
Parameterized Matching:
Solutions & Extensions

Juan Mendivelso1 & Yoan Pinzón2

1 Fundación Universitaria Konrad Lorenz
2 Universidad Nacional de Colombia

Prague Stringology Conference
2015

P

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

2

3

String Comparison

4

a b a c a b a c a

a b a c a b a c a

 X[1..m] and Y[1..m] match if X[i] = Y[i] for all i.

X

Y

String Pattern Matching
 Find the matches of a pattern P[1..m] within a

string T[1..n].

5

a b a c a b a c a b

c a b

T

P

String Pattern Matching
 Find the matches of a pattern P[1..m] within a

string T[1..n].

6

a b a c a b a c a b

c a b

T

P

String Pattern Matching
 Find the matches of a pattern P[1..m] within a

string T[1..n].

7

a b a c a b a c a b

c a b

T

P

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

8

• Software Maintenance Application

• Definition of Parameterized-Match (p-match)

9

• Software Maintenance Application

• Definition of Parameterized-Match (p-match)

10

Software Maintenance Application
 Programmers introduce duplicate code in large

software systems when they introduce new features
or fix bugs.

 They copy and slightly modify the code to avoid the
introduction of new bugs.

 The code can be seen as a sequence of tokens.

 Duplicate code can have tokens that remains the
same and tokens that systematically change.

11

Finding duplicate code

12

 Baker developed interest in solving this problem.

Figure: [Baker, 1992]

Importance of the problem
 Code gets larger, more complex and more difficult

to maintain.

 Fixing a new issue in one of the copies does not fix
it in the other (unmonitored) copies.

 Experiments show that 22% of code may be
duplicate [Baker, 1992].

 Finding such code can help using better
programming techniques to eliminate duplication.

13

• Software Maintenance Application

• Definition of Parameterized-Match (p-match)

14

Then, Baker defined…
 Constant Alphabet (∑)

 Paramater Alphabet (∏)

 Parameterized-strings: defined over (∑⋃ ∏)

15

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

Parameterized-match (p-match)
 P-strings X[1..m] and Y[1..m] are a p-match if one can

be mapped into the other through a bijection such
that the mapping is identity for the symbols in ∑.

16

Parameterized-match (p-match)
 There are | ∏ |! possible bijections which makes

parameterized matching an interesting
combinatorial problem.

17

Similarity in structure
 Two p-strings that p-match…

 … have the same number of distinct symbols.

 … the occurrences of each distinct symbol take place in
corresponding positions.

18

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

19

• Maximal p-matches over a Threshold Length

• Parameterized Pattern Matching

• Parameterized Fixed Multiple Pattern Matching

• Parameterized Dynamic Dictionary Matching

20

Basic Problems
 Maximal p-matches over a threshold length:

 Input: T, k

 Output: pairs (u,v) of maximal parameterized
matching substrings such that |u| ≥ k.

 Complexity: O(n+occ) [Baker, 1997]

21

T

u v T

Basic Problems
 Parameterized Fixed Pattern Matching:

 Input: T[1..n], P[1..m]

 Output: substrings in T that parameterized-match P

 Complexity: O(n log min (m,|∏|)) [Amir, 1994]

22

TP

TP u v

gj

gi

Basic Problems
 Parameterized Fixed Multiple Pattern Matching:

 Input: T[1..n], set of d patterns Pi

 Output: substrings in T that parameterized-match any Pi

 Complexity: O(n log |Σ|+occ) [Idury, 1996] 23

TP1

P2

Pd

…

TP1

P2

Pd

…

u v

Basic Problems
 Parameterized Dynamic Dictionary Matching:

 The same as Parameterized Fixed Pattern Matching, but
new patterns can be inserted or removed from the set.

 Complexity: O((n+occ)(log |Σ|+log d)) [Idury, 1996].

 Literature on parameterized matching includes solutions
for all of these problems, as presented in next section.

24

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

25

Baker’s theory

Generalization of Exact Matching Algorithms

26

Baker’s theory

Generalization of Exact Matching Algorithms

27

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

28

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

29

DUP Algorithm
 Proposed by [Baker, 1992].

 To find maximal p-matches over a threshold length.

 It works as follows:

 Converts the parameters in a single symbol.

 Looks for exact matches using a suffix tree.

 Determines which of such matches are p-matches.

 Experimental results show that just few exact matches
are p-matches.

30

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

31

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

32

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

33

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

x z

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

34

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

x z

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

35

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

x z

y x

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

36

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

x z

y x

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

37

x b y y x b x

z b x x z b z

X

Y

∑ = {b} ∏ = {x,y,z}

α f(α)

x z

y x

Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

 Time Complexity: O(m).

 Space Complexity: O(|∏|).

38

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

39

Procedure prev
 Proposed by [Baker, 1997].

 Array encoding of a p-string X[1..m] where:

 Every symbol in ∑ remains the same.

 The first occurrence of each parameter becomes 0.

 The other occurrences of each parameter becomes the
distance to its previous occurrence (parameter pointers).

 It focuses on the string structure.

40

Procedure prev
 Then, X and Y are a p-match iff prev(X) = prev(Y):

41

Complexity of Computing prev
 Time complexity: O(m).

 Space complexity: O(|∏|).

 String comparison using prev: O(m).

42

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

 Specifically,

 Essentially, this means that a parameter pointer
becomes zero when it points outside of the substring.

43



 






otherwisemXprev

kmXprevif
jiXprev

ki

ki

k

1

1

])..1[(

1])..1[(0
])..[(

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

44

x b y y x b x

b x x z b

X

X’

0 b 0 1 4 b 2prev(X)

prev(X’)
1 2 3 4 5

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

45

x b y y x b x

b

X

X’

0 b 0 1 4 b 2prev(X)

bprev(X’)
1 2 3 4 5

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

46

x b y y x b x

b x x z b

X

X’

0 b 0 1 4 b 2prev(X)

b 0prev(X’)
1 2 3 4 5

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

47

x b y y x b x

b x x z b

X

X’

0 b 0 1 4 b 2prev(X)

b 0 1prev(X’)
1 2 3 4 5

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

48

x b y y x b x

b x x z b

X

X’

0 b 0 1 4 b 2prev(X)

b 0 1 0prev(X’)
1 2 3 4 5

Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

49

x b y y x b x

b x x z b

X

X’

0 b 0 1 4 b 2prev(X)

b 0 1 0 bprev(X’)
1 2 3 4 5

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

50

Parameterized-suffix (p-suffix)
 P-suffixes were also introduced by [Baker, 1997].

 i-th p-suffix of X[1..m]: prev(X[i..m]).

 Parameterized-suffix tree (p-suffix tree): compacted
trie that stores all the p-suffixes of a p-string.

 Used as an aid to solve the parameterized pattern
matching problem.

51

p-suffixes
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 prev(T)= 0b014b2

52

i p-substring p-suffix

1 xbyyxbx 0b014b2

2 byyxbx b010b2

3 yyxbx 010b2

4 yxbx 00b2

5 bx 0b2

6 bx b0

7 x 0

p-suffix Tree
 ∑={b}, ∏={x,y}

 T=xbyyxbx

53

1 0b014b2

2 b010b2

3 010b2

4 00b2

5 0b2

6 b0

7 0
Figure: [Baker, 1997]

1

4

7

5

6

3

2

p-suffix Tree Construction

54

Algorithm Time Complexity

[Baker, 1997] : Lazy O(n|∏| log (|∑|+|∏|))

[Baker, 1993]: Eager O(n(|∏|+ log (|∑|+|∏|)))

[Kosaraju, 1995] O(n log (|∑|+|∏|))

[Lee, 2011] Randomized O(n)

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

55

Pattern Matching
 Key idea: if there is a p-match, prev(P) exactly

matches the first part of a p-suffix of T.

 Algorithm:

 Construct a p-suffix tree of T.

 Calculate prev(P).

 Follow the path established by prev(P).

 The leaves under the path indicate the matching positions.

 Complexity (fixed alphabets):

 Time: O(m+occ), Space: O(n)

56

Pattern Matching
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 P=bxxyb

 prev(P) =b010b

57Figure: [Baker, 1997]

1

4

7

5

6

3

2

Pattern Matching
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 P=bxxyb

 prev(P) =b010b

58Figure: [Baker, 1997]

1

4

7

5

6

3

2

DUP

Solution for String Comparison

prev

p-suffix trees

Pattern matching

Maximal p-matches over a threshold length

59

Maximal p-matches
 DUP was generalized to pDUP [Baker, 1997].

 Instead of a suffix tree, it uses a p-suffix tree.

 It augments the p-suffix tree with lists that provide
useful information to determine left-extensibility.

 Complexity: O(n+occ) even for variable alphabets.

60

Baker’s theory

Generalization of Exact Matching Algorithms

61

p-Suffix Arrays

p-KMP

p-TurboBM

p-AhoCorasick

PBTM

62

Parameterized Suffix Arrays
 Improve memory usage and access locality.

 Defined with respect to p-suffix trees in an analogous
manner as suffix arrays are defined to suffix trees
[Deguchi, 2008].

 P-suffix arrays and p-LCP (parameterized longest
common prefix) can simulate the operation of p-
suffix trees.

 Pattern matching can be solved with a binary search
in O(m+log n+occ).

63

Construction of p-suffix Arrays
 Algorithms to construct a p-suffix array without

constructing its corresponding p-suffix tree.

 [Deguchi, 2008] for binary alphabets.

 [I, 2009] for non-binary alphabets.

64

p-suffix Sorting
 Problem of lexicographically sorting the p-suffixes of

a p-string.

 The dynamic nature of p-strings becomes a challenge.

 p-suffix sorting has been considered:

 [I, 2009]:

 O(n3) based on QuickSort

 O(n2) based on Raddix Sort.

 [Beal, 2012]: uses fingerprints and arithmetic codes. Worst
case: o(n2); expected time: O(n).

65

Other Insights on the Problem
 [Amir, 1994] defined an associated paradigm:

mapped matching (where ∑ is empty).

 Notice that when ∏ is empty, parameterized
matching is equivalent to exact pattern matching.

 Based on a reduction to the element distinctness
problem, they proved that log min(m,| ∏ |)) is
inherent to any parameterized matching algorithm.

66

Parameterized KMP
 [Amir, 1994] also proposed a parameterized

version of the KMP algorithm: p-KMP.

 It runs in O(n log min(m,|∏|)).

 It is the first optimal algorithm.

67

Parameterized Boyer-Moore
 Later, [Baker, 1995] explored the generalization of

Boyer-Moore algorithm to parameterized matching,
but its worst-case performance was poor.

 Then, she generalized one of its variants: TurboBM.

 The resulting algorithm takes

 Searching phase: O(n log min(m,|∏|)) so it’s optimal.

 Preprocessing phase: O(m log min(m,|∏|))

 Space complexity: O(n)

 Better for long patterns.

68

Parameterized Aho-Corasick
 [Idury, 1996] proposed multiple parameterized

matching.

 They proposed an adaptation of the Aho Corasick
algorithm that runs in O(n log (|∑|+|∏|)+occ).

 A dynamic dictionary of patterns was also considered:

 Searching for patterns: O((n+occ)(log (|∑|+|∏|)+log d))

 Inserting a pattern: O(m log (|∑|+|∏|)+log2 d))

 Deleting a pattern: O(m log (|∑|+|∏|)+log d))

69

Parameterized border arrays
 Parameterized version of traditional border arrays.

 The p-AhoCorasick algorithm led to their definition:

 pgoto, pfail are the parameterized counterparts of goto
and fail in traditional AhoCorasick.

 When there is a single pattern, pfail can be implemented
as a p-border array.

 It can be computed in linear time [Idury, 1996].

70

Parameterized border arrays
 For binary alphabets [I, 2009a] proposed algorithms to:

 Validate if an integer array is a valid p-border array.
Complexity: O(n).

 Compute all the p-strings that share the same p-border
array. Complexity: O(n).

 Compute all the border arrays shorter than a threshold
length. Complexity: linear in the output reported.

71

Parameterized border arrays
 For unbounded alphabets, [I, 2009a] proposed an

algorithm to verify if an integer array is valid p-border
array. Time: O(n1.5). Space: O(n).

 Furthermore, they showed that the enumeration of all p-
border arrays shorter than a threshold length can be done
in O(Bnn2.5).

72

p-Shift-OR
 [Fredriksson, 2006] makes use of Baker’s theory to

propose to algorithms: p-ShiftOR and PBTM.

 p-ShiftOR is a generalization of ShiftOR to p-strings.

 Time complexity:

 Worst case: O(n⌈m/w⌉)

 Average case: O(n).

73

Parameterized Backward Trie
Matching (PBTM)
 It is based on the Backward DAWG Matching (BDM)

Algorithm and makes use of tries.

 Its average time complexity is O(n log (m)/m).

 A variation that uses arrays instead of tries was also
consider by [Fredriksson, 2006]; such variation is
calles PBAM.

74

Average Case Analysis
 P-ShiftOR and PBTM were the first parameterized

matching algorithms for which the average-case
analysis was made.

 An algorithm that has sublinear average-case expected
time was proposed by [Salmela, 2006]. It is based on
Boyer-Moore.

75

Solutions

76

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

77

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

78

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

79

Some properties
 Relation with palindromes: Two strings drawn

from an alphabet of size 3 have the same set of
maximal palindromes iff they are a p-match [I, 2010].

 Periodicity and repetitions: [Apostolico, 2008]

 For binary alphabets, p-strings and strings behave in a
similar manner.

 For non-binary alphabets, there are significant differences
between p-strings and strings.

80

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

81

Two dimensional p-matching
 Find all the 2-dimensional p-matches:

82

Pm X m

T n X n

T’ m X mgi

Two-dimensional p-matching
 Deterministic solutions:

 O(n2+m2.5 polylog m) by [Hazay, 2004].

 O(n2 log 2 m) by [Amir, 2003].

 Randomized Algorithm

 O(n2 log n) by [Amir, 2003] with error probability of 1/nk

(where k is a constant).

83

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

84

P-Edit distance

P-matching under the hamming distance

δγ-Parameterized Matching

Longest Common Parameterized Subsequence

85

Parameterized edit distance
 P-edit distance: cost of a minimal script that

transforms one p-strings into the other.

 Valid operations:

 Insertions

 Deletions

 Parameterized replacements (replacement of a p-string
with a p-string that matches it).

 O(D(n+m))-time algorithms proposed by [Baker, 1999].

 Calculating the p-edit distance D.

 Reporting the minimal p-edit script.
86

P-matching under the hamming
distance
 For a given mapping g between to equal-length p-

strings X and Y, the g-match is the number of
matches between X[i] and g(Y[i]), for all i.

87

P-matching under the hamming
distance
 Approximate Parameterized Matching: Find the

maximal g-match between two equal-length p-strings.

 Parameterized searching under the hamming
distance: For every length-m text window in the text
find the maximal g-match.

 An algorithm for a run-length encoded pattern and
text, where one of them is a binary p-string, was
proposed by [Apostolico, 2007].

88

P-matching under the hamming
distance
 Parameterized matching with k mismatches:

Find all the text windows in the text that p-match the
pattern with at most k mismatches.

 Algorithms proposed by [Hazay, 2007]:

89

Case Time Complexity

String comparison O(m+k1.5)

Pattern matching O(nk1.5+mk log m)

2-Dimensional O(n2mk1.5+m2k log m)

δγ-Parameterized Matching
 In traditional integer strings, X[1..m] and Y[1..m]...

 … δ-match iff maxi |X[i]-Y[i]| ≤ δ.

 … γ-match iff ∑i |X[i]-Y[i]| ≤ γ.

 For example, the following strings δγ–match for δ=2
and γ=7:

90

δγ-Parameterized Matching

91

 Integer p-strings X[1..m] and Y[1..m] δγ–parameterized
match iff X can be transformed into X’ via a bijection g
such that X’ δγ–matches Y.

 Example:

 δ=2

 γ=5

δγ-Parameterized Matching
 A O(nm) algorithm t0 find all the δγ–

parameterized matches of a pattern in a text was
proposed by [Mendivelso, 2010].

 It is based on a reduction to the Maximum Weight
Perfect Matching problem in bipartite graphs.

92

Longest Common Parameterized
Subsequence (LCPS)
 Given X[1..n] and Y[1..m], find a subsequence I of X

and a subsequence J of Y of maximum length such
that I and J are a p-match.

 It’s an NP-Hard problem.

 An approximate solution was proposed by [Keller,
2009].

93

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

94

Parameterized Longest Previous
Factor (p-LPF)
 For a p-string of, the p-LPF is calculated for each p-

suffix starting at position i as the longest factor
between such p-suffix and a p-suffix starting before.

 Used to study duplication and compression in p-
strings.

 [Beal, 2012] proposed an expected linear time
algorithm to compute the p-LPF, LPF, p-LCP, LCP.

95

Variants of the p-LPF
 [Beal, 2012a] proposed a taxonomy of classes of LPF

problems that show the relation between p-LPF and
traditional data structures.

 It is shown that p-LCP can be used to linearly construct
the p-border array and the border array.

 The concept of permuted LCP is extended to p-strings.

96

Variants of the p-LPF
 [Beal,2012a] defined:

 Parameterized Longest not-equal Factor (p-LneF)

 Parameterized Longest reverse Factor (p-LrF)

 Parameterized Longest Factor (p-LF)

 These structures can be calculated with the same
framework of p-LPF by changing preprocessing and
postprocessing.

 They have applications in clone detection, periodicity
study and biological sequence compression.

97

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

98

Structural Matching (s-matching)
 [Shibuya, 2004] defined it as parameterized matching

but taking into account an injective complementary
relation among a subset of the parameters.

 Additional constrain in the matching: if parameter x
is mapped to parameter y, then the complement of x
must be mapped to the complement of y.

 This is motivated by the application of RNA
matching:

 Adenine – Uracil

 Cytosine – Guanine
99

Structural Suffix Trees
 Then, two s-strings that s-match have similar

structures and, hence, similar functions.

 [Shibuya, 2004] proposed a solution based on
structural suffix trees.

 He also proposed an O(n(log|∑|+log|∏|)) online
algorithm to construct a s-suffix tree.

 It is linear for RNA/DNA sequences.

100

Structural Suffix Arrays
 For better space utilization, [Beal, 2013 and 2015]

defined:

 S-suffix array

 S-LCP

 S-border array

101

Some properties

Two-dimensional parameterized matching

Approximate Approaches

Parameterized Longest Previous Factor

Structural Matching

Function Matching

102

Function Matching
 Two equal-length strings function-match if one can

be transformed into the other by means of a function.

 In pattern matching, many symbols in the pattern can
be mapped to the same symbol in the text window.

 Solutions by [Amir, 2003]:

 Deterministic Solution: O(n|∏| log m)

 Monte Carlo Algorithm: O(n log m) with 1/nk failure
probability.



103

Function Matching Extensions
 2-dimensional Funcion Matching: A O(kn2 log n)

randomized algorithm was proposed [Amir, 2003].

 δγ-Function Matching:

 X[1..m] and Y[1..m] strings match if X can be transformed
into X’ by means of a function g such that X’ δγ-matches Y.

 A O(nm) algorithm was proposed by [Mendivelso, 2012].

104

Generalized Function Matching
with Don’t Cares
 The image of the mapping function any substring in

(∑⋃ ∏)*.

 The don’t care symbol φ can be present in strings. It
matches:

 Any substring in the text if it is in the pattern.

 Any symbol in the pattern if it is in the text.

105

Generalized Function Matching
with Don’t Cares
 A polynomial-time algorithm for finite alphabets

was devised [Amir, 2007].

 It was shown that for infinite alphabets, the
problem is NP-Hard.

 It is the first problem for which there is a
polynomial solutions for finite alphabets but not
for infinite alphabets.

106

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Extensions

 Applications

 Conclusions

107

Image Processing

Databases

Graph Isomorphism Solution

108

Image Processing

Databases

Graph Isomorphism Solution

109

Image Processing
 The problem of searching an icon in the screen

[Hazay, 2007].

 It can be solved with:

 Exact matching

 Parameterized matching

 Approximate parameterized matching
(hamming, p-edit, δγ distance)

 Function matching

110

Image Processing

Databases

Graph Isomorphism Solution

111

Databases
 In a database of URL’s, parameterized queries can be

used to improve the ergonomy of the site and
finding the best places for advertisement ads.

 In computational biology, it can be used to find
amino acid strings that follow a determined
structure.

112

Image Processing

Databases

Graph Isomorphism Solution

113

Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?

114

A

B C

D

E

e1 e2

e3

e4 e5

e6
G1

X

Y Z

W

S

e7 e8

e9

e10

e12

e11

G2

Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?

115

A

B C

D

E

e1 e2

e3

e4 e5

e6
G1

X

Y Z

W

S

e7 e8

e9

e10

e12

e11

G2

Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?

116

A

B C

D

E

e1 e2

e3

e4 e5

e6
G1

X

Y Z

W

S

e7 e8

e9

e10

e12

e11

G2
f

Graph Linearization
 It represents the structure of a graph in a linear manner.

 Specifically, our linearization is a walk on the graph that
contains all its nodes and edges at least once.

 Then, we evaluate graph isomorphism by comparing
walks rather than graphs.

117

How do we linearize a graph?

118

A

B

C D

e1

e2 e3

G1

How do we linearize a graph?

119

A

B

C D

e1

e2 e3

G1

A B
e1

How do we linearize a graph?

120

A

B

C D

e1

e2 e3

G1

A B C
e1 e2

How do we linearize a graph?

121

A

B

C D

e1

e2 e3

G1

A B C

B

e1 e2

e2

How do we linearize a graph?

122

A

B

C D

e1

e2 e3

G1

A B C

BD

e1 e2

e3

e2

How do we linearize a graph?

123

A

B

C D

e1

e2 e3

G1

A B C

BD

e1 e2

e3

e2

The parameters

124

A

B

C D

e1

e2 e3

G1

A B C

BD

e1 e2

e3

e2

How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.

125

A

B

C D

e1

e2
e3

G1

X Y

W

Z
e5

e6

e7

G2

A B C B D

X Y W Y Z

e2 e2 e3e1

e5 e6 e6 e7

p

q

How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.

126

A

B

C D

e1

e2
e3

G1

X Y

W

Z
e5

e6

e7

G2

A B C B D

X Y W Y Z

e2 e2 e3e1

e5 e6 e6 e7

p

q

How to use our linearizations to
match graphs?
 But what if we had calculated the following q?

 We need to check all the possible linearizations q.

127

A

B

C D

e1

e2
e3

G1

X Y

W

Z
e5

e6

e7

G2

A B C B D

Y X Y W Y

e2 e2 e3e1

e5 e5 e6 e6

p

q Z
e7

How to use our linearizations to
match graphs?
 But there may be Ω(max(n!,m!)) linearizations of a graph.

128

X Y

W

Z
e5

e6

e7

G2

X Y W Y Z
e5 e6 e6 e7

q can be
any of:

Y X Y W Y
e5 e5 e6 e3

Z
e7

X Y Z Y W
e5 e7 e7 e6

Y X Y Z Y
e5 e5 e7 e3

W
e6

W Y X Y Z
e6 e5 e5 e7

Y W Y X Y
e6 e6 e5 e3

Z
e7

W Y Z Y X
e6 e7 e7 e5

Y W Y Z Y
e6 e6 e7 e3

X
e5

Z Y X Y W
e7 e5 e5 e6

Y Z Y X Y
e7 e7 e5 e3

W
e6

Z Y W Y X
e7 e6 e6 e3

Y Z Y W Y
e7 e7 e6 e3

X
e5

Proposed Solution
 [Mendivelso, 2013] proposed a solution to determine

if G1=(V1, E1) and G2=(V2, E2) are isomorphic. It
consists of two steps:

1. Calculating a linearization p of G1.

2. Determining whether there exists a walk q in G2
that parameterized-matches p.

129

Proposed Solution
 The total time complexity is:

O(dm log d + ndℓ/2) = O(ndℓ/2)

 Experimental results show that this solution is
efficient especially for Miyazaki graphs which
constitute a hard case for graph isomorphism
algorithms [Mendivelso, 2015].

130

Outline
 Background

 Motivation for Parameterized Matching

 Basic Problems

 Solutions

 Applications

 Conclusions

131

132

Conclusions
 Parameterized matching allows to find strings with

similar structure.

 It has important applications in different areas such as
software maintenance, image processing, computational
biology, to name some.

 There has been extensive research for the last decades.

 New insights include the definition of new data
structures, the extension to RNA matching and its
application to solve graph isomorphism.

133

Bibliography (I)
 [Amir, 1994] Amir, Farach and Muthukrishnan. “Alphabet dependence in parameterized

matching”. Information Processing Letters, 49(3):111–115, 1994.
 [Amir, 2003] Amir, Aumann, Cole, Lewenstein and Porat. “Function matching: Algorithms,

applications and a lower bound”. Proc. of the 30th International Colloquium on Automata,
Languages and Programming, 2003.

 [Amir, 2007] Amir and Nor. “Generalized function matching”. Journal of Discrete Algorithms,
2003.

 [Apostolico, 2007] Apostolico Erdos and Lewenstain. “Parameterized matching with
mismatches”. Journal of Discrete Algorithms, 5(1):135-140, 2007.

 [Apostolico, 2008] Apostolico and Giancarlo. “Periodicity and repetition in parameterized
strings”. Discrete Applied Mathematics, 156(9):1389-1398, 2008.

 [Baker, 1992] Baker. “A program for identifying duplicated code”. Computing Science and Statistics:
Proc. of the 24th Symp. on the Interface, 1992.

 [Baker, 1993] Baker. “A theory of parameterized pattern matching: algorithms and applications”.
Proc. of the 25th Annual ACM Symp. on Theory of Computing, 1993.

 [Baker, 1995] Baker. “Parameterized pattern matching by boyer-moore type algorithms. Proc. of the
6th Annual ACM-SIAM Symp. on Discrete Algorithms, 1995.

 [Baker, 1997] Baker. “Parameterized duplication in strings: Algorithms and an application to
software maintenance”. SIAM Journal on Computing, 26(5):1343–1362, 1997.

 [Baker, 1999] Baker. “Parameterized diff”. Proc. of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1999.

 [Beal, 2012] Beal and Adjeroh. “Parameterized longest previous factor”. Theoretical Computer
Science, 2012.

134

Bibliography (II)
 [Beal, 2012a] Beal and Adjeroh. “Variations of the parameterized longest previous factor”. Journal

of Discrete Algorithms, 2012.
 [Beal, 2013] Beal and Adjeroh. “The structural border array”. Journal of Discrete Algorithms, 2013.
 [Beal, 2015] Beal and Adjeroh. “Efficient pattern matching for rna secondary structures”.

Theoretical Computer Science, 2015.
 [Cole, 2004] Cole and Hariharan. “Faster suffix tree construction with missing suffix links”. SIAM

Journal on Computing, 33(1):26-42, 2004.
 [Cordella, 2004] Cordella, Foggia, Sansone and Vento. “A (sub) graph isomorphism algorithm for

matching large graphs”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(10):1367–1372, 2004.

 [Deguchi, 2008] Deguchi, Bannai, Inenaga and Takeda. “Parameterized suffix arrays for binary
strings”. Proc. of Prague Stringology Conference, 2008.

 [Fredriksson, 2006] Fredriksson and Mozgovoy. “Efficient Parmaeterized String Matching”.
Information Processing Letters, 100(3):91-96, 2006.

 [Hazay, 2004] Hazay. “Parameterized matching”. Master’s thesis, Bar-Ilan University, 2004.
 [Hazay, 2007] Hazay. “Approximate parameterized matching”. ACM Transactions on Algorithms,

3(3):29, 2007.
 [I, 2009] I, Deguchi, Bannai, Inenaga and Takeda. “Lightweight parameterized suffix array

construction”. Proc. of IWOCA, 2009.
 [I, 2009a] I, Deguchi, Bannai and Takeda. “Verifying and enumerated parameterized border

arrays”. Theoretical Computer Science, 2009.
 [I, 2010] I, Inenaga, Bannai, and Takeda. “Counting and verifying maximal palindromes”. Proc.

of SPIRE, 2010. 135

Bibliography (III)
 [Idury, 1996] Idury and Schäffer. “Multiple matching of parameterized patterns”. Theoretical

Computer Science, 154(2):203-224, 1996.
 [Keller, 2009] Keller, Kopelowitz and Lewenstein. “On the longest common parameterized

subsequence”. Theoretical Computer Science, 410(51):5347-5353, 2009.
 [Kosaraju, 1995] Kosaraju. “Faster algorithms for the construction of parameterized suffix trees”.

Proc. of the 36th Annual Symp. on Foundations of Computer Science, IEEE, 1995.
 [Lee, 2008] Lee, Mendivelso and Pinzón. “δγ-parameterized matching”. Proc. of SPIRE, 2008.
 [Lee, 2011] Lee, Na, Park. “On-line construction of parameterized suffix trees for large alphabets”.

Information Processing Letters, 111(5):201-207, 2011.
 [Mendivelso 2010] Mendivelso. “Definition and solution of a new string searching variant termed

δγ-parameterized matching”. Master’s thesis, Universidad Nacional de Colombia, 2010.
 [Mendivelso 2010] Mendivelso, Lee and Pinzón. “Function matching under δγ- distances”. Proc.

of SPIRE, 2012.
 [Mendivelso 2013] Mendivelso, Kim, Elnilkety, He, Hwang and Pinzón. “Solving graph

isomorphism using parameterized matching”. Proc. of SPIRE, 2013.
 [Mendivelso 2015] Mendivelso. “The graph pattern matching problem through parameterized

matching”. PhD thesis, Universidad Nacional de Colombia, 2015.
 [Salmela, 2006] Salmela and Tarhio. “Sublinear algorithms for parameterized matching”. Proc. of

CPM, 2006.
 [Shibuya, 2004] Shibuya. “Generalization of a suffix tree for rna structural pattern matching”.

Algorithmica 39(1):1-19, 2004.

136

Any questions?

137

