
Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Algorithms to Compute the Lyndon Array
Revisited

Michael Liut
(joint work with F. Franek)

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada

August 2019

Prague Stringology Conference 2019
Czech Technical University

Algorithms to Compute the Lyndon Array Revisited PSC 2019 1 / 25



Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Outline

1 Motivation

2 Basic Notions

3 Algorithms to compute the Lyndon array revisited

4 Conclusion

Algorithms to Compute the Lyndon Array Revisited PSC 2019 2 / 25



Motivation Basic Notions Algorithms to compute the Lyndon array revisited Conclusion

Background

The motivation for having an efficient algorithm for
identifying all maximal Lyndon substrings of a string comes
from the work of Bannai et al. on the runs conjecture.

In 2015, Bannai et al. presented a method of L-roots to
prove the maximum number of runs conjecture ρ(n) < n.

Given all maximal Lyndon substrings of a string w.r.t. both
the order of the alphabet and to the inverse order, Bannai
et al. showed that all runs of a string can be computed in
linear time.

This is the only algorithm that does not require a prior
Lempel-Ziv factorization of the string.
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In 2017, Franek et al. demonstrated linear co-equivalence
of sorting suffixes and sorting maximal Lyndon substrings
of a string; based on a novel suffix sorting algorithm
introduced by Baier.

Noticed by Diegelmann, Phase I of Baier ’s suffix sort
identifies and sorts all maximal Lyndon substrings.

“Sorting suffixes” is (in a sense) equivalent to “sorting
maximal Lyndon substrings”, which increased the interest
of efficiently computing maximal Lyndon substrings.
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What is a ‘Lyndon word’?

Definition
A string x is a Lyndon word if x is lexicographically strictly
smaller than any non-trivial rotation of x .
Trivially true when |x | = 1, so-called trivial Lyndon word.

If x = uv , then vu is called a rotation of x ; if either u = ε
or v = ε, then the rotation is called trivial.

A non-empty string x is primitive if there are no string y
and no integer k ≥ 2 so that x = yk = yy · · · y︸ ︷︷ ︸

k times
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The following are all equivalent:

x is a non-trivial Lyndon word

x [1..n] ≺ x [i ..n] for any 1 < i ≤ n

x [1..i ] ≺ x [i+1..n] for any 1 ≤ i < n

there is 1 ≤ i < n so that x [1..i ] ≺ x [i+1..n] and both
x [1..i ] and x [i+1..n] are Lyndon (standard
factorization when x [i+1..n] is the longest)
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abb is Lyndon (abb bba bab)

aba is not (aba baa aab)

abab is not (none of the rotations is strictly
smallest: abab baba abab baba)

Lyndon⇒ unbordered⇒ primitive
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The Lyndon array

The maximal Lyndon substrings of a string x = x [1..n] can
be best encoded by the Lyndon array : an integer array
L[1..n] so that for any i ∈ 1..n, where L[i] = is the length of
the maximal Lyndon substrings starting at position i .

maximal Lyndon substrings:

a b b a b a b a a a b a
Lyndon array:

3 1 1 2 1 2 1 4 3 2 1 1
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Overview

Our research group over the last 4-years have presented a
series of papers at PSC on the topic of maximal Lyndon
substrings:

2016 an overview of then-current algorithms for computing
the Lyndon array.

2017 linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings.

2018 an elementary linear algorithm to identify and sort all
maximal Lyndon substrings, inspired by Phase I of
Baier’s algorithm.

2019 today, completes the series and summarizes what has
transpired, introducing new algorithms, and showing
some empirical comparisons.
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Iterated Duval algorithm (IDLA)

Presented in PSC 2016, based on Duval’s work on Lyndon
factorization.

Though called “Iterated Duval”, it is actually the
maxLyn(x) procedure which is iterated:

IDLA applies maxLyn(x) to every position, while
Duval’s factorization algorithm maxLyn(x) is applied to the
position immediately after the maximal Lyndon prefix
currently computed.

Worst-Case Complexity

O(|x |2)
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Recursive Duval algorithm (RDLA)

Presented in PSC 2016, also based on Duval’s work on
Lyndon factorization (applied recursively).

For example:
If x [1..i1],x [i1 + 1..i2]...x [ik + 1..n] is a Lyndon factorization
of x , the algorithm is recursively applied to x [2..i1], to
x [i1 + 2..i2], ..., to x [ik + 2..n], etc.

Worst-Case Complexity

O(|x |2)

Special Binary Alphabet
Average Case Complexity

O(|x | log(|x |))
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Algorithmic scheme based on suffix sorting (SSLA)

Presented in PSC 2016, based of the work of Hohlweg and
Reutenauer in 2003. They characterized maximal Lyndon
substrings in terms of the relationships of their suffixes.

The Lyndon array of x is the Next Smaller Value (NSV )
array of the inverse suffix array.

The scheme is as follows:
1 sort the suffixes;
2 from the resulting suffix array compute the inverse suffix

array; and
3 apply NSV to the inverse suffix array.
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SSLA continued

Computing the inverse suffix array, and applying NSV, are
‘naturally’ linear. Computing the suffix array can be
implemented to be linear.

Time and space are dominated by the first step
(computation of the suffix array).

Worst-Case Complexity

O(x)

For linear suffix sorting, the input strings
must be over constant or integer alphabets.
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Algorithmic scheme based on Burrows-Wheeler
transform (BWLA)

Not presented in PSC 2016, published in JDA 2018.

The Lyndon array is computed in a linear procedure from
the Burrows-Wheeler transform of the input string during
the transform’s inversion.

However, the Burrows-Wheeler transform is computed via
suffix sorting so this is another approach based on suffix
sorting.

Worst-Case Complexity

O(x)
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Baier’s suffix sort Phase I inspired algorithm (BSLA)

Presented in PSC 2018, based on Diegelmann’s
observation that Phase I of Baier ’s suffix sort identifies and
sorts all maximal Lyndon substrings.

In comparison to PSC 2018, the following improvements
were made:

i. simplified and streamlined analysis of the working of the
algorithm; and

ii. the implementation has been significantly improved.

Worst-Case Complexity

O(x)
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τ−reduction algorithm (TRLA)

The idea of the algorithm follows Farach’s approach for the
linear algorithm for suffix tree construction.

The scheme for computing the Lyndon array works as
follows:

1 compute τ(x) reduction of the input string x ;
2 by recursion compute the Lyndon array of τ(x); and
3 from the Lyndon array of τ(x) compute the Lyndon array of x .

Worst-Case Complexity

Θ(x log(x))
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1    2   3    4   5   6   7   8    9  10

Figure: τ -reduction of string 011023122

The rounded rectangles indicate symbol τ -pairs, the ovals indicate the τ -pairs
below are the colour labels of positions, at the bottom is the τ -reduction

For any string x of size at least 2, 1
2 |x | ≤ |τ(x)| ≤ 2

3 |x |.
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Let B(x) denote the set of all black positions of x .

1..|τ(x)|
b
�

t
B(x)

b and t are bijections so that b(t(j)) = j and t(b(i)) = i .

We can define the Lyndon array alternatively as an integer
array L′[1..n] so that L′[i] = j when x [i ..j] is a maximal
Lyndon substring.

The relationship between the two definitions is
straightforward: L′[i] = L[i] + i − 1, or L[i] = L′[i]− i + 1.
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Theorem
Let x = x [1..n], L′τ(x )[1..m] be the Lyndon array of τ(x), and
L′x [1..n] be the Lyndon array of x . Then for any black i ∈ 1..n,

L′x [i] =

{
b
(
L′τ(x )[t(i)]

)
if x [b

(
L′τ(x )[t(i)]

)
+ 1] � x [i]

b
(
L′τ(x )[t(i)]

)
+ 1 otherwise.
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L′
x [n]← n

for i ← n − 1 downto 2
if L′[i] = nil then

if x [i] � x [i + 1] then
L′[i]← i

else
if L′[i − 1] = i − 1 then

stop ← n
else

stop ← L′[i − 1]
L′[i]← L′[i + 1]
while L′[i] < stop do

if x [i ..L′[i]] ≺ x [L′[i] + 1..L′[L′[i] + 1]] then
L′[i]← L′[L′[i] + 1]

else
break

Figure: Computing missing values (white positions)
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Empirical Analysis

There were 4 categories of datasets:
binary random tight binary strings over the alphabet {0,1};
4-ary random tight 4-ary strings (kind of random DNA) over

the alphabet {0,1,2,3};
26-ary random tight 26-ary strings (kind of random English)

over the alphabet {0,1, ...,25}; and
integer random tight strings over integer alphabets.

Each of the dataset contained 500 randomly generated
strings of the same length.

For each category, there were datasets for length: 10, 50,
102, 5·102, ..., 105, 5·105, and 106.
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All of the algorithms have been implemented in C++ and
are made publicly available:
https://www.cas.mcmaster.ca/~franek/research.html and
https://github.com/MichaelLiut/Computing-LyndonArray.

Memory: 32GB (DDR4 @ 2400 MHz)
CPU: 8 x Intel Xeon E5-2687W v4 @ 3.00GHz
OS: Linux version 2.6.18-419.el5 (gcc version 4.1.2)

Programs were compiled without any form of additional
optimization.

The average time for each dataset was computed and
used in the following graphs.
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Figure 10: Binary Averages
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Figure 11: 4-ary Averages
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Figure 12: 26-ary Averages
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Figure 13: Integer Averages
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Figure 13: Integer Averages
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Conclusion

Let’s recap what we’ve discussed:
An overview of current algorithms for computing maximal
Lyndon substrings and new developments since PSC
2016:

the algorithmic scheme based on the computation of the
inverse Burrows-Wheeler transform (BWLA);

the linear algorithm inspired by Phase I of Baier’s algorithm
(BSLA); and

the novel algorithm based on τ−reduction (TRLA).

The performance and empirical analysis of three of the
presented algorithms: IDLA, BSLA, and TRLA, on various
datasets.
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T HANK YOU
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