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| String Comparison

* X[1.m/ and Y/1..m] match if X[i] = Y[i] forall i.
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| String Pattern Matching

* Find the matches of a pattern P[1..m] within a
string T/1..n].
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| String Pattern Matching

* Find the matches of a pattern P[1..m] within a
string T/1..n].

f a b a c a b a c a b
P s



| String Pattern Matching

* Find the matches of a pattern P[1..m] within a
string T/1..n].

i a b a c a b a c a b
P S



Outline

e Background

* Motivation for Parameterized Matching
¢ Basic Problems

e Solutions

e Extensions

e Applications

e Conclusions



—




=




//
p

/

Software Maintenance Application

Programmers introduce duplicate code in large
software systems when they introduce new features

or fix bugs.

They copy and slightly modity the code to avoid the
introduction of new bugs.

The code can be seen as a sequence of tokens.

Duplicate code can have tokens that remains the
same and tokens that systematically change.



Finding duplicate code

» Baker developed interest in solving this problem.

copy number (&pmin, &pmax, pfi->min bounds.lbearing,
pfi—>max_bounds.1be5;zng);

*pmint+ = *pmax++ = A

copy number (&pmin, &pmax, pfi >min_ bounds.rbearing,

pfl >max_ bounds. rbearlng

I

*pm1n++ = *pmax++ = ', ;

copy number (&pmin, &pmax, pfh->min bounds.left,
pfh >max bounds. left) ;

*pm1n++ = *pmax++ = ' ,’;

copy number (&pmin, &pmax, pfh >min_bounds.right,
pfh >max_bounds.right )

*pm1n++ = *pmax++ = ' ,’;

Figure: [Baker, 1992] 2
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Importance of the problem

Code gets larger, more complex and more difficult
to maintain.

Fixing a new issue in one of the copies does not fix
it in the other (unmonitored) copies.

Experiments show that 22% of code may be
duplicate [Baker, 1992].

Finding such code can help using better
programming techniques to eliminate duplication.
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| Then, Baker defined...

* Constant Alphabet (}))
* Paramater Alphabet (]])
* Parameterized-strings: defined over (Y U [])

Z - {b} H = {X,)’,Z}

X x by vy x b x
'@ : b x_ x_ z bz




Parameterized-match (p-match)

P-strings X[1..m] and Y/1..m] are a p-match if one can
be mapped into the other through a bijection such
that the mapping is identity for the symbols in }..

1 2 3 4 5 6 7
Y z b x x 2z b =z

s | 8(s) | 8(s) | &(s) | &(5) | &(s) | &ils) b X y oz
X |b| b | b |[b | b | b |b g, ¥ n o~

X X X y y Z Z b X yV z
I |y y Z 4 Z X y

z Z y 7 X y X




Parameterized-match (p-match)

® There are | [] |! possible bijections which makes
parameterized matching an interesting
combinatorial problem.

s [ 26) [ 26) [ 26) [26) [ &6) | &6 b x vy 2
¥ | b| b b b b b b g, ¥ 11 >ﬁl<
X X X y y 7 Z b X yV Z
11 y y 7 b4 7 X y I ] I v
Z 7 X

y v n g(Y) |x||b||y||y|[x]||b]||x
W]
X [x||b||lylly/lx||b]|x

3



Similarity in structure

Two p-strings that p-match...
e ... have the same number of distinct symbols.

e ... the occurrences of each distinct symbol take place in
corresponding positions.

1 2 3 l ) ¥ 7 1 2 3 l ) ¥ 7
Yizibixixizibjaz Xixibiyiyixibix
4 2 Z > X — 2
. b — b !

.....................................................................................................................
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Basic Problems

Maximal p-matches over a Threshold Length
Parameterized Pattern Matching
Parameterized Fixed Multiple Pattern Matching

Parameterized Dynamic Dictionary Matching
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Basic Problems

e Maximal p-matches over a threshold length:

e Input: T, k

e Qutput: pairs (u,v) of maximal parameterized
matching substrings such that |u| = k.

S E U S

e Complexity: O(n+occ) [Baker, 1997]
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Basic Problems

e Parameterized Fixed Pattern Matching:
e Input: T/1..n], P[1..m]

e Output: substrings in T that parameterized-match P

e Complexity: O(n log min (m,|[]|)) [Amir, 1994]
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Basic Problems

e Parameterized Fixed Multiple Pattern Matching:
e Input: T/1..n], set of d patterns P,

P2
[ P, |

e Output: substrings in at parameterized-match any P,
‘ L v__

P2 K /
[Py |
e Complexity: O(n log |2|+occ) [Idury, 1996] -
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Basic Problems

Parameterized Dynamic Dictionary Matching:

e The same as Parameterized Fixed Pattern Matching, but
new patterns can be inserted or removed from the set.

e Complexity: O((n+occ)(log |2|+log d)) [Idury, 1996].

Literature on parameterized matching includes solutions
for all of these problems, as presented in next section.

24
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DUP Algorithm

Proposed by [Baker, 1992].
To find maximal p-matches over a threshold length.

It works as follows:
e Converts the parameters in a single symbol.
e Looks for exact matches using a suffix tree.

e Determines which of such matches are p-matches.

Experimental results show that just few exact matches
are p-matches.

30
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Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

Z = {b} H = {x))’)z}

W x by vy x b x
'@ - b x x_ 2z bz



Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

) ={b} Il = {x,y,z] X y/

W < by vy x b x
'@ - b x x_ 2z bz
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Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

) ={b} Il = {x,y,z] X y/

W x by vy x b x
'@ - b x_ x_ 2z bz
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Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

) ={b} 11 = {x,y,z} X Z
y X

%@ x | by y | x| bl x

)@ z b | x x z|blz
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Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

) ={b} 11 = {x,y,z} X Z
y X

%@ x | by y | x| bl x

)@ z b | x x z|blz
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Solution for String Comparison

» Straightforward solution |Baker, 1997].

» Construct a mapping table of the mapping while
simultaneously traversing both strings until a

mismatch is found.
- a | f(a)

) ={b} 11 = {x,y,z} X Z
y X

%@ x | by y | x| bl x

)@ z b | x x z|blz
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Solution for String Comparison

Straightforward solution [Baker, 1997].

Construct a mapping table of the mapping while
simultaneously traversing both strings until a
mismatch is found.

Time Complexity: O(m).
Space Complexity: O(|[]|).
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Procedure prev

Proposed by [Baker, 1997].

Array encoding of a p-string X/[1..m] where:
e Every symbol in }’ remains the same.
e The first occurrence of each parameter becomes o.

e The other occurrences of each parameter becomes the
distance to its previous occurrence (parameter pointers).

It focuses on the string structure.

40
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Procedure prev
* Then, Xand Yare a p—maifch iff prev(X) = prev(Y):

NN

Y | blx|lx| 2|b|2

FA

prev(Y) [O||b||0|[1]||4]||b]|]|2

Wi uwf nfjufnf{nffn

prev(X) (0J(bJ{0)(L){4)(b)(2)

A N O

X |x|blyl|ly|x]|b|x
L\\//v 4



Complexity of Computing prev

Time complexity: O(m).
Space complexity: O(|[]]).
String comparison using prev: O(m).



Computing prev of a substring

We can compute prev(X]i..j|) based on prev(X[1..m]).
Specifically,

0 If prev(X[1.m]).., ., >k-1
prev(X[1..m]).., , otherwise

prev(X[i..jl), ={

Essentially, this means that a parameter pointer
becomes zero when it points outside of the substring.

43



//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

X9 x b | | | x b | x
)@ b | |z b
prevcy) I




//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

X9 x b | | | x b | x
x NI
prevcy) MR




//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

X9 x b | | | x b | x
)@ b | |z b
prevcy) MR




//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

o ——

x SRR

prev(x’) R
T




//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

o ——

x SRR

prev(x’) R
=




//X/

Computing prev of a substring
* We can compute prev(X[i..j[) based on prev(X[1..m]).

prev() RS

o ——

x SRR

prev(x) NSRS
T
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Parameterized-suffix (p-suffix)

P-suffixes were also introduced by [Baker, 1997].

i-th p-suffix of X[1..m]: prev(X[i..m]).
Parameterized-suffix tree (p-suffix tree): compacted
trie that stores all the p-suffixes of a p-string.

Used as an aid to solve the parameterized pattern
matching problem.



p-suffixes
-t -y Y
* T=xbyyxbx xbyyxbx obo14b2

* prev(T)= oboi4b2

2 byyxbx  boiob2
3 yyxbx o10b2
4 yxbx oob2
5 bx ob2
6 bx bo
7 X 0
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p-suffix Tree ol
X={b}, [I={x.y} 5
T=xbyyxbx b

1 oboi4bz 0027

2 boiob2 - 5 =0 7
3 oi0b2 ’ He?

4 oob2 o 3
5 ob2 < :

6 bo 052§ -0
7

2 Figure: [Baker, 1997] . 2 53



p-suffix Tree Construction

Algorithm Time Complexity

Baker, 1997] : Lazy O(n|[]| log (1X1+|111))
Baker, 1993]: Eager  O(n(|[]|+ log (|} |+|I1])))

Kosaraju, 1995] O(nlog (1Y |+|I1]))
Lee, 2011] Randomized O(n)
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Pattern Matching

Key idea: if there is a p-match, prev(P) exactly
matches the first part of a p-suffix of T.
Algorithm:

e Construct a p-suffix tree of T.

e Calculate prev(P).
e Follow the path established by prev(P).
e The leaves under the path indicate the matching positions.

Complexity (fixed alphabets):

e Time: O(m+occ), Space: O(n)

56
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Pattern Matching ol
S={b}, [T={xy} E
T=xbyyxbx b
P=bxxyb 0524
prev(P) =boiob | $ 7

0 10528

Figure: [Baker, 1997] - @ 57
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Pattern Matching .
* Y={b}, [I={x,y] 5
» T=xbyyxbx b -4
* P=bxxyb 0524
* prev(P) =boiob | $ 7
0 10H28

Figure: [Baker, 1997] - @ 58
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Maximal p-matches

DUP was generalized to pDUP [Baker, 1997].
Instead of a suffix tree, it uses a p-suffix tree.

[t augments the p-suffix tree with lists that provide
useful information to determine left-extensibility.

Complexity: O(n+occ) even for variable alphabets.
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Parameterized Suffix Arrays

Improve memory usage and access locality.

Defined with respect to p-suffix trees in an analogous
manner as suffix arrays are defined to suffix trees
|Deguchi, 2008].

P-suffix arrays and p-LCP (parameterized longest
common prefix) can simulate the operation of p-
suffix trees.

Pattern matching can be solved with a binary search
in O(m+log n+occ).



Construction of p-suffix Arrays

Algorithms to construct a p-suffix array without
constructing its corresponding p-suffix tree.

e [Deguchi, 2008] for binary alphabets.

e [I, 2009] for non-binary alphabets.
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p-suffix Sorting

Problem of lexicographically sorting the p-suffixes of
a p-string.
The dynamic nature of p-strings becomes a challenge.

p-suffix sorting has been considered:
|1, 2009]:
O(n3) based on QuickSort

O(n?) based on Raddix Sort.

* [Beal, 2012]: uses fingerprints and arithmetic codes. Worst
case: o(n?); expected time: O(n).
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e
Other Insights on the Problem

|Amir, 1994] defined an associated paradigm:
mapped matching (where } is empty).

Notice that when [] is empty, parameterized
matching is equivalent to exact pattern matching.

Based on a reduction to the element distinctness

problem, they proved that log min(m,| [] |)) is
inherent to any parameterized matching algorithm.

66
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Parameterized KMP

|Amir, 1994] also proposed a parameterized
version of the KMP algorithm: p-KMP.

It runs in O(n log min(m, |[]])).

It is the first optimal algorithm.
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Parameterized Boyer-Moore

Later, [Baker, 1995| explored the generalization of
Boyer-Moore algorithm to parameterized matching,
but its worst-case performance was poor.

Then, she generalized one of its variants: TurboBM.

The resulting algorithm takes
e Searching phase: O(n log min(m,|[]|)) so it’s optimal.
 Preprocessing phase: O(m log min(m,|[]|))
e Space complexity: O(n)
e Better for long patterns.

68



/

— .,/

P

/

Parameterized Aho-Corasick

[Idury, 1996] proposed multiple parameterized

matching.

They proposed an adaptation of the Aho Corasick

algorithm that runs in O(n log (|} |+|[]|)+occ).

A dynamic dictionary of patterns was also considered:
e Searching for patterns: O((n+occ)(log (|} |+|[1|)+log d))
e Inserting a pattern: O(m log (|Y|+|[]|)+log> d))

e Deleting a pattern: O(m log (|} |+|[]|)+log d))




Parameterized border arrays

Parameterized version of traditional border arrays.
The p-AhoCorasick algorithm led to their definition:

e pgoto, pfail are the parameterized counterparts of goto
and fail in traditional AhoCorasick.

e When there is a single pattern, pfail can be implemented
as a p-border array.

e It can be computed in linear time [Idury, 1996].

70



Parameterized border arrays

For binary alphabets [I, 2009a] proposed algorithms to:

e Validate if an integer array is a valid p-border array.
Complexity: O(n).

e Compute all the p-strings that share the same p-border
array. Complexity: O(n).

e Compute all the border arrays shorter than a threshold
length. Complexity: linear in the output reported.

71
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Parameterized border arrays

For unbounded alphabets, [I, 2009a] proposed an
algorithm to verity if an integer array is valid p-border
array. Time: O(n*5). Space: O(n).

Furthermore, they showed that the enumeration of all p-

border arrays shorter than a threshold length can be done
in O(B™"n35).
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p-Shift-OR

|Fredriksson, 2006] makes use of Baker’s theory to
propose to algorithms: p-ShiftOR and PBTM.

p-ShiftOR is a generalization of ShiftOR to p-strings.
Time complexity:

e Worst case: O(nfm/w1)

e Average case: O(n).

73



“Parameterized Backward Trle/

Matching (PBTM)

It is based on the Backward DAWG Matching (BDM)
Algorithm and makes use of tries.

Its average time complexity is O(n log (m)/m).

A variation that uses arrays instead of tries was also
consider by [Fredriksson, 2006]; such variation is

calles PBAM.
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Average Case Analysis

P-ShiftOR and PBTM were the first parameterized
matching algorithms for which the average-case
analysis was made.

An algorithm that has sublinear average-case expected
time was proposed by [Salmela, 2006]. It is based on
Boyer-Moore.
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Solutions

Parameterized
Matching
DUP Algorithms
) are ha,f:l.ed on P-AhoCorasick
+ Automata
PDUP Tries le—— g
i L. PDDM
PBTM |«
+ — > P-KMP
Bit | Sequential
P-ShiftOr |« Parall]éllimn <« | Traversing
Al - > P-TurboBM

The background color of each algorithm indicates the problem it solves:

Maximal p-matches over a Parameterized Fixed
threshold length Pattern Matching

Parameterized Fixed and Parameterized Dynamic

Multiple Pattern Matching Dictionary Matching
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Some properties

Relation with palindromes: Two strings drawn
from an alphabet of size 3 have the same set of
maximal palindromes iff they are a p-match [I, 2010].

Periodicity and repetitions: [Apostolico, 2008]

 For binary alphabets, p-strings and strings behave in a
similar manner.

e For non-binary alphabets, there are significant differences
between p-strings and strings.

8o
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Two dimensional p-matching

* Find all the 2-dimensional p-matches:

nXn




Two-dimensional p-matching

Deterministic solutions:
e O(n?+m?*5 polylog m) by [Hazay, 2004].
e O(n?log>m) by [Amir, 2003].
Randomized Algorithm

e O(n? log n) by [Amir, 2003] with error probability of 1/n*
(where k is a constant).
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Parameterized edit distance

P-edit distance: cost of a minimal script that
transforms one p-strings into the other.

Valid operations:
e Insertions
e Deletions

e Parameterized replacements (replacement of a p-string
with a p-string that matches it).

O(D(n+m))-time algorithms proposed by [Baker, 1999].
e Calculating the p-edit distance D.

e Reporting the minimal p-edit script.

86



~P-matching M

distance

For a given mapping g between to equal-length p-
strings X and Y, the g-match is the number of
matches between X[i] and g(Y[i]), for all i.

X 7 5 7 5 7 10 5 10
I
¥ ‘¢ k) L J L J Ld Y L J
) ;. 7 10
O ___-J
— - T
k. H:-r _-:!l"
ST 20 25
o(X) [25]|17 25(20
I




~P-matching UM

distance

Approximate Parameterized Matching: Find the
maximal g-match between two equal-length p-strings.

Parameterized searching under the hamming

distance: For every length-m text window in the text
find the maximal g-match.

An algorithm for a run-length encoded pattern and
text, where one of them is a binary p-string, was
proposed by [Apostolico, 2007].

88
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distance

* Parameterized matching with k mismatches:
Find all the text windows in the text that p-match the
pattern with at most k mismatches.

» Algorithms proposed by [Hazay, 2007]:

Time Complexity

String comparison O(m+k*5)
Pattern matching O(nk*5+mk log m)

2-Dimensional O(n>mk*5+m?k log m)



Oy-Parameterized Matching
In traditional integer strings, X/1..m] and Y/[1..m]...
e ... 0-match iff max; |X[i]-Y[i]| <.
o ...y-match iff ). | X[i]-Y[i]| <.
For example, the following strings dy-match for 6=2

and y=7:
Y fl\rg\ (1\(3\(6\(3\(3\ r4\(1\/2\
IX-Y| [L{[L]]of|O|[2][|O|f1]|1][L1]]|O
X \2) k2) klj k3J \4} \BJ \4) \5) \2/ ___/
1 2 3 4 3 6 7 8 9 10
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Oy-Parameterized Matching

Integer p-strings X/1..m/ and Y/1..m] dy—parameterized
match iff X can be transformed into X’ via a bijection g

such that X’ dy-matches Y.

E , X 7 5 7 5 7 10 5 10
xample: l

¢ 0=2 25 7 10
°y=5 & | S
S|17 20) 25

o(X) [25)(17](25)(17](25)(20] [17] (201

lg(X)-Y] | 1/{O[O[{1]|[OO][2]1

Y |24)117)\25)(16)(25) 20] |19) |19

o1



Oy-Parameterized Matching

A O(nm) algorithm to find all the dy-
parameterized matches of a pattern in a text was
proposed by [Mendivelso, 2010].

It is based on a reduction to the Maximum Weight
Perfect Matching problem in bipartite graphs.




tongest Commrameteﬁ

Subsequence (LCPS)

Given X/[1..n] and Y/1..m], find a subsequence I of X
and a subsequence J of Y of maximum length such
that I and J are a p-match.

It’'s an NP-Hard problem.

An approximate solution was proposed by |[Keller,
2009].
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“Parameterized Longest Previous
Factor (p-LPF)

For a p-string of, the p-LPF is calculated for each p-
suffix starting at position i as the longest factor
between such p-suffix and a p-suftix starting before.

Used to study duplication and compression in p-
strings.

|Beal, 2012] proposed an expected linear time
algorithm to compute the p-LPF, LPF, p-LCP, LCP.
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Variants of the p-LPF

|Beal, 2012a] proposed a taxonomy of classes of LPF
problems that show the relation between p-LPF and
traditional data structures.

It is shown that p-LCP can be used to linearly construct
the p-border array and the border array.

The concept of permuted LCP is extended to p-strings.

96
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Variants of the p-LPF

|Beal,2012a] defined:
e Parameterized Longest not-equal Factor (p-LneF)
e Parameterized Longest reverse Factor (p-LrF)

e Parameterized Longest Factor (p-LF)

These structures can be calculated with the same

framework of p-LPF by changing preprocessing and
postprocessing.

They have applications in clone detection, periodicity
study and biological sequence compression.

9.
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Structural Matching (s-matching)

|Shibuya, 2004] defined it as parameterized matching
but taking into account an injective complementary
relation among a subset of the parameters.

Additional constrain in the matching: if parameter x
is mapped to parameter y, then the complement of x
must be mapped to the complement of y.

This is motivated by the application of RNA
matching:
e Adenine - Uracil

e Cytosine — Guanine

99



Structural Suffix Trees

Then, two s-strings that s-match have similar
structures and, hence, similar functions.

|Shibuya, 2004] proposed a solution based on
structural suffix trees.

He also proposed an O(n(log |} |+log|[]|)) online
algorithm to construct a s-suffix tree.

It is linear for RNA/DNA sequences.



Structural Suffix Arrays

For better space utilization, [Beal, 2013 and 2015]

defined:
e S-suffix array
e S-LCP
e S-border array



Extensions

Some properties

Two-dimensional parameterized matching
Approximate Approaches

Parameterized Longest Previous Factor
Structural Matching

Function Matching



/ o=

,/

Function Matching

Two equal-length strings function-match if one can
be transformed into the other by means of a function.

In pattern matching, many symbols in the pattern can
be mapped to the same symbol in the text window.

Solutions by [Amir, 2003]:
e Deterministic Solution: O(n|[]| log m)

e Monte Carlo Algorithm: O(n log m) with 1/n* failure
probability.
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Function Matching Extensions

2-dimensional Funcion Matching: A O(kn? log n)
randomized algorithm was proposed [Amir, 2003].

dy-Function Matching:

e X[1..m] and Y/1..m] strings match if X can be transformed
into X’ by means of a function g such that X’ §y-matches Y.

e A O(nm) algorithm was proposed by [Mendivelso, 2012].



~Generalized Function Match{
with Don’t Cares

The image of the mapping function any substring in
QX UID*

The don’t care symbol ¢ can be present in strings. It
matches:

e Any substring in the text if it is in the pattern.
e Any symbol in the pattern if it is in the text.
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“Generalized Function Matching
with Don’t Cares

A polynomial-time algorithm for finite alphabets
was devised [Amir, 2007].

It was shown that for infinite alphabets, the
problem is NP-Hard.

It is the first problem for which there is a
polynomial solutions for finite alphabets but not
for infinite alphabets.
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Image Processing

The problem of searching an icon in the screen
|Hazay, 2007].

It can be solved with:
e Exact matching
e Parameterized matching

e Approximate parameterized matching
(hamming, p-edit, 8y distance)

e Function matching
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Databases

In a database of URL'’s, parameterized queries can be
used to improve the ergonomy of the site and
finding the best places for advertisement ads.

In computational biology, it can be used to find
amino acid strings that follow a determined
structure.






Graph Isomorphism

* Is there a bijection f that maps the nodes/edges of G1
to the nodes/edges in G2 so that the adjacency relation
is preserved?

G2
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Graph Linearization

[t represents the structure of a graph in a linear manner.

Specifically, our linearization is a walk on the graph that
contains all its nodes and edges at least once.

Then, we evaluate graph isomorphism by comparing
walks rather than graphs.
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How do we linearize a graph?
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How do we linearize a graph?




The parameters

G1
e1 e2
e1
—> -
e2 e3 e3
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~How to use our linearizations to
match graphs?

* G1 and G2 are isomorphic if there is a linearization of G2
that parameterized-matches the linearization of Gi.
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~ How to use our linearizations to
match graphs?

* But what if we had calculated the following g7

* We need to check all the possible linearizations g.




, w to use our linearizations to

match graphs?

* But there may be 2(max(n!/,m!)) linearizations of a graph.
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Proposed Solution

[Mendivelso, 2013] proposed a solution to determine
if Gi=(V1, E1) and G2=(V2, E2) are isomorphic. It
consists of two steps:

1. Calculating a linearization p of Gi.

>. Determining whether there exists a walk g in G2
that parameterized-matches p.
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Proposed Solution

The total time complexity is:
O(dm log d + nd*?) = O(nd*?)

Experimental results show that this solution is
efficient especially for Miyazaki graphs which
constitute a hard case for graph isomorphism
algorithms [Mendivelso, 2015].
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Conclusions

Parameterized matching allows to find strings with
similar structure.

It has important applications in different areas such as
software maintenance, image processing, computational
biology, to name some.

There has been extensive research for the last decades.

New insights include the definition of new data
structures, the extension to RNA matching and its
application to solve graph isomorphism.
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