>joy</mark> and i
ins of the young ladies of the b	allet, their mo
epers, the cloak-room attendants	or the concier
ed in flesh and blood, although	he assumed the
ce of a real phantom; that is to	say, of a spect

The Opera ghost really existed.	He was not, as was long believed
, a creature of the imagination_	of the artists, the superstition
of the managers, or a product o	f the <i>absurd</i> and impressionable
brains of the young ladies of th	e ballet, their mothers, the box
-keepers, the cloak-room attenda	nts or the concierge. Yes, he ex
isted in flesh and blood, althou	gh he assumed the complete appea
rance of a real phantom; that is	to say, of a spectral shade.

was long believed
, the superstition
impressionable bra
others, the box-ke
ge. Yes, he exist
complete appearan
tral shade.

The Opera ghost really existed.

He was not, as was long believed, a creature of the imagination of the artists, the superstition of the managers, or a product of the joy and impressionable brains of the young ladies of the ballet, their mothers, the box-keepers, the cloak-room attendants or the concierge. Yes, he existed in flesh and blood, although he assumed the complete appearance of a real phantom; that is to say, of a spectral shade.

The Opera ghost really existed.

He was not, as was long believed, a creature of the imagination of the artists, the superstition of the managers, or a product of the absurd and impressionable brains of the young ladies of the ballet, their mothers, the box-keepers, the cloak-room attendants or the concierge. Yes, he existed in flesh and blood, although he assumed the complete appearance of a real phantom; that is to say, of a spectral shade.

The Opera ghost really existed. He was n o t, a s was
, a creature of the imagination of the artists, th
of the managers, or a \mathbf{p} roduct of the joy and impr
ins of the young ladies of the ballet, their mo t he
epers, the cloak-room attendants or the concierge.
ed in flesh and blood, although he assumed the com
ce of a real phantom; that is to say, o f a spectra

The Opera ghost really existed. He was n o t, a s was long believed
, a creature of the imagination of the artists, the superstition
of the managers, or a p roduct of the <i>absurd</i> and impressionable
brains of the young ladies of the ballet, their mothers, the box
-keepers, the cloak-room attendants or the concierge. Yes, he ex
isted in flesh and blood, although he assumed the complete appea
ra n ce of a real phantom; that is to say, o f a spectral shade.

	1	0	n	g		b	е	1	i	е	V	е	d
е		S	u	р	е	r	S	t	i	t	i	0	n
е	S	S	i	0	n	al	b	1	е		b	r	а
r	S	,		t	h	e		b	0	Х	_	k	е
	Y	е	S	,		h	е		е	Х	i	s	t
р	1	е	t	е		aj	р	р	е	a	r	a	n
1		S	h	a	d	.e	•						
					_		_						

Background - Deduplication Performance

In 2017 we worked on a deduplication engine, and we tried to improve its performance.

Chunking Problem

Given a stream of bytes, divide it into chunks for deduplication.

- 1. Output identical chunks for identical data
- 2. Good chunk size distribution.
- 3. Good performance.
- 4. Works for any input (photo, DB, text, random, etc...)

Traditional Solutions

Karp-Rabin Cyclic Polynomial

Karp-RabinCyclic Polynom
$$h_i = \sum_{j=0}^{j=63} p^j x_{i-j} \mod N$$
 $h_i = \bigoplus_{j=0}^{j=63} \operatorname{rotate}(x_{i-j}, j)$

 $h_{i+1} = x_{i-64} + \operatorname{rotate}(h_i, 1) + x_i$ $h_{i+1} = p^{64}x_{i-64} + ph_i + x_i \mod N$

ial

Proposed Solution

How does it work:

- 1. Work with rolling vectors
- 2. Calculate a hash of byte size
- 3. Calculate the criteria, in a way that:
 - Number of calculations are constant
 - unrelated to the vector size
 - Can find a cutting point at a byte offset

Ck ...**C**k+3

Zeroes Zeroes

Boundary

Measured Results

—Ours ---Karp-Rabin 14000 16000

Algorithm	Random Da
Karp-Rabin	975 MB/s
Cyclic-Polynomial	1675 MB/s
Ours	6715 MB/s

ta Corpus Data

927 MB/s

1676 MB/s

7136 MB/s

Chunking Alg.	Dedup Perf.	LZ4	SH	
Karp-Rabin	262 MB/s	63.9%	4.1	
Ours	345 MB/s	84.5%	5.4	

IA1 Other Chunking

.% 3.8% 28.1%

1% 5.1% 4.7%

- Same Distribution
- Faster Chunking Performance
- Faster Overall Performance

^Formance mance

Future Work

A chunki	A chunking algorithm						
*	Past	Prese					
Backward Compatible	N/A	f(k, x)					
Work	cn	cn					
Speed	cn	c(n lo					

that is ented **Future** $\neq f(l, x)$ f(k, x) = f(l, x)cn $\log k$)/k c(n log k)/k

Thanks

https://github.com/dudejohnny/PSC2019

