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Thank you Franya Franek for presenting for us at PSC2015

Logical foundations of String Algorithms — a formalization
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Summary

» Thue's 1906 problem: construct word of arbitrary length over
a ternary alphabet without repetitions.

» Grytczuk in 2010 asked if the same holds true over an
alphabet list. Showed the answer is “yes" over alphabet lists
where each alphabet has at least 4 symbols.

» Problem still open for alphabet lists with 3 symbols per
alphabet. We show lots of partial results.
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Thue’s problem and solution

Y3 =1{1,2,3}

morphism:

1+ 12312
§=<2 131232 (1)
3 1323132

Given a string w € X3, we let S(w) denote w with every symbol
replaced by its corresponding substitution:
S(w)=S(wiwa...wy) = S(wi)S(wa)...S(wp).
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Grytczuk’s problem

Let:
L=1Ly, Ly, ..., L,,

be an ordered list of (finite) alphabets.

We say that w is a string over the list L if w = wyws ... w, where
for all i, w; € L;.

We impose no conditions on the L;'s: they may be equal, disjoint,
or have elements in common.

The only condition on w is that the /-th symbol of w must be
selected from the i-th alphabet, i.e., w; € L;.
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If |L;] > 4, then no matter what the list is, there is always a
squre-free string over such a list.

This can be shown with a probabilistic algorithm:

in its i-th iteration, it selects randomly a symbol from L;,
and continues if the string created thus far is square-free,
and otherwise deletes the suffix consisting of the right
side of the square it just created, and restarts from the
appropriate position.
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Grytczuk proves by a simple counting argument that with positive
probability the length of a constructed sequence exceeds any finite
bound, provided the number of symbols is at least 4.

= This implies the existence of arbitrarily long square-free strings.

Note that this argument is non-constructive (or rather, it yields an
exponential time procedure).

Thus it is a weaker result than the method employed in Thue's
original problem.

This approach relies on Moser’s algorithmic proof of Lovasz Local
Lemma: the entropy compression argument.
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Open Problem 1:

Is there a polytime procedure for computing a square-free string
from a given list of lenght n?
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List of 3 symbol alphabets

L= Ll, L2, ey Ln, where ‘L,‘ =3.

We can prove it for restricted types of such lists:
» L has an SDR (System of Distinct Representatives)
> L has the union property

» L has a consistent mapping (testing for one is NP-hard)

» L is a partition
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Offending suffix pattern

Let C(n), an offending suffix, be a pattern defined recursively:

C(1) = X1a1X1, and for n > 1,
C(n) = XnC(n — 1)anXnC(n — 1).

Zimin words ... !
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We are interested in:

C(3) = X3XoX a1 X1a2Xo X1 a1 X1a3X3X2X a1 X1 a: X0 X121 X1,

65(3) — di1d2diasdiaqlai,

and observe that Cs(3)a;, for i = 1,2,3, all map to strings with
squares.
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Result

If wis a square-free string over L = L1, Lo,...,L,_1, then
L, ={a, b, c} forces a square iff w has suffix C(3).

The proof of this result is most of the PSC2016 paper.

<= direction is trivial
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= As all three squares tata, ubub, vcvc are suffixes of the string
w, it follows that t,u, v must be of different sizes, and so we can
order them without loss of generality as follows:

[tat| < |ubu| < |vcv|.

We now consider different cases of the overlap of tat,ubu, vcv,
showing in each case that the resulting string has a suffix
conforming to the pattern C(3).
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For instance:
v = pubu, where p is a proper non-empty prefix of v.

Since w is square-free, we assume that pubu has no square, and
therefore p # u and p # b.

From this, we get vcv = pubucpubu. Therefore, this case is
possible.
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Open Problem 2:

Show that for any L = Ly, Ly, ..., L,, where |L;| = 3, there always
exists a square-free w over L.

Problem: very difficult to run meaningful simulations, as the
number of cases jumps up very quickly.

Hope: can we use our offending suffix characterization to do a
counting argument?
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Open Problem 3:

Map L = J; Lj — [n] where n = |{J; Li|.
Let My = (mj;) where mjj =1 < j € L;.
So each row if M; will have 3 1s.

Problem: given any such matrix, can we select a single 1 from
each row in such a way that there are no 2k consecutive rows,
where the initial k rows equal the next k rows.

How to run these simulations for n > 107

Forced - Mhaskar & Soltys PSC 2016 0-1 Matrices - 16/19



Crossing sequences

A clever technique in complexity to show:

» Palindromes require @(nz) steps on a single tape Turing
machine.

» If a language requires less then o(log log n) memory to be
decided it is in fact regular: “miniscule memory = no
memory.”

We use this to show that we can always avoid very large
repetitions (1/c, ¢ € N) over any list.

Forced - Mhaskar & Soltys PSC 2016 Crossing - 17/19



Perl

Truly sophisticated text manipulation libraries.

CGI.pm is a Perl module for CGI web applications — the workhorse
of the Internet.

The text processing is done with state of the art algorithms from
... 1970s

The advances in String Algorithms should be reflected in popular
implementations.
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Please visit:
http://soltys.cs.csuci.edu
and/or email us to discuss this further:
michael.soltys@csuci.edu

pophlin@mcmaster.ca
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