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String Comparison
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String Pattern Matching
 Find the matches of a pattern P[1..m] within a 

string T[1..n].
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Software Maintenance Application
 Programmers introduce duplicate code in large 

software systems when they introduce new features 
or fix bugs.

 They copy and slightly modify the code to avoid the 
introduction of new bugs.

 The code can be seen as a sequence of tokens.

 Duplicate code can have tokens that remains the 
same and tokens that systematically change.
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Finding duplicate code

12

 Baker developed interest in solving this problem.

Figure: [Baker, 1992]



Importance of the problem
 Code gets larger, more complex and more difficult 

to maintain.

 Fixing a new issue in one of the copies does not fix 
it in the other (unmonitored) copies.

 Experiments show that 22% of code may be 
duplicate [Baker, 1992].

 Finding such code can help using better 
programming techniques to eliminate duplication.

13



• Software Maintenance Application

• Definition of Parameterized-Match (p-match)
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Then, Baker defined…
 Constant Alphabet (∑)

 Paramater Alphabet (∏)

 Parameterized-strings: defined over (∑⋃ ∏)
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Parameterized-match (p-match)
 P-strings X[1..m] and Y[1..m] are a p-match if one can 

be mapped into the other through a bijection such
that the mapping is identity for the symbols in ∑.
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Parameterized-match (p-match)
 There are | ∏ |! possible bijections which makes

parameterized matching an interesting
combinatorial problem.
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Similarity in structure
 Two p-strings that p-match…

 … have the same number of distinct symbols.

 … the occurrences of each distinct symbol take place in 
corresponding positions.
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• Maximal p-matches over a Threshold Length

• Parameterized Pattern Matching

• Parameterized Fixed Multiple Pattern Matching

• Parameterized Dynamic Dictionary Matching
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Basic Problems
 Maximal p-matches over a threshold length:

 Input:  T, k

 Output: pairs (u,v) of maximal parameterized
matching substrings such that |u| ≥ k.

 Complexity: O(n+occ) [Baker, 1997]
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Basic Problems
 Parameterized Fixed Pattern Matching:

 Input: T[1..n], P[1..m]

 Output: substrings in T that parameterized-match P

 Complexity: O(n log min (m,|∏|)) [Amir, 1994]
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Basic Problems
 Parameterized Fixed Multiple Pattern Matching:

 Input: T[1..n], set of d patterns Pi

 Output: substrings in T that parameterized-match any Pi

 Complexity: O(n log |Σ|+occ) [Idury, 1996] 23
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Basic Problems
 Parameterized Dynamic Dictionary Matching:

 The same as Parameterized Fixed Pattern Matching, but
new patterns can be inserted or removed from the set.

 Complexity: O((n+occ)(log |Σ|+log d)) [Idury, 1996].

 Literature on parameterized matching includes solutions
for all of these problems, as presented in next section.
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DUP Algorithm
 Proposed by [Baker, 1992].

 To find maximal p-matches over a threshold length.

 It works as follows:

 Converts the parameters in a single symbol.

 Looks for exact matches using a suffix tree.

 Determines which of such matches are p-matches.

 Experimental results show that just few exact matches
are p-matches.
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Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a 
mismatch is found.
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Solution for String Comparison
 Straightforward solution [Baker, 1997].

 Construct a mapping table of the mapping while
simultaneously traversing both strings until a 
mismatch is found.

 Time Complexity: O(m).

 Space Complexity: O(|∏|).
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Procedure prev
 Proposed by [Baker, 1997].

 Array encoding of a p-string X[1..m] where:

 Every symbol in ∑ remains the same.

 The first occurrence of each parameter becomes 0.

 The other occurrences of each parameter becomes the
distance to its previous occurrence (parameter pointers).

 It focuses on the string structure.
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Procedure prev
 Then, X and Y are a p-match iff prev(X) = prev(Y):
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Complexity of Computing prev
 Time complexity: O(m). 

 Space complexity: O(|∏|).

 String comparison using prev: O(m).
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Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).

 Specifically,

 Essentially, this means that a parameter pointer 
becomes zero when it points outside of the substring.
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Computing prev of a substring
 We can compute prev(X[i..j]) based on prev(X[1..m]).
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Parameterized-suffix (p-suffix)
 P-suffixes were also introduced by [Baker, 1997].

 i-th p-suffix of X[1..m]: prev(X[i..m]).

 Parameterized-suffix tree (p-suffix tree): compacted
trie that stores all the p-suffixes of a p-string.

 Used as an aid to solve the parameterized pattern
matching problem.
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p-suffixes
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 prev(T)= 0b014b2
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i p-substring p-suffix

1 xbyyxbx 0b014b2

2 byyxbx b010b2

3 yyxbx 010b2

4 yxbx 00b2

5 bx 0b2

6 bx b0

7 x 0



p-suffix Tree
 ∑={b}, ∏={x,y}

 T=xbyyxbx
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1 0b014b2

2 b010b2

3 010b2

4 00b2

5 0b2

6 b0

7 0
Figure: [Baker, 1997]
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p-suffix Tree Construction

54

Algorithm Time Complexity

[Baker, 1997] : Lazy O(n|∏| log (|∑|+|∏|))

[Baker, 1993]: Eager O(n(|∏|+ log (|∑|+|∏|)))

[Kosaraju, 1995] O(n log (|∑|+|∏|))

[Lee, 2011] Randomized O(n)
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Pattern Matching
 Key idea: if there is a p-match, prev(P) exactly

matches the first part of a p-suffix of T.

 Algorithm:

 Construct a p-suffix tree of T.

 Calculate prev(P).

 Follow the path established by prev(P).

 The leaves under the path indicate the matching positions.

 Complexity (fixed alphabets): 

 Time: O(m+occ), Space: O(n) 
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Pattern Matching
 ∑={b}, ∏={x,y}

 T=xbyyxbx

 P=bxxyb

 prev(P) =b010b
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Maximal p-matches
 DUP was generalized to pDUP [Baker, 1997].

 Instead of a suffix tree, it uses a p-suffix tree.

 It augments the p-suffix tree with lists that provide
useful information to determine left-extensibility.

 Complexity: O(n+occ) even for variable alphabets.
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p-Suffix Arrays

p-KMP

p-TurboBM

p-AhoCorasick

PBTM
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Parameterized Suffix Arrays
 Improve memory usage and access locality.

 Defined with respect to p-suffix trees in an analogous
manner as suffix arrays are defined to suffix trees
[Deguchi, 2008].

 P-suffix arrays and p-LCP (parameterized longest
common prefix) can simulate the operation of p-
suffix trees.

 Pattern matching can be solved with a binary search
in O(m+log n+occ).
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Construction of p-suffix Arrays
 Algorithms to construct a p-suffix array without

constructing its corresponding p-suffix tree.

 [Deguchi, 2008] for binary alphabets. 

 [I, 2009] for non-binary alphabets.
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p-suffix Sorting
 Problem of lexicographically sorting the p-suffixes of 

a p-string.

 The dynamic nature of p-strings becomes a challenge.

 p-suffix sorting has been considered:

 [I, 2009]: 

 O(n3) based on QuickSort

 O(n2) based on Raddix Sort.

 [Beal, 2012]: uses fingerprints and arithmetic codes. Worst
case: o(n2); expected time: O(n).
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Other Insights on the Problem
 [Amir, 1994] defined an associated paradigm: 

mapped matching (where ∑ is empty).

 Notice that when ∏ is empty, parameterized
matching is equivalent to exact pattern matching.

 Based on a reduction to the element distinctness
problem, they proved that log min(m,| ∏ |)) is
inherent to any parameterized matching algorithm.
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Parameterized KMP
 [Amir, 1994] also proposed a parameterized

version of the KMP algorithm: p-KMP.

 It runs in O(n log min(m,|∏|)).

 It is the first optimal algorithm.
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Parameterized Boyer-Moore
 Later, [Baker, 1995] explored the generalization of 

Boyer-Moore algorithm to parameterized matching, 
but its worst-case performance was poor.

 Then, she generalized one of its variants: TurboBM.

 The resulting algorithm takes 

 Searching phase: O(n log min(m,|∏|)) so it’s optimal. 

 Preprocessing phase: O(m log min(m,|∏|))

 Space complexity: O(n)

 Better for long patterns.
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Parameterized Aho-Corasick
 [Idury, 1996] proposed multiple parameterized 

matching.

 They proposed an adaptation of the Aho Corasick
algorithm that runs in O(n log (|∑|+|∏|)+occ).

 A dynamic dictionary of patterns was also considered:

 Searching for patterns: O((n+occ)(log (|∑|+|∏|)+log d))

 Inserting a pattern: O(m log (|∑|+|∏|)+log2 d))

 Deleting a pattern: O(m log (|∑|+|∏|)+log d))
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Parameterized border arrays
 Parameterized version of traditional border arrays.

 The p-AhoCorasick algorithm led to their definition:

 pgoto, pfail are the parameterized counterparts of goto
and fail in traditional AhoCorasick.

 When there is a single pattern, pfail can be implemented 
as a p-border array.

 It can be computed in linear time [Idury, 1996].
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Parameterized border arrays
 For binary alphabets [I, 2009a] proposed algorithms to:

 Validate if an integer array is a valid p-border array. 
Complexity: O(n).

 Compute all the p-strings that share the same p-border 
array. Complexity: O(n).

 Compute all the border arrays shorter than a threshold 
length. Complexity: linear in the output reported.
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Parameterized border arrays
 For unbounded alphabets, [I, 2009a] proposed an 

algorithm to verify if an integer array is valid p-border 
array. Time: O(n1.5). Space: O(n).

 Furthermore, they showed that the enumeration of all p-
border arrays shorter than a threshold length can be done 
in O(Bnn2.5).
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p-Shift-OR
 [Fredriksson, 2006] makes use of Baker’s theory to 

propose to algorithms: p-ShiftOR and PBTM.

 p-ShiftOR is a generalization of ShiftOR to p-strings.

 Time complexity: 

 Worst case: O(n⌈m/w⌉)

 Average case: O(n).
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Parameterized Backward Trie
Matching (PBTM)
 It is based on the Backward DAWG Matching (BDM) 

Algorithm and makes use of tries.

 Its average time complexity is O(n log (m)/m).

 A variation that uses arrays instead of tries was also 
consider by [Fredriksson, 2006]; such variation is 
calles PBAM.
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Average Case Analysis
 P-ShiftOR and PBTM were the first parameterized 

matching algorithms for which the average-case 
analysis was made.

 An algorithm that has sublinear average-case expected 
time was proposed by [Salmela, 2006]. It is based on 
Boyer-Moore.
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Some properties
 Relation with palindromes: Two strings drawn

from an alphabet of size 3 have the same set of 
maximal palindromes iff they are a p-match [I, 2010].

 Periodicity and repetitions: [Apostolico, 2008]

 For binary alphabets, p-strings and strings behave in a 
similar manner.

 For non-binary alphabets, there are significant differences
between p-strings and strings.
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Two dimensional p-matching
 Find all the 2-dimensional p-matches:
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Two-dimensional p-matching
 Deterministic solutions:

 O(n2+m2.5 polylog m) by [Hazay, 2004].

 O(n2 log 2 m) by [Amir, 2003].

 Randomized Algorithm

 O(n2 log n) by [Amir, 2003] with error probability of 1/nk

(where k is a constant).
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P-Edit distance

P-matching under the hamming distance

δγ-Parameterized Matching

Longest Common Parameterized Subsequence

85



Parameterized edit distance
 P-edit distance: cost of a minimal script that

transforms one p-strings into the other.

 Valid operations:

 Insertions

 Deletions

 Parameterized replacements (replacement of a p-string
with a p-string that matches it).

 O(D(n+m))-time algorithms proposed by [Baker, 1999].

 Calculating the p-edit distance D.

 Reporting the minimal p-edit script.
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P-matching under the hamming
distance
 For a given mapping g between to equal-length p-

strings X and Y, the g-match is the number of
matches between X[i] and g(Y[i]), for all i.

87



P-matching under the hamming
distance
 Approximate Parameterized Matching: Find the

maximal g-match between two equal-length p-strings.

 Parameterized searching under the hamming
distance: For every length-m text window in the text
find the maximal g-match.

 An algorithm for a run-length encoded pattern and 
text, where one of them is a binary p-string, was
proposed by [Apostolico, 2007].
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P-matching under the hamming
distance
 Parameterized matching with k mismatches: 

Find all the text windows in the text that p-match the
pattern with at most k mismatches.

 Algorithms proposed by [Hazay, 2007]:

89

Case Time Complexity

String comparison O(m+k1.5)

Pattern matching O(nk1.5+mk log m)

2-Dimensional O(n2mk1.5+m2k log m)



δγ-Parameterized Matching
 In traditional integer strings, X[1..m] and Y[1..m]...

 … δ-match iff maxi |X[i]-Y[i]| ≤ δ.

 … γ-match iff ∑i |X[i]-Y[i]| ≤ γ.

 For example, the following strings δγ–match for δ=2 
and γ=7:
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δγ-Parameterized Matching

91

 Integer p-strings X[1..m] and Y[1..m] δγ–parameterized
match iff X can be transformed into X’ via a bijection g
such that X’ δγ–matches Y.

 Example:

 δ=2

 γ=5



δγ-Parameterized Matching
 A O(nm) algorithm t0 find all the δγ–

parameterized matches of a pattern in a text was
proposed by [Mendivelso, 2010]. 

 It is based on a reduction to the Maximum Weight
Perfect Matching problem in bipartite graphs.
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Longest Common Parameterized
Subsequence (LCPS)
 Given X[1..n] and Y[1..m], find a subsequence I of X

and a subsequence J of Y of maximum length such
that I and J are a p-match.

 It’s an NP-Hard problem.

 An approximate solution was proposed by [Keller, 
2009].
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Parameterized Longest Previous
Factor (p-LPF)
 For a p-string of, the p-LPF is calculated for each p-

suffix starting at position i as the longest factor 
between such p-suffix and a p-suffix starting before.

 Used to study duplication and compression in p-
strings.

 [Beal, 2012] proposed an expected linear time 
algorithm to compute the p-LPF, LPF, p-LCP, LCP.
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Variants of the p-LPF
 [Beal, 2012a] proposed a taxonomy of classes of LPF 

problems that show the relation between p-LPF and 
traditional data structures.

 It is shown that p-LCP can be used to linearly construct
the p-border array and the border array.

 The concept of permuted LCP is extended to p-strings.
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Variants of the p-LPF
 [Beal,2012a] defined:

 Parameterized Longest not-equal Factor (p-LneF)

 Parameterized Longest reverse Factor (p-LrF)

 Parameterized Longest Factor (p-LF)

 These structures can be calculated with the same
framework of p-LPF by changing preprocessing and 
postprocessing.

 They have applications in clone detection, periodicity
study and biological sequence compression.
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Structural Matching (s-matching)
 [Shibuya, 2004] defined it as parameterized matching

but taking into account an injective complementary
relation among a subset of the parameters.

 Additional constrain in the matching: if parameter x
is mapped to parameter y, then the complement of x
must be mapped to the complement of y.

 This is motivated by the application of RNA 
matching:

 Adenine – Uracil

 Cytosine – Guanine
99



Structural Suffix Trees
 Then, two s-strings that s-match have similar 

structures and, hence, similar functions.

 [Shibuya, 2004] proposed a solution based on
structural suffix trees.

 He also proposed an O(n(log|∑|+log|∏|)) online 
algorithm to construct a s-suffix tree.

 It is linear for RNA/DNA sequences. 
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Structural Suffix Arrays
 For better space utilization, [Beal, 2013 and 2015] 

defined:

 S-suffix array

 S-LCP

 S-border array
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Function Matching
 Two equal-length strings function-match if one can 

be transformed into the other by means of a function.

 In pattern matching, many symbols in the pattern can 
be mapped to the same symbol in the text window.

 Solutions by [Amir, 2003]:

 Deterministic Solution: O(n|∏| log m)

 Monte Carlo Algorithm: O(n log m) with 1/nk failure
probability. 


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Function Matching Extensions
 2-dimensional Funcion Matching: A O(kn2 log n)

randomized algorithm was proposed [Amir, 2003].

 δγ-Function Matching: 

 X[1..m] and Y[1..m] strings match if X can be transformed
into X’ by means of a function g such that X’ δγ-matches Y.

 A O(nm) algorithm was proposed by [Mendivelso, 2012].  
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Generalized Function Matching
with Don’t Cares
 The image of the mapping function any substring in 

(∑⋃ ∏)*.

 The don’t care symbol φ can be present in strings. It
matches:

 Any substring in the text if it is in the pattern.

 Any symbol in the pattern if it is in the text.
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Generalized Function Matching
with Don’t Cares
 A polynomial-time algorithm for finite alphabets

was devised [Amir, 2007].

 It was shown that for infinite alphabets, the
problem is NP-Hard.

 It is the first problem for which there is a 
polynomial solutions for finite alphabets but not
for infinite alphabets.
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Image Processing

Databases

Graph Isomorphism Solution
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Image Processing

Databases

Graph Isomorphism Solution

109



Image Processing
 The problem of searching an icon in the screen

[Hazay, 2007].

 It can be solved with:

 Exact matching

 Parameterized matching

 Approximate parameterized matching
(hamming, p-edit, δγ distance)

 Function matching
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Image Processing

Databases

Graph Isomorphism Solution
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Databases
 In a database of URL’s, parameterized queries can be

used to improve the ergonomy of the site and 
finding the best places for advertisement ads.

 In computational biology, it can be used to find
amino acid strings that follow a determined
structure.
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Image Processing

Databases

Graph Isomorphism Solution
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Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?
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Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?
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Graph Isomorphism
 Is there a bijection f that maps the nodes/edges of G1

to the nodes/edges in G2 so that the adjacency relation
is preserved?
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Graph Linearization
 It represents the structure of a graph in a linear manner.

 Specifically, our linearization is a walk on the graph that
contains all its nodes and edges at least once.

 Then, we evaluate graph isomorphism by comparing
walks rather than graphs.
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How do we linearize a graph?
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How do we linearize a graph?

119

A

B

C D

e1

e2 e3

G1

A B
e1



How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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How do we linearize a graph?
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The parameters
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How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.
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How to use our linearizations to
match graphs?
 G1 and G2 are isomorphic if there is a linearization of G2

that parameterized-matches the linearization of G1.
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How to use our linearizations to
match graphs?
 But what if we had calculated the following q?

 We need to check all the possible linearizations q.
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How to use our linearizations to
match graphs?
 But there may be Ω(max(n!,m!)) linearizations of a graph.
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Proposed Solution
 [Mendivelso, 2013] proposed a solution to determine 

if G1=(V1, E1) and G2=(V2, E2) are isomorphic. It
consists of two steps:

1. Calculating a linearization p of G1.

2. Determining whether there exists a walk q in G2
that parameterized-matches p.
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Proposed Solution
 The total time complexity is: 

O(dm log d + ndℓ/2) = O(ndℓ/2)

 Experimental results show that this solution is
efficient especially for Miyazaki graphs which
constitute a hard case for graph isomorphism
algorithms [Mendivelso, 2015].
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Conclusions
 Parameterized matching allows to find strings with 

similar structure.

 It has important applications in different areas such as 
software maintenance, image processing, computational 
biology, to name some.

 There has been extensive research for the last decades.

 New insights include the definition of new data 
structures, the extension to RNA matching and its 
application to solve graph isomorphism.
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Any questions?
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