Peter Leupold

University of Leipzig

Prague Stringology Conference 2014

The duplication history for a string aabcbabcbbc.
The direction of reductions is top to bottom:

aabcbabcbbc

P

abcbabcbbc aabcbbc aabcbabcbe

= ==

abcbbc abcbabcbc aabcbc

abcbc abcbabc abcbc

abc

e For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

e For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

e Could be useful for compression (llie et al.)

e For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

e Could be useful for compression (llie et al.)

e Use duplication for phylogenetic trees

Possible duplication histories interesting for biological investigations.
In the article

Wapinski, I.; Pfeffer, A.; Friedman, N. and Regev, A.:
Natural History and Evolutionary Principles of Gene Duplication

in Fungi.
Nature 449 (2007), pages 54-61.

the way in which 17 populations of fungi had evolved was induced from
looking at the duplication histories of their genomes.

O pieupold | Reducing Squares in Suffix Arrays @)

"

sty g . K.‘*E‘"

T L [T i“!%f

aba ababa

For every positive integer ¢ there are words of length ¢ over a four-letter
alphabet whose number N of normal forms under eliminating squares is
bounded by:

%110% <N <2

No efficient algorithm for all cases.

Different square reductions in periodic factor:

abcbcbca abcbcbca abcbcbca

N\ 4 e

abcbca

Let w be a string with period k. Then any deletion of a factor of length k
will lead to the same result.

Input: string: w;
Data: stringlist: S (contains w);
1 while (S nonempty) do
x := POP(S);
Construct the suffix array of x;
if (there are runs in x) then
foreach run r do

Reduce one square in r;
Add new string to S;
end
end
10 else output x;
11 end

© 0 N o 00 W N

Input: string: w;
Data: stringlist: S (contains w);
1 while (S nonempty) do
x := POP(S);
Construct the suffix array of x;
if (there are runs in x) then
foreach run r do

Reduce one square in r;
Add new string to S;
end
end
10 else output x;
11 end

© 0 N o s W N

SA LCP
7 1 a
0 0 abcbbcba
6 1 ba
3 1 bbcba
4 3 bcba
1 0 bcbbeba
5 2 cba
2 cbbcba

SA LCP
7—-3=4 1 a

0 0 abcba (new)
6—-3=3 1 ba
5—-3=2 0 bcba
4-3=1 cba

(12)

SA LCP
7 1 a
0 0 abcbbcba
6 1 ba
3 1 bbcba
4 3 bcba
1 0 bcbbeba
5 2 cba
2 cbbcba

We also need: ISA

SA LCP
7—-3=4 1 a

0 0 abcba (new)
6—-3=3 1 ba
5—-3=2 0 bcba
4-3=1 cba

(12)

New suffixes

TN\

New suffixes

Not so new?

New suffixes

Not so new?
Deletions treated by:

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard:
Dynamic extended suffix arrays.
J. Discrete Algorithms, 8(2) 2010, pp. 241-257.

Suffixes right of the deletion:

Order and LCP remain the same.

=

|
[—
[E—

Deleting the left half of the square.

LCP is not greater than ¢ + n:

Order unchanged, because £ + n first letters remain the same.

LCP greater than £ + n:

Some letter within the prefix of length LCP might change

=4 G;:
LCP
—

Let the LCP of two strings z and uvw be k and let z < uvw. Then z and
uvww have the same LCP and z < uvww unless LCP(z, uvw) > |uv/|; in
the latter case also LCP(z, uvww) > |uv|.

Let LCP[ISA[j]] = k in the suffix array of a string w of length n+ 1. Then
for i < j we always have LCP[ISA[i]] < k +j —i.

~N O W =

8
9
10
11
12

Input: string: w; arrays: SA, LCP;
length and pos of square: nk;
for j=n+ kto|w|—1do
| SAnew([j]:=SA[j]-n;
end
i=k—1;
while (LCP[i]|>n+k—i ANDi>0) do

compute SAnew of w[i... k —1lw[k + n...|w|—1];

compute new LCPi];
/* with methods of Salson et al.
i=i—1;
end
for j=0to i+ mdo
| SAnew[j]:=SA[j];
end

*/

(18)

Efficient decision whether string has exponentially many ancestors

Different examples from abcbabcbce with several normal forms

Strategy for traversing the duplication history graph

Store only changes instead of new suffix array

Is a different method for run detection better?

Are there strings over three letters with exponentially many normal
forms?

P. Leupold Reducing Squares in Suffix Arrays (20)

