
Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Algorithms to Compute the Lyndon Array
Revisited

Michael Liut
(joint work with F. Franek)

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada

August 2019

Prague Stringology Conference 2019
Czech Technical University

Algorithms to Compute the Lyndon Array Revisited PSC 2019 1 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Outline

1 Motivation

2 Basic Notions

3 Algorithms to compute the Lyndon array revisited

4 Conclusion

Algorithms to Compute the Lyndon Array Revisited PSC 2019 2 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Background

The motivation for having an efficient algorithm for
identifying all maximal Lyndon substrings of a string comes
from the work of Bannai et al. on the runs conjecture.

In 2015, Bannai et al. presented a method of L-roots to
prove the maximum number of runs conjecture ρ(n) < n.

Given all maximal Lyndon substrings of a string w.r.t. both
the order of the alphabet and to the inverse order, Bannai
et al. showed that all runs of a string can be computed in
linear time.

This is the only algorithm that does not require a prior
Lempel-Ziv factorization of the string.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 3 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

In 2017, Franek et al. demonstrated linear co-equivalence
of sorting suffixes and sorting maximal Lyndon substrings
of a string; based on a novel suffix sorting algorithm
introduced by Baier.

Noticed by Diegelmann, Phase I of Baier ’s suffix sort
identifies and sorts all maximal Lyndon substrings.

“Sorting suffixes” is (in a sense) equivalent to “sorting
maximal Lyndon substrings”, which increased the interest
of efficiently computing maximal Lyndon substrings.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 4 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

What is a ‘Lyndon word’?

Definition
A string x is a Lyndon word if x is lexicographically strictly
smaller than any non-trivial rotation of x .
Trivially true when |x | = 1, so-called trivial Lyndon word.

If x = uv , then vu is called a rotation of x ; if either u = ε
or v = ε, then the rotation is called trivial.

A non-empty string x is primitive if there are no string y
and no integer k ≥ 2 so that x = yk = yy · · · y︸ ︷︷ ︸

k times

Algorithms to Compute the Lyndon Array Revisited PSC 2019 5 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

The following are all equivalent:

x is a non-trivial Lyndon word

x [1..n] ≺ x [i ..n] for any 1 < i ≤ n

x [1..i] ≺ x [i+1..n] for any 1 ≤ i < n

there is 1 ≤ i < n so that x [1..i] ≺ x [i+1..n] and both
x [1..i] and x [i+1..n] are Lyndon (standard
factorization when x [i+1..n] is the longest)

Algorithms to Compute the Lyndon Array Revisited PSC 2019 6 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

abb is Lyndon (abb bba bab)

aba is not (aba baa aab)

abab is not (none of the rotations is strictly
smallest: abab baba abab baba)

Lyndon⇒ unbordered⇒ primitive

Algorithms to Compute the Lyndon Array Revisited PSC 2019 7 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

The Lyndon array

The maximal Lyndon substrings of a string x = x [1..n] can
be best encoded by the Lyndon array : an integer array
L[1..n] so that for any i ∈ 1..n, where L[i] = is the length of
the maximal Lyndon substrings starting at position i .

maximal Lyndon substrings:

a b b a b a b a a a b a
Lyndon array:

3 1 1 2 1 2 1 4 3 2 1 1

Algorithms to Compute the Lyndon Array Revisited PSC 2019 8 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Overview

Our research group over the last 4-years have presented a
series of papers at PSC on the topic of maximal Lyndon
substrings:

2016 an overview of then-current algorithms for computing
the Lyndon array.

2017 linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings.

2018 an elementary linear algorithm to identify and sort all
maximal Lyndon substrings, inspired by Phase I of
Baier’s algorithm.

2019 today, completes the series and summarizes what has
transpired, introducing new algorithms, and showing
some empirical comparisons.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 9 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Iterated Duval algorithm (IDLA)

Presented in PSC 2016, based on Duval’s work on Lyndon
factorization.

Though called “Iterated Duval”, it is actually the
maxLyn(x) procedure which is iterated:

IDLA applies maxLyn(x) to every position, while
Duval’s factorization algorithm maxLyn(x) is applied to the
position immediately after the maximal Lyndon prefix
currently computed.

Worst-Case Complexity

O(|x |2)

Algorithms to Compute the Lyndon Array Revisited PSC 2019 10 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Recursive Duval algorithm (RDLA)

Presented in PSC 2016, also based on Duval’s work on
Lyndon factorization (applied recursively).

For example:
If x [1..i1],x [i1 + 1..i2]...x [ik + 1..n] is a Lyndon factorization
of x , the algorithm is recursively applied to x [2..i1], to
x [i1 + 2..i2], ..., to x [ik + 2..n], etc.

Worst-Case Complexity

O(|x |2)

Special Binary Alphabet
Average Case Complexity

O(|x | log(|x |))

Algorithms to Compute the Lyndon Array Revisited PSC 2019 11 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Algorithmic scheme based on suffix sorting (SSLA)

Presented in PSC 2016, based of the work of Hohlweg and
Reutenauer in 2003. They characterized maximal Lyndon
substrings in terms of the relationships of their suffixes.

The Lyndon array of x is the Next Smaller Value (NSV)
array of the inverse suffix array.

The scheme is as follows:
1 sort the suffixes;
2 from the resulting suffix array compute the inverse suffix

array; and
3 apply NSV to the inverse suffix array.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 12 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

SSLA continued

Computing the inverse suffix array, and applying NSV, are
‘naturally’ linear. Computing the suffix array can be
implemented to be linear.

Time and space are dominated by the first step
(computation of the suffix array).

Worst-Case Complexity

O(x)

For linear suffix sorting, the input strings
must be over constant or integer alphabets.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 13 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Algorithmic scheme based on Burrows-Wheeler
transform (BWLA)

Not presented in PSC 2016, published in JDA 2018.

The Lyndon array is computed in a linear procedure from
the Burrows-Wheeler transform of the input string during
the transform’s inversion.

However, the Burrows-Wheeler transform is computed via
suffix sorting so this is another approach based on suffix
sorting.

Worst-Case Complexity

O(x)

Algorithms to Compute the Lyndon Array Revisited PSC 2019 14 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Baier’s suffix sort Phase I inspired algorithm (BSLA)

Presented in PSC 2018, based on Diegelmann’s
observation that Phase I of Baier ’s suffix sort identifies and
sorts all maximal Lyndon substrings.

In comparison to PSC 2018, the following improvements
were made:

i. simplified and streamlined analysis of the working of the
algorithm; and

ii. the implementation has been significantly improved.

Worst-Case Complexity

O(x)

Algorithms to Compute the Lyndon Array Revisited PSC 2019 15 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

τ−reduction algorithm (TRLA)

The idea of the algorithm follows Farach’s approach for the
linear algorithm for suffix tree construction.

The scheme for computing the Lyndon array works as
follows:

1 compute τ(x) reduction of the input string x ;
2 by recursion compute the Lyndon array of τ(x); and
3 from the Lyndon array of τ(x) compute the Lyndon array of x .

Worst-Case Complexity

Θ(x log(x))

Algorithms to Compute the Lyndon Array Revisited PSC 2019 16 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

1 2 3 4 5 6 7 8 9 10

Figure: τ -reduction of string 011023122

The rounded rectangles indicate symbol τ -pairs, the ovals indicate the τ -pairs
below are the colour labels of positions, at the bottom is the τ -reduction

For any string x of size at least 2, 1
2 |x | ≤ |τ(x)| ≤ 2

3 |x |.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 17 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Let B(x) denote the set of all black positions of x .

1..|τ(x)|
b
�

t
B(x)

b and t are bijections so that b(t(j)) = j and t(b(i)) = i .

We can define the Lyndon array alternatively as an integer
array L′[1..n] so that L′[i] = j when x [i ..j] is a maximal
Lyndon substring.

The relationship between the two definitions is
straightforward: L′[i] = L[i] + i − 1, or L[i] = L′[i]− i + 1.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 18 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Theorem
Let x = x [1..n], L′τ(x)[1..m] be the Lyndon array of τ(x), and
L′x [1..n] be the Lyndon array of x . Then for any black i ∈ 1..n,

L′x [i] =

{
b
(
L′τ(x)[t(i)]

)
if x [b

(
L′τ(x)[t(i)]

)
+ 1] � x [i]

b
(
L′τ(x)[t(i)]

)
+ 1 otherwise.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 19 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

L′
x [n]← n

for i ← n − 1 downto 2
if L′[i] = nil then

if x [i] � x [i + 1] then
L′[i]← i

else
if L′[i − 1] = i − 1 then

stop ← n
else

stop ← L′[i − 1]
L′[i]← L′[i + 1]
while L′[i] < stop do

if x [i ..L′[i]] ≺ x [L′[i] + 1..L′[L′[i] + 1]] then
L′[i]← L′[L′[i] + 1]

else
break

Figure: Computing missing values (white positions)

Algorithms to Compute the Lyndon Array Revisited PSC 2019 20 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Empirical Analysis

There were 4 categories of datasets:
binary random tight binary strings over the alphabet {0,1};
4-ary random tight 4-ary strings (kind of random DNA) over

the alphabet {0,1,2,3};
26-ary random tight 26-ary strings (kind of random English)

over the alphabet {0,1, ...,25}; and
integer random tight strings over integer alphabets.

Each of the dataset contained 500 randomly generated
strings of the same length.

For each category, there were datasets for length: 10, 50,
102, 5·102, ..., 105, 5·105, and 106.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 21 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

All of the algorithms have been implemented in C++ and
are made publicly available:
https://www.cas.mcmaster.ca/~franek/research.html and
https://github.com/MichaelLiut/Computing-LyndonArray.

Memory: 32GB (DDR4 @ 2400 MHz)
CPU: 8 x Intel Xeon E5-2687W v4 @ 3.00GHz
OS: Linux version 2.6.18-419.el5 (gcc version 4.1.2)

Programs were compiled without any form of additional
optimization.

The average time for each dataset was computed and
used in the following graphs.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 22 / 25

https://www.cas.mcmaster.ca/~franek/research.html
https://github.com/MichaelLiut/Computing-LyndonArray

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

random binary

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

random 4-ary

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

random 26-ary

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

random integer

Algorithms to Compute the Lyndon Array Revisited PSC 2019 23 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Conclusion

Let’s recap what we’ve discussed:
An overview of current algorithms for computing maximal
Lyndon substrings and new developments since PSC
2016:

the algorithmic scheme based on the computation of the
inverse Burrows-Wheeler transform (BWLA);

the linear algorithm inspired by Phase I of Baier’s algorithm
(BSLA); and

the novel algorithm based on τ−reduction (TRLA).

The performance and empirical analysis of three of the
presented algorithms: IDLA, BSLA, and TRLA, on various
datasets.

Algorithms to Compute the Lyndon Array Revisited PSC 2019 24 / 25

Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

T HANK YOU

Algorithms to Compute the Lyndon Array Revisited PSC 2019 25 / 25

	Motivation
	Basic Notions
	Algorithms to compute the Lyndon array revisited
	Conclusion

