Computing All Approximate Enhanced Covers with the Hamming Distance

Ondřej Guth ondrej.guth@fit.cvut.cz

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

Introduction

- About the Topics
- Preliminaries
 - The Notions
 - Automata

3 The Algorithm

- Basic Idea
- Time and Space Complexity
- Details

4 Conclusions

- Summary
- Future Work

• repetitive structures of strings: periods, squares, covers, seeds, etc.

- repetitive structures of strings: periods, squares, covers, seeds, etc.
 - compact description of a string

- repetitive structures of strings: periods, squares, covers, seeds, etc.
 - compact description of a string
- quite restrictive

- repetitive structures of strings: periods, squares, covers, seeds, etc.
 - compact description of a string
- quite restrictive
- attempts to introduce more relaxed regularities

- repetitive structures of strings: periods, squares, covers, seeds, etc.
 - compact description of a string
- quite restrictive
- attempts to introduce more relaxed regularities
- enhanced covers, approximate enhanced covers

Example

 $\mathbf{x} = aabaaccaabaa$

Definition

A k-approximate enhanced cover \boldsymbol{w} of \boldsymbol{x} is

Example

```
\mathbf{x} = aabaaccaabaa
bord = {a, aa, aabaa}
```

Definition

A k-approximate enhanced cover \boldsymbol{w} of \boldsymbol{x} is

a border of x

Example

x = aabaaccaabaa	k	=	1
$bord = \{a, aa, aabaa\}$	}		

	a	aa	aabaa
covered	N/A	12	10

Definition

- A k-approximate enhanced cover w of x is
 - a border of x
 - Inumber of positions of x that lie within some k-approximate occurrence of w in x under Hamming distance is the maximum among all borders of x

Exam	pl	le

 $\mathbf{x} = aabaaccaabaa \ k = 1$ bord = { $\mathbf{a}, aa, aabaa$ } a aa aabaa covered N/A 12 10

Definition

- A k-approximate enhanced cover \boldsymbol{w} of \boldsymbol{x} is
 - a border of x
 - Inumber of positions of x that lie within some k-approximate occurrence of w in x under Hamming distance is the maximum among all borders of x

Nondeterministic

Deterministic

Nondeterministic

Nondeterministic Hamming k = 1

Nondeterministic Hamming k = 2

Nondeterministic Hamming k = 1

Deterministic, Hamming k = 1

Backbone, Hamming k = 1

Backbone multiple front end, Hamming k = 1

Outline of the algorithm

Construct nondeterministic k-approximate suffix automaton

Outline of the algorithm

- Onstruct nondeterministic k-approximate suffix automaton
- Onstruct backbone using subset construction

Outline of the algorithm

- Construct nondeterministic k-approximate suffix automaton
- ② Construct backbone using subset construction
- Solution For each appropriate state, count covered positions and remember

- Space complexity: $\mathcal{O}(n)$
- Time complexity: $\mathcal{O}(n^2)$

Construction of the backbone

Backbone only

Just backbone is constructed, nothing else is needed

Construction of the backbone

Construction of the backbone

Nondeterministic automaton is not needed

Construction of the first backbone state:

```
q_1 is a state;
for i \in 1..|\mathbf{x}| do
    e is a d-subset element such that depth(e) \leftarrow i;
    if x[1] = x[i] then
        level(e) \leftarrow 0;
        append e to q_1
    else if k > 0 then
        level(e) \leftarrow 1;
        append e to q_1
    end
```

end

Construction of the backbone

Construction of the backbone

Nondeterministic automaton is not needed

Construction of a next backbone state:

```
for i \in 2..|\mathbf{x}| do
     for e_p \in q_p do
          if depth(e_p) < |\mathbf{x}| then
               e<sub>n</sub> is new d-subset element;
               depth(e_p) \leftarrow depth(e_p) + 1;
               if x[i] = x[depth(e_n)] then
                  level(e_n) \leftarrow level(e_p);
                  append e_n to q_n;
               else if |eve|(e_p) < k then
                   \operatorname{level}(e_n) \leftarrow \operatorname{level}(e_p) + 1;
                   append e_n to q_n;
               end
          end
     end
end
```

.

Construction of the backbone

Nondeterministic automaton is not needed

Construction of the backbone

Nondeterministic automaton is not needed

Construction of the backbone

Nondeterministic automaton is not needed

Construction of the backbone

Removal of states

• new type of string regularity under Hamming distance

- new type of string regularity under Hamming distance
- algorithm to find all k-approximate enhanced covers of a given string

- new type of string regularity under Hamming distance
- algorithm to find all k-approximate enhanced covers of a given string
 - based on finite automata

- new type of string regularity under Hamming distance
- algorithm to find all k-approximate enhanced covers of a given string
 - based on finite automata
 - $\mathcal{O}(n)$ space and $\mathcal{O}(n^2)$ time

• reduce time complexity

- reduce time complexity
- variants of the problem

- reduce time complexity
- variants of the problem
- k-approximate enhanced cover array