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String Comparison
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String Pattern Matching
 Find the matches of a pattern P[1..m] within a 

string T[1..n].
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Software Maintenance Application
 Programmers introduce duplicate code in large 

software systems when they introduce new features 
or fix bugs.

 They copy and slightly modify the code to avoid the 
introduction of new bugs.

 The code can be seen as a sequence of tokens.

 Duplicate code can have tokens that remains the 
same and tokens that systematically change.
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Finding duplicate code
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 Baker developed interest in solving this problem.

Figure: [Baker, 1992]



Importance of the problem
 Code gets larger, more complex and more difficult 

to maintain.

 Fixing a new issue in one of the copies does not fix 
it in the other (unmonitored) copies.

 Experiments show that 22% of code may be 
duplicate [Baker, 1992].

 Finding such code can help using better 
programming techniques to eliminate duplication.
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• Software Maintenance Application

• Definition of Parameterized-Match (p-match)
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Then, Baker defined…
 Constant Alphabet (∑)

 Paramater Alphabet (∏)

 Parameterized-strings: defined over (∑⋃ ∏)
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Parameterized-match (p-match)
 P-strings X[1..m] and Y[1..m] are a p-match if one can 

be mapped into the other through a bijection such
that the mapping is identity for the symbols in ∑.
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Parameterized-match (p-match)
 There are | ∏ |! possible bijections which makes

parameterized matching an interesting
combinatorial problem.
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Similarity in structure
 Two p-strings that p-match…

 … have the same number of distinct symbols.

 … the occurrences of each distinct symbol take place in 
corresponding positions.
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• Maximal p-matches over a Threshold Length

• Parameterized Pattern Matching

• Parameterized Fixed Multiple Pattern Matching

• Parameterized Dynamic Dictionary Matching
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Basic Problems
 Maximal p-matches over a threshold length:

 Input:  T, k

 Output: pairs (u,v) of maximal parameterized
matching substrings such that |u| ≥ k.

 Complexity: O(n+occ) [Baker, 1997]
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Basic Problems
 Parameterized Fixed Pattern Matching:

 Input: T[1..n], P[1..m]

 Output: substrings in T that parameterized-match P

 Complexity: O(n log min (m,|∏|)) [Amir, 1994]
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Basic Problems
 Parameterized Fixed Multiple Pattern Matching:

 Input: T[1..n], set of d patterns Pi

 Output: substrings in T that parameterized-match any Pi

 Complexity: O(n log |Σ|+occ) [Idury, 1996] 23

TP1

P2

Pd

…

TP1

P2

Pd

…

u v



Basic Problems
 Parameterized Dynamic Dictionary Matching:

 The same as Parameterized Fixed Pattern Matching, but
new patterns can be inserted or removed from the set.

 Complexity: O((n+occ)(log |Σ|+log d)) [Idury, 1996].

 Literature on parameterized matching includes solutions
for all of these problems, as presented in next section.

24



Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

25



Baker’s theory
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DUP Algorithm
 Proposed by [Baker, 1992].

 To find maximal p-matches over a threshold length.

 It works as follows:

 Converts the parameters in a single symbol.

 Looks for exact matches using a suffix tree.

 Determines which of such matches are p-matches.

 Experimental results show that just few exact matches
are p-matches.
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Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a 
mismatch is found.
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Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a 
mismatch is found.

 Time Complexity: O(m).

 Space Complexity: O(|∏|).
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Procedure prev
 Proposed by [Baker, 1997].

 Array encoding of a p-string X[1..m] where:

 Every symbol in ∑ remains the same.

 The first occurrence of each parameter becomes 0.

 The other occurrences of each parameter becomes the
distance to its previous occurrence (parameter pointers).

 It focuses on the string structure.
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Procedure prev
 Then, X and Y are a p-match iff prev(X) = prev(Y):
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Complexity of Computing prev
 Time complexity: O(m). 

 Space complexity: O(|∏|).

 String comparison using prev: O(m).
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Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

 Specifically,

 Essentially, this means that a parameter pointer 
becomes zero when it points outside of the substring.
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Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).
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Parameterized-suffix (p-suffix)
 P-suffixes were also introduced by [Baker, 1997].

 i-th p-suffix of X[1..m]: prev(X[i..m]).

 Parameterized-suffix tree (p-suffix tree): compacted
trie that stores all the p-suffixes of a p-string.

 Used as an aid to solve the parameterized pattern
matching problem.
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p-suffixes
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 prev(T)= 0b014b2
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i p-substring p-suffix

1 xbyyxbx 0b014b2

2 byyxbx b010b2

3 yyxbx 010b2

4 yxbx 00b2

5 bx 0b2

6 bx b0

7 x 0



p-suffix Tree
 ∑={b}, ∏={x,y}

 T=xbyyxbx
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p-suffix Tree Construction
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Algorithm Time Complexity

[Baker, 1997] : Lazy O(n|∏| log (|∑|+|∏|))

[Baker, 1993]: Eager O(n(|∏|+ log (|∑|+|∏|)))

[Kosaraju, 1995] O(n log (|∑|+|∏|))

[Lee, 2011] Randomized O(n)
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Pattern Matching
 Key idea: if there is a p-match, prev(P) exactly

matches the first part of a p-suffix of T.

 Algorithm:

 Construct a p-suffix tree of T.

 Calculate prev(P).

 Follow the path established by prev(P).

 The leaves under the path indicate the matching positions.

 Complexity (fixed alphabets): 

 Time: O(m+occ), Space: O(n) 
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Pattern Matching
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 P=bxxyb

 prev(P) =b010b

57Figure: [Baker, 1997]
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Pattern Matching
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 P=bxxyb

 prev(P) =b010b
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Maximal p-matches
 DUP was generalized to pDUP [Baker, 1997].

 Instead of a suffix tree, it uses a p-suffix tree.

 It augments the p-suffix tree with lists that provide
useful information to determine left-extensibility.

 Complexity: O(n+occ) even for variable alphabets.
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Parameterized Suffix Arrays
 Improve memory usage and access locality.

 Defined with respect to p-suffix trees in an analogous
manner as suffix arrays are defined to suffix trees
[Deguchi, 2008].

 P-suffix arrays and p-LCP (parameterized longest
common prefix) can simulate the operation of p-
suffix trees.

 Pattern matching can be solved with a binary search
in O(m+log n+occ).
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Construction of p-suffix Arrays
 Algorithms to construct a p-suffix array without

constructing its corresponding p-suffix tree.

 [Deguchi, 2008] for binary alphabets. 

 [I, 2009] for non-binary alphabets.
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p-suffix Sorting
 Problem of lexicographically sorting the p-suffixes of 

a p-string.

 The dynamic nature of p-strings becomes a challenge.

 p-suffix sorting has been considered:

 [I, 2009]: 

 O(n3) based on QuickSort

 O(n2) based on Raddix Sort.

 [Beal, 2012]: uses fingerprints and arithmetic codes. Worst
case: o(n2); expected time: O(n).
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Other Insights on the Problem
 [Amir, 1994] defined an associated paradigm: 

mapped matching (where ∑ is empty).

 Notice that when ∏ is empty, parameterized
matching is equivalent to exact pattern matching.

 Based on a reduction to the element distinctness
problem, they proved that log min(m,| ∏ |)) is
inherent to any parameterized matching algorithm.
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Parameterized KMP
 [Amir, 1994] also proposed a parameterized

version of the KMP algorithm: p-KMP.

 It runs in O(n log min(m,|∏|)).

 It is the first optimal algorithm.
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Parameterized Boyer-Moore
 Later, [Baker, 1995] explored the generalization of 

Boyer-Moore algorithm to parameterized matching, 
but its worst-case performance was poor.

 Then, she generalized one of its variants: TurboBM.

 The resulting algorithm takes 

 Searching phase: O(n log min(m,|∏|)) so it’s optimal. 

 Preprocessing phase: O(m log min(m,|∏|))

 Space complexity: O(n)

 Better for long patterns.
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Parameterized Aho-Corasick
 [Idury, 1996] proposed multiple parameterized 

matching.

 They proposed an adaptation of the Aho Corasick
algorithm that runs in O(n log (|∑|+|∏|)+occ).

 A dynamic dictionary of patterns was also considered:

 Searching for patterns: O((n+occ)(log (|∑|+|∏|)+log d))

 Inserting a pattern: O(m log (|∑|+|∏|)+log2 d))

 Deleting a pattern: O(m log (|∑|+|∏|)+log d))
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Parameterized border arrays
 Parameterized version of traditional border arrays.

 The p-AhoCorasick algorithm led to their definition:

 pgoto, pfail are the parameterized counterparts of goto
and fail in traditional AhoCorasick.

 When there is a single pattern, pfail can be implemented 
as a p-border array.

 It can be computed in linear time [Idury, 1996].
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Parameterized border arrays
 For binary alphabets [I, 2009a] proposed algorithms to:

 Validate if an integer array is a valid p-border array. 
Complexity: O(n).

 Compute all the p-strings that share the same p-border 
array. Complexity: O(n).

 Compute all the border arrays shorter than a threshold 
length. Complexity: linear in the output reported.
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Parameterized border arrays
 For unbounded alphabets, [I, 2009a] proposed an 

algorithm to verify if an integer array is valid p-border 
array. Time: O(n1.5). Space: O(n).

 Furthermore, they showed that the enumeration of all p-
border arrays shorter than a threshold length can be done 
in O(Bnn2.5).
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p-Shift-OR
 [Fredriksson, 2006] makes use of Baker’s theory to 

propose to algorithms: p-ShiftOR and PBTM.

 p-ShiftOR is a generalization of ShiftOR to p-strings.

 Time complexity: 

 Worst case: O(n⌈m/w⌉)

 Average case: O(n).
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Parameterized Backward Trie
Matching (PBTM)
 It is based on the Backward DAWG Matching (BDM) 

Algorithm and makes use of tries.

 Its average time complexity is O(n log (m)/m).

 A variation that uses arrays instead of tries was also 
consider by [Fredriksson, 2006]; such variation is 
calles PBAM.
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Average Case Analysis
 P-ShiftOR and PBTM were the first parameterized 

matching algorithms for which the average-case 
analysis was made.

 An algorithm that has sublinear average-case expected 
time was proposed by [Salmela, 2006]. It is based on 
Boyer-Moore.
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Some properties
 Relation with palindromes: Two strings drawn

from an alphabet of size 3 have the same set of 
maximal palindromes iff they are a p-match [I, 2010].

 Periodicity and repetitions: [Apostolico, 2008]

 For binary alphabets, p-strings and strings behave in a 
similar manner.

 For non-binary alphabets, there are significant differences
between p-strings and strings.
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Two dimensional p-matching
 Find all the 2-dimensional p-matches:
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Two-dimensional p-matching
 Deterministic solutions:

 O(n2+m2.5 polylog m) by [Hazay, 2004].

 O(n2 log 2 m) by [Amir, 2003].

 Randomized Algorithm

 O(n2 log n) by [Amir, 2003] with error probability of 1/nk

(where k is a constant).
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P-Edit distance

P-matching under the hamming distance

δγ-Parameterized Matching

Longest Common Parameterized Subsequence
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Parameterized edit distance
 P-edit distance: cost of a minimal script that

transforms one p-strings into the other.

 Valid operations:

 Insertions

 Deletions

 Parameterized replacements (replacement of a p-string
with a p-string that matches it).

 O(D(n+m))-time algorithms proposed by [Baker, 1999].

 Calculating the p-edit distance D.

 Reporting the minimal p-edit script.
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P-matching under the hamming
distance
 For a given mapping g between to equal-length p-

strings X and Y, the g-match is the number of
matches between X[i] and g(Y[i]), for all i.
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P-matching under the hamming
distance
 Approximate Parameterized Matching: Find the

maximal g-match between two equal-length p-strings.

 Parameterized searching under the hamming
distance: For every length-m text window in the text
find the maximal g-match.

 An algorithm for a run-length encoded pattern and 
text, where one of them is a binary p-string, was
proposed by [Apostolico, 2007].
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P-matching under the hamming
distance
 Parameterized matching with k mismatches: 

Find all the text windows in the text that p-match the
pattern with at most k mismatches.

 Algorithms proposed by [Hazay, 2007]:
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Case Time Complexity

String comparison O(m+k1.5)

Pattern matching O(nk1.5+mk log m)

2-Dimensional O(n2mk1.5+m2k log m)



δγ-Parameterized Matching
 In traditional integer strings, X[1..m] and Y[1..m]...

 … δ-match iff maxi |X[i]-Y[i]| ≤ δ.

 … γ-match iff ∑i |X[i]-Y[i]| ≤ γ.

 For example, the following strings δγ–match for δ=2 
and γ=7:
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δγ-Parameterized Matching

91

 Integer p-strings X[1..m] and Y[1..m] δγ–parameterized
match iff X can be transformed into X’ via a bijection g
such that X’ δγ–matches Y.

 Example:

 δ=2

 γ=5



δγ-Parameterized Matching
 A O(nm) algorithm t0 find all the δγ–

parameterized matches of a pattern in a text was
proposed by [Mendivelso, 2010]. 

 It is based on a reduction to the Maximum Weight
Perfect Matching problem in bipartite graphs.
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Longest Common Parameterized
Subsequence (LCPS)
 Given X[1..n] and Y[1..m], find a subsequence I of X

and a subsequence J of Y of maximum length such
that I and J are a p-match.

 It’s an NP-Hard problem.

 An approximate solution was proposed by [Keller, 
2009].
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Parameterized Longest Previous
Factor (p-LPF)
 For a p-string of, the p-LPF is calculated for each p-

suffix starting at position i as the longest factor 
between such p-suffix and a p-suffix starting before.

 Used to study duplication and compression in p-
strings.

 [Beal, 2012] proposed an expected linear time 
algorithm to compute the p-LPF, LPF, p-LCP, LCP.
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Variants of the p-LPF
 [Beal, 2012a] proposed a taxonomy of classes of LPF 

problems that show the relation between p-LPF and 
traditional data structures.

 It is shown that p-LCP can be used to linearly construct
the p-border array and the border array.

 The concept of permuted LCP is extended to p-strings.

96



Variants of the p-LPF
 [Beal,2012a] defined:

 Parameterized Longest not-equal Factor (p-LneF)

 Parameterized Longest reverse Factor (p-LrF)

 Parameterized Longest Factor (p-LF)

 These structures can be calculated with the same
framework of p-LPF by changing preprocessing and 
postprocessing.

 They have applications in clone detection, periodicity
study and biological sequence compression.
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Structural Matching (s-matching)
 [Shibuya, 2004] defined it as parameterized matching

but taking into account an injective complementary
relation among a subset of the parameters.

 Additional constrain in the matching: if parameter x
is mapped to parameter y, then the complement of x
must be mapped to the complement of y.

 This is motivated by the application of RNA 
matching:

 Adenine – Uracil

 Cytosine – Guanine
99



Structural Suffix Trees
 Then, two s-strings that s-match have similar 

structures and, hence, similar functions.

 [Shibuya, 2004] proposed a solution based on
structural suffix trees.

 He also proposed an O(n(log|∑|+log|∏|)) online 
algorithm to construct a s-suffix tree.

 It is linear for RNA/DNA sequences. 
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Structural Suffix Arrays
 For better space utilization, [Beal, 2013 and 2015] 

defined:

 S-suffix array

 S-LCP

 S-border array
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Function Matching
 Two equal-length strings function-match if one can 

be transformed into the other by means of a function.

 In pattern matching, many symbols in the pattern can 
be mapped to the same symbol in the text window.

 Solutions by [Amir, 2003]:

 Deterministic Solution: O(n|∏| log m)

 Monte Carlo Algorithm: O(n log m) with 1/nk failure
probability. 



103



Function Matching Extensions
 2-dimensional Funcion Matching: A O(kn2 log n)

randomized algorithm was proposed [Amir, 2003].

 δγ-Function Matching: 

 X[1..m] and Y[1..m] strings match if X can be transformed
into X’ by means of a function g such that X’ δγ-matches Y.

 A O(nm) algorithm was proposed by [Mendivelso, 2012].  
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Generalized Function Matching
with Don’t Cares
 The image of the mapping function any substring in 

(∑⋃ ∏)*.

 The don’t care symbol φ can be present in strings. It
matches:

 Any substring in the text if it is in the pattern.

 Any symbol in the pattern if it is in the text.
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Generalized Function Matching
with Don’t Cares
 A polynomial-time algorithm for finite alphabets

was devised [Amir, 2007].

 It was shown that for infinite alphabets, the
problem is NP-Hard.

 It is the first problem for which there is a 
polynomial solutions for finite alphabets but not
for infinite alphabets.
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Image Processing
 The problem of searching an icon in the screen

[Hazay, 2007].

 It can be solved with:

 Exact matching

 Parameterized matching

 Approximate parameterized matching
(hamming, p-edit, δγ distance)

 Function matching
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Databases
 In a database of URL’s, parameterized queries can be

used to improve the ergonomy of the site and 
finding the best places for advertisement ads.

 In computational biology, it can be used to find
amino acid strings that follow a determined
structure.
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Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?
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Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
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Graph Linearization
 It represents the structure of a graph in a linear manner.

 Specifically, our linearization is a walk on the graph that
contains all its nodes and edges at least once.

 Then, we evaluate graph isomorphism by comparing
walks rather than graphs.
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How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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The parameters
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How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.
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How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.
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How to use our linearizations to
match graphs?
 But what if we had calculated the following q?

 We need to check all the possible linearizations q.
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How to use our linearizations to
match graphs?
 But there may be Ω(max(n!,m!)) linearizations of a graph.
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Proposed Solution
 [Mendivelso, 2013] proposed a solution to determine 

if G1=(V1, E1) and G2=(V2, E2) are isomorphic. It
consists of two steps:

1. Calculating a linearization p of G1.

2. Determining whether there exists a walk q in G2
that parameterized-matches p.
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Proposed Solution
 The total time complexity is: 

O(dm log d + ndℓ/2) = O(ndℓ/2)

 Experimental results show that this solution is
efficient especially for Miyazaki graphs which
constitute a hard case for graph isomorphism
algorithms [Mendivelso, 2015].
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Conclusions
 Parameterized matching allows to find strings with 

similar structure.

 It has important applications in different areas such as 
software maintenance, image processing, computational 
biology, to name some.

 There has been extensive research for the last decades.

 New insights include the definition of new data 
structures, the extension to RNA matching and its 
application to solve graph isomorphism.
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Any questions?
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