
Reducing Squares in Suffix Arrays

Peter Leupold

University of Leipzig

Prague Stringology Conference 2014

P. Leupold Reducing Squares in Suffix Arrays (1)

What I Really Want

The duplication history for a string aabcbabcbbc .
The direction of reductions is top to bottom:

aabcbabcbbc

abcbabcbbc aabcbabcbcaabcbbc

abcbbc abcbabcbc aabcbc

abcbc abcbabc abcbc

abc

P. Leupold Reducing Squares in Suffix Arrays (2)

Why I Want This

• For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

• Could be useful for compression (Ilie et al.)

• Use duplication for phylogenetic trees

• . . .

P. Leupold Reducing Squares in Suffix Arrays (3)

Why I Want This

• For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

• Could be useful for compression (Ilie et al.)

• Use duplication for phylogenetic trees

• . . .

P. Leupold Reducing Squares in Suffix Arrays (3)

Why I Want This

• For theoretical reasons (number of normal forms):

duproots(n) :=

max{|R| : R set of all normal forms of a string of length n}

• Could be useful for compression (Ilie et al.)

• Use duplication for phylogenetic trees

• . . .

P. Leupold Reducing Squares in Suffix Arrays (3)

Phylogenetic Trees

Possible duplication histories interesting for biological investigations.

In the article

Wapinski, I.; Pfeffer, A.; Friedman, N. and Regev, A.:
Natural History and Evolutionary Principles of Gene Duplication
in Fungi.
Nature 449 (2007), pages 54–61.

the way in which 17 populations of fungi had evolved was induced from
looking at the duplication histories of their genomes.

P. Leupold Reducing Squares in Suffix Arrays (4)

Phylogenetic Trees

P. Leupold Reducing Squares in Suffix Arrays (5)

Phylogenetic Trees

P. Leupold Reducing Squares in Suffix Arrays (6)

Phylogenetic Trees

P. Leupold Reducing Squares in Suffix Arrays (7)

Phylogenetic Trees

P. Leupold Reducing Squares in Suffix Arrays (8)

The Big Problem

Theorem (PSC 2009)

For every positive integer ` there are words of length ` over a four-letter
alphabet whose number N of normal forms under eliminating squares is
bounded by:

1

30
110

`
42 ≤ N ≤ 2`.

No efficient algorithm for all cases.

P. Leupold Reducing Squares in Suffix Arrays (9)

Runs, not Squares

Different square reductions in periodic factor:

abcbcbca abcbcbca abcbcbca

↘ ↓ ↙

abcbca

Lemma

Let w be a string with period k. Then any deletion of a factor of length k
will lead to the same result.

P. Leupold Reducing Squares in Suffix Arrays (10)

Naive Computation of all Strings Reachable from w
by Reduction of Squares

Input: string: w ;
Data: stringlist: S (contains w);

1 while (S nonempty) do
2 x := POP(S);
3 Construct the suffix array of x ;
4 if (there are runs in x) then
5 foreach run r do
6 Reduce one square in r ;
7 Add new string to S ;

8 end

9 end
10 else output x ;

11 end

P. Leupold Reducing Squares in Suffix Arrays (11)

Naive Computation of all Strings Reachable from w
by Reduction of Squares

Input: string: w ;
Data: stringlist: S (contains w);

1 while (S nonempty) do
2 x := POP(S);
3 Construct the suffix array of x ;
4 if (there are runs in x) then
5 foreach run r do
6 Reduce one square in r ;
7 Add new string to S ;

8 end

9 end
10 else output x ;

11 end

P. Leupold Reducing Squares in Suffix Arrays (11)

Modification of the suffix array
by deletion of bcb in abcbbcba

SA LCP SA LCP

7 1 a 7− 3 = 4 1 a

0 0 abcbbcba 0 0 abcba (new)
6 1 ba 6− 3 = 3 1 ba

3 1 bbcba ⇒ —
4 3 bcba 5− 3 = 2 0 bcba

1 0 bcbbcba —
5 2 cba 4− 3 = 1 cba

2 cbbcba —

We also need: ISA

P. Leupold Reducing Squares in Suffix Arrays (12)

Modification of the suffix array
by deletion of bcb in abcbbcba

SA LCP SA LCP

7 1 a 7− 3 = 4 1 a

0 0 abcbbcba 0 0 abcba (new)
6 1 ba 6− 3 = 3 1 ba

3 1 bbcba ⇒ —
4 3 bcba 5− 3 = 2 0 bcba

1 0 bcbbcba —
5 2 cba 4− 3 = 1 cba

2 cbbcba —

We also need: ISA

P. Leupold Reducing Squares in Suffix Arrays (12)

The First Small Problem

New suffixes

Not so new?

Deletions treated by:

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard:
Dynamic extended suffix arrays.
J. Discrete Algorithms, 8(2) 2010, pp. 241–257.

P. Leupold Reducing Squares in Suffix Arrays (13)

The First Small Problem

New suffixes

Not so new?

Deletions treated by:

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard:
Dynamic extended suffix arrays.
J. Discrete Algorithms, 8(2) 2010, pp. 241–257.

P. Leupold Reducing Squares in Suffix Arrays (13)

The First Small Problem

New suffixes

Not so new?

Deletions treated by:

M. Salson, T. Lecroq, M. Léonard, and L. Mouchard:
Dynamic extended suffix arrays.
J. Discrete Algorithms, 8(2) 2010, pp. 241–257.

P. Leupold Reducing Squares in Suffix Arrays (13)

No Change

Suffixes right of the deletion:

Order and LCP remain the same.

Deleting the left half of the square.

P. Leupold Reducing Squares in Suffix Arrays (14)

Same Order, Lower LCP

LCP is not greater than ` + n:

Order unchanged, because ` + n first letters remain the same.

n nn`

LCP

P. Leupold Reducing Squares in Suffix Arrays (15)

Order Change

LCP greater than ` + n:

Some letter within the prefix of length LCP might change

n nn`

LCP

P. Leupold Reducing Squares in Suffix Arrays (16)

Computing the new suffix array

Lemma (Condition for Change in Position)

Let the LCP of two strings z and uvw be k and let z < uvw. Then z and
uvvw have the same LCP and z < uvvw unless LCP(z , uvw) ≥ |uv |; in
the latter case also LCP(z , uvvw) ≥ |uv |.

Lemma (No further changes to the left)

Let LCP[ISA[j]] = k in the suffix array of a string w of length n + 1. Then
for i < j we always have LCP[ISA[i]] ≤ k + j − i .

P. Leupold Reducing Squares in Suffix Arrays (17)

Computing the New Suffix Array

Input: string: w; arrays: SA, LCP;
length and pos of square: n,k;

1 for j = n + k to |w | − 1 do
2 SAnew[j]:=SA[j]-n;
3 end
4 i := k − 1;
5 while (LCP[i] > n + k − i AND i ≥ 0) do
6 compute SAnew of w [i . . . k − 1]w [k + n . . . |w | − 1];
7 compute new LCP[i];

/* with methods of Salson et al. */

8 i := i − 1;

9 end
10 for j = 0 to i + m do
11 SAnew[j]:=SA[j];
12 end

P. Leupold Reducing Squares in Suffix Arrays (18)

Other Small Problems

• Efficient decision whether string has exponentially many ancestors

• Different examples from abcbabcbc with several normal forms

• Strategy for traversing the duplication history graph

• Store only changes instead of new suffix array

• Is a different method for run detection better?

• Are there strings over three letters with exponentially many normal
forms?

P. Leupold Reducing Squares in Suffix Arrays (19)

Why I keep thinking about the LCP...

P. Leupold Reducing Squares in Suffix Arrays (20)

