
Forced repetitions over alphabet lists

Neerja Mhaskar and Michael Soltys

PSC 2016

August 31, 2016

Forced - Mhaskar & Soltys PSC 2016 Title - 1/19

Thank you Franya Franek for presenting for us at PSC2015

Logical foundations of String Algorithms — a formalization

Forced - Mhaskar & Soltys PSC 2016 Title - 2/19

Summary

I Thue’s 1906 problem: construct word of arbitrary length over
a ternary alphabet without repetitions.

I Grytczuk in 2010 asked if the same holds true over an
alphabet list. Showed the answer is “yes” over alphabet lists
where each alphabet has at least 4 symbols.

I Problem still open for alphabet lists with 3 symbols per
alphabet. We show lots of partial results.

Forced - Mhaskar & Soltys PSC 2016 Summary - 3/19

Thue’s problem and solution

Σ3 = {1, 2, 3}

morphism:

S =


1 7→ 12312

2 7→ 131232

3 7→ 1323132

(1)

Given a string w ∈ Σ∗
3, we let S(w) denote w with every symbol

replaced by its corresponding substitution:
S(w) = S(w1w2 . . .wn) = S(w1)S(w2) . . . S(wn).

Forced - Mhaskar & Soltys PSC 2016 Thue’s problem - 4/19

Grytczuk’s problem

Let:
L = L1, L2, . . . , Ln ,

be an ordered list of (finite) alphabets.

We say that w is a string over the list L if w = w1w2 . . .wn where
for all i , wi ∈ Li .

We impose no conditions on the Li ’s: they may be equal, disjoint,
or have elements in common.

The only condition on w is that the i-th symbol of w must be
selected from the i-th alphabet, i.e., wi ∈ Li .

Forced - Mhaskar & Soltys PSC 2016 Grytczuk results - 5/19

If |Li | ≥ 4, then no matter what the list is, there is always a
squre-free string over such a list.

This can be shown with a probabilistic algorithm:

in its i -th iteration, it selects randomly a symbol from Li ,
and continues if the string created thus far is square-free,
and otherwise deletes the suffix consisting of the right
side of the square it just created, and restarts from the
appropriate position.

Forced - Mhaskar & Soltys PSC 2016 Grytczuk results - 6/19

Grytczuk proves by a simple counting argument that with positive
probability the length of a constructed sequence exceeds any finite
bound, provided the number of symbols is at least 4.

⇒ This implies the existence of arbitrarily long square-free strings.

Note that this argument is non-constructive (or rather, it yields an
exponential time procedure).

Thus it is a weaker result than the method employed in Thue’s
original problem.

This approach relies on Moser’s algorithmic proof of Lovász Local
Lemma: the entropy compression argument.

Forced - Mhaskar & Soltys PSC 2016 Grytczuk results - 7/19

Open Problem 1:

Is there a polytime procedure for computing a square-free string
from a given list of lenght n?

Forced - Mhaskar & Soltys PSC 2016 Grytczuk results - 8/19

List of 3 symbol alphabets

L = L1, L2, . . . , Ln, where |Li | = 3.

We can prove it for restricted types of such lists:

I L has an SDR (System of Distinct Representatives)

I L has the union property

I L has a consistent mapping (testing for one is NP-hard)

I L is a partition

Forced - Mhaskar & Soltys PSC 2016 Our results - 9/19

Offending suffix pattern

Let C(n), an offending suffix, be a pattern defined recursively:

C(1) = X1a1X1, and for n > 1,

C(n) = XnC(n − 1)anXnC(n − 1).

Zimin words . . . !

Forced - Mhaskar & Soltys PSC 2016 Our results - 10/19

We are interested in:

C(3) = X3X2X1a1X1a2X2X1a1X1a3X3X2X1a1X1a2X2X1a1X1,

Cs(3) = a1a2a1a3a1a2a1,

and observe that Cs(3)ai , for i = 1, 2, 3, all map to strings with
squares.

Forced - Mhaskar & Soltys PSC 2016 Our results - 11/19

Result

If w is a square-free string over L = L1, L2, . . . , Ln−1, then
Ln = {a, b, c} forces a square iff w has suffix C(3).

The proof of this result is most of the PSC2016 paper.

⇐ direction is trivial

Forced - Mhaskar & Soltys PSC 2016 Our results - 12/19

⇒ As all three squares tata,ubub, vcvc are suffixes of the string
w, it follows that t,u, v must be of different sizes, and so we can
order them without loss of generality as follows:
|tat| < |ubu| < |vcv|.

We now consider different cases of the overlap of tat,ubu, vcv,
showing in each case that the resulting string has a suffix
conforming to the pattern C(3).

Forced - Mhaskar & Soltys PSC 2016 Our results - 13/19

For instance:

v = pubu, where p is a proper non-empty prefix of v.

Since w is square-free, we assume that pubu has no square, and
therefore p 6= u and p 6= b.

From this, we get vcv = pubucpubu. Therefore, this case is
possible.

ubup

v c v

Forced - Mhaskar & Soltys PSC 2016 Our results - 14/19

Open Problem 2:

Show that for any L = L1, L2, . . . , Ln, where |Li | = 3, there always
exists a square-free w over L.

Problem: very difficult to run meaningful simulations, as the
number of cases jumps up very quickly.

Hope: can we use our offending suffix characterization to do a
counting argument?

Forced - Mhaskar & Soltys PSC 2016 Conclusion - 15/19

Open Problem 3:

Map L =
⋃

i Li 7→ [n] where n = |
⋃

i Li |.

Let ML = (mij) where mij = 1 ⇐⇒ j ∈ Li .

So each row if ML will have 3 1s.

Problem: given any such matrix, can we select a single 1 from
each row in such a way that there are no 2k consecutive rows,
where the initial k rows equal the next k rows.

How to run these simulations for n > 10?

Forced - Mhaskar & Soltys PSC 2016 0-1 Matrices - 16/19

Crossing sequences

A clever technique in complexity to show:

I Palindromes require Θ(n2) steps on a single tape Turing
machine.

I If a language requires less then o(log log n) memory to be
decided it is in fact regular: “miniscule memory = no
memory.”

We use this to show that we can always avoid very large
repetitions (1/c, c ∈ N) over any list.

Forced - Mhaskar & Soltys PSC 2016 Crossing - 17/19

Perl

Truly sophisticated text manipulation libraries.

CGI.pm is a Perl module for CGI web applications — the workhorse
of the Internet.

The text processing is done with state of the art algorithms from
. . . 1970s

The advances in String Algorithms should be reflected in popular
implementations.

Forced - Mhaskar & Soltys PSC 2016 Conclusion - 18/19

Please visit:

http://soltys.cs.csuci.edu

and/or email us to discuss this further:

michael.soltys@csuci.edu

pophlin@mcmaster.ca

Forced - Mhaskar & Soltys PSC 2016 Conclusion - 19/19

http://soltys.cs.csuci.edu
mailto:michael.soltys@csuci.edu
mailto:pophlin@mcmaster.ca

	Title
	Summary
	Thue's problem
	Grytczuk results
	Our results
	Conclusion
	0-1 Matrices
	Crossing
	Conclusion

