Algorithms to Compute the Lyndon Array

F. Franek, A.S. M. S. Islam’, M.S. Rahman?, & W. F. Smyth

Algorithms Research Group, Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

1 School of Computational Science & Engineering
McMaster University, Hamilton, Canada

2 Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology

Prague Stringology Conference PSC 2016
August 2016 McMaster

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Outline

0 Motivation

e Basic notions

e Lyndon arrays

e Computing Lyndon array via sorting of suffixes
e Duval revisited

@ Could ranges help?

e Conclusion and future work

McMaster

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Motivation

Motivation

@ In 2015 Bannai et al. presented a method of L-roots to
prove the maximum number of runs conjecture p(n) < n.

@ In simple terms, an L-root of a run is any non-trivial right
cyclic shift of the root of the run that happens to be
Lyndon; of course it begs the question with respect to
which ordering?

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

@ The ingenuity of their approach lies in the fact that either
the order of the alphabet is used, or its inverse, depending
on the “ending” of the run. The order is chosen so that it
makes the L-root a maximal Lyndon factor (subword)
starting at that position.

@ The maximality of L-roots guarantee that two L-roots
cannot start at the same position, hence the set of starting
positions of all L-roots of a run is disjoint from the set of
starting positions of L-roots for any other run.

L&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016
[¢]

@ Thus, all runs are mapped to a partition of the indeces of
the string, hence p(n) < n.

@ Given all maximal Lyndon subwords of a string w.r.t. the
order of the alphabet and all maximal Lyndon subwords of
the string w.r.t. to the inverse order, Bannai et al. showed
that all runs of the string can be computed in linear time.

This is the only algorithm that does not require a prior
Lempel-Ziv factorization of the string.

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

@ The formalization of all maximal Lyndon subwords of a
string x[1..n] is Lyndon array: L[i] = j where j is the length
of the longest Lyndon substring starting at position /, i.e.
x[i..i4+j—1] is a maximal Lyndon substring of x.

Note that equivalently we could have defined the Lyndon
array as \[i] = j where x[i..j| is a maximal Lyndon
substring, i.e. the array stores the end positions of the
maximal Lyndon substrings rather than their lengths.
Trivially, \[i] = i + L[i] — 1.

@ Of course, if computing the Lyndon array were more
expensive than computing the Lempel-Ziv factorization, the
Bannai et al. algorithm would not be that useful. McMasi

#io

Algorithms to Compute the Lyndon Array PSC 2016, August 2016
[¢]

Basic notions

Basic notions

The notion of run: maximal fractional repetition that can be
extended neither to the left nor to the right.

... babaabaabb - - -

N N e/ —— IS arun
“—~———— notarun
N -~ not a run

Moreover the root (the repeating part) must be primitive (not a
repetition)

Run can be fully described by 3 integers: starting position,
ending position, and the period.

p(n) = max{r(x) : |x| = n } where r(x) denotes the # of runs inu Vase
the string x

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

Lyndon words

Definition
A string x is a Lyndon word if x is lexicographically strictly

smaller than any non-trivial rotation of x.
Trivially true when |x| = 1, so-called trivial Lyndon word.

@-

PSC 2016, August 2016

Algorithms to Compute the Lyndon Array

Basic notions

The following are all equivalent:

@ x is a non-trivial Lyndon word
e x[1.n] < x[i.n]forany 1 <i<n
o x[1..]] < x[i+1..njforany 1 <i<n

e thereis 1 < i < nso that x[1../] < x[i+1..n] and both
x[1..i] and x[i+1..n] are Lyndon (standard
factorization when x[i+1..n] is the longest)

€

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

abb is Lyndon (abb bba bab)
aba is not (aba baa aab)

abab is not (none of the rotations is strictly
smallest: abab baba abab baba)

Lyndon = unbordered = aperiodic = primitive

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

e Lyndon words have an application to the description
of free Lie algebras, this was Lyndon’s original
motivation for introducing these words.

e Linear time constant space generation of Lyndon
words provides an efficient method for constructing a
particular de Bruijn sequence in linear time and
logarithmic space.

e Radford’s theorem states that the Lyndon words are
algebraically independent elements of the shuffle
algebra, and generate it.

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

e Lyndon words correspond to aperiodic necklace class
representatives and can thus be counted with
Moreau’s necklace-counting function.

e Given a string s, find its Lyndon rotation. Problem
arises in chemical databases for circular
molecules.The canonical representation is the
lexicographically smallest rotation.

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

Theorem (Chen+Fox+Lyndon, 1958, Lyndon factorization)

For any string x there are unique Lyndon words uy, ..., Uk
so that ui 1 =< Uy and x = Uy Us...Ux .

Duval, 1983, presented an efficient elegant linear time
constant space algorithm to compute Lyndon
factorization.

Each u; is in fact a maximal Lyndon factor.

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Basic notions

Lyndon roots and L-roots

A repetition in a string can be considered a sequence of right
cyclic shifts of its root:

...babbababba. ..
...babbababba. ..
...babbababba. ..
... babbababba. ..
...babbababba. ..
.. babbababba. ..

If the root of the repetition is primitive, one of the shifts is
guaranteed to be Lyndon !

Hence, every run has one or more Lyndon roots ! W

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Lyndon arrays

Lyndon arrays

Lyndon factors:
abbababaaaba

Lyndon array:

311212143211

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Computing Lyndon array via sorting of suffixes

Computing Lyndon array via sorting of suffixes

Lemma (Hohlweg+Reutenauer, 2003)

For any string x = x[1..n], x[i..j] is @ maximal Lyndon factor of x
iff x[j+1..n] < x[i..n].

Definition
Suffix array s[i] of a string x = x[1..n] is an integer array so that
s[i] =j iff x[i..n] is the j-th suffix in the lexicographic ordering.

Suffix array can be computed in linear time!! (Karkkainen+
Sanders, Kim+Sim+Park+Park, Ko+Aluru). Mcas

“

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Computing Lyndon array via sorting of suffixes

Inverse suffix array s~'[j] = i iff s[i] =j.
Can also be computed from the suffix array in linear time.

Thus, s7'[i] < s7'[j] iff x[i..n] < x[j..n].

Lyndon array can be computed in linear time using stack from
the inverse suffix array by NSV (next smallest value) algorithm.

Lyndon array can be computed in linear time

&

Algorithms to Compute the Lyndon Array

Computing Lyndon array via sorting of suffixes

@ A small beauty fault: computing suffix array in linear time is
quite laborious and involved. It is not clear what is
“simpler”: computing the Lempel-Ziv factorization or
sorting the suffixes.

@ Hence: a goal is to find a direct linear time algorithm to
compute Lyndon array bypassing the computation of the
suffix array altogether.

&

Algorithms to Compute the Lyndon Array

Computing Lyndon array via sorting of suffixes

But, is it possible? What if by computing Lyndon array one
actually sorts out the suffixes?

Holub+Islam+Smyth+F. : For a binary alphabet, except a
special case when the Lyndon array is all 1’s, one can
determine in linear time the unique string of which it is the
Lyndon array, i.e. in linear time we can sort the suffixes from
the Lyndon array.

Thus, for binary strings, computing the Lyndon array seems as
hard as sorting suffixes.

This is not true for alphabets of bigger sizes.

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Computing Lyndon array via sorting of suffixes

Mantaci+Restivo+Rosone+Sciortino: sorting suffixes from
Lyndon decomposition.

No complexity given explicitly, but looks like O(n?).

Proposition

Let uy..ux be the Lyndon factorization of x. Then
sort(uq..ux) = merge(sort(uy..ur), sort(Uyyq..Ug)).

Can easily be reformulated in terms of Lyndon array as it gives
more information than just Lyndon factorization.

The real question is whether it can be done in linear time

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016
[¢]

Duval revisited

Duval revisited

@ The elegant linear time in-place algorithm of Duval
originally designed for computing Lyndon decomposition
can easily be adopted for computing Lyndon array.

@ The basic component of Duval’s algorithm relies on the fact
the Lyndon words are aperiodic and it thus identifies the
longest Lyndon subword starting at a given position. For
the decomposition, the next starting position is the position
right after the end of the Lyndon subword just identified.
But we can use it for the next adjacent position, thus
obtaining O(n?) algorithm to compute Lyndon array.

&-o

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Duval revisited

@ The bad thing: the worst time complexity is O(n?)
The good thing: quite simple, fast, in-place algorithm

@ Quite suitable for smaller strings, though the empirical
evidence for larger strings indicates that it is not that fast.

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Could ranges help?

Could ranges help?

We also presented an approach based on ranges. A range in a
string x is a maximal substring x[i..j] so that x[k] < x[k+1] for
any i < k < j. The ranges can be lexicographically compared in
O(]Z]) time if we have a fixed alphabet ¥ and precomputed
Parikh’s vectors of all ranges. The ranges can be
“consolidated” into the Lyndon factors:

abb ababbb ab ab

It can be shown that the consolidation process is at least
O(|X|n log n) and we have reasons to believe that it is in fact
O(|Z|n log n), though we have no proof yet.

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Could ranges help?

What are the pitfalls: it cannot happen for binary strings, but for
strings over larger alphabets, the ranges may degenerate into
single letters, e.g. hfedcb, so in extreme cases working with
ranges would be the same as working with letters. On the other
hand, all such extreme cases are simple for Lyndon factors:

&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

Conclusion and future work

@ We presented two well-known algorithms for an application
they were not originally intended for: computing Lyndon
array.

@ We presented the algorithm that computes the Lyndon
array from the inverse suffix array using NSV and provided
a proof of correctness of NSV.

@ We showed how Duval’s factorization algorithm can be
easily adapted to compute Lyndon array in a very simple
in-place fashion in O(n?) time.

Algorithms to Compute the Lyndon Array PSC 2016, August 2016
[¢]

@ We sketched two variants of computing Lyndon arrays
based on ranges and their consolidation into Lyndon
factors that are most-likely of O(n log n) complexity.

@ We ran some very preliminary experimental tests on
random strings to see the performances of these
algorithms.

€

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

@ We will determine the true complexity of the algorithms
based on ranges and their consolidation.

@ We will analyze the “Farah’s” approach: reduce the input
string, through recursive call obtain Lyndon array of the
reduced string, expand it into a partial Lyndon array for the
input string, compute the missing values.

We already have a very good reduction scheme; the
problem is that the computation of the missing values is at
worst O(n log n), but most likely O(n log n).

L&

Algorithms to Compute the Lyndon Array PSC 2016, August 2016

THANK YOU

Algorithms to Compute the

	Motivation
	Basic notions
	Lyndon arrays
	Computing Lyndon array via sorting of suffixes
	Duval revisited
	Could ranges help?
	Conclusion and future work

