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Shortest Superstring and Shortest Cyclic Cover of linear
strings

Two problems related to assembly of string from overlaps of

shorter strings.

A basic step in DNA assembly

Shortest superstring is a model for DNA assembly

well studied hard problem, with approximation algorithms using

Cyclic Covers.

Question: what is the compression achieved by a greedy

algorithm?

Result: A new proof of 1/2 compression ratio using subset

systems.
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Strings and maximum overlaps

We consider �nite strings over an alphabet Σ

and denote by |v | the length of a string v .

Example (Maximum overlap between two strings)

Let strings s1 := abba and s2 := bbaba.

s2 :Ms1

s2 :Os1

s2 :

s1 :

a b b a b a

b b a

b b a b a

a b b a

s1 overlaps s2 by two characters

overlaps are not symmetric
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Superstring and the Shortest Superstring Problem (SSP)

De�nition

Let P = {s1, s2, . . . , sp} be a set of strings. A superstring of P is a

string w such that any si is a substring of w .

w :

s1 :

s2 :

s3 :

a b a a b a

1 2 3 4 5 6

a a b

a b

a b a

Problem: Shortest Superstring Problem (SSP)

Input: P a set of strings over Σ
Output: w a superstring of P of minimal length.
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Known results on Shortest Superstring

State of the art

1 Problem is NP-hard [Gallant 1980]

2 and di�cult to approximate [Blum et al. 1991]

3 Many variations of this problem: e.g. with �xed length input strings
[Gus�eld 1997]

4 Many approximation algorithms, most use a similar approach
best known superstring ratio 2 11

30
[Paluch 2014]

& conjecture optimum ratio equals 2 [Gallant 1980]

Applications

1 DNA Assembly in bioinformatics

2 Data compression

3 Natural language processing, translation, inference
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Approximation measures

Two possible approximation measures:

the length of the obtained superstring

the compression of the input strings:
∑

i=1..p |si | − |s ′|

w :

s1 :

s2 :

s3 :

a b a a b a

1 2 3 4 5 6

a a b

a b

a b a

Output superstring has length 6

Compression of 2 symbols;
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Tarhio & Ukkonen seminal work

Bastien Cazaux and Eric Rivals Greedy 1/2-compression 6 / 22



Subset systems

De�nition

A subset system is a pair (E ,L) comprising

a �nite set of elements E , and

L a familly of subsets of E

satisfying two conditions:

(SS1) L 6= ∅,
(SS2) If A′ ⊆ A and A ∈ L, then A′ ∈ L.
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Greedy algorithm for a subset system

Input : (E ,L)

The elements ei of E sorted by increasing weight:

p(e1) ≤ p(e2) ≤ . . . ≤ p(en)

F ← ∅
for i = 1 to n do

if F ∪ {ei} ∈ L then F ← F ∪ {ei};
return F

Output: A set F of L that is maximal for inclusion.

In our case, ei is a maximum overlap, its weight is its length.
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Greedy algorithm for Maximum Compression [Gallant 1980]

m1

m2

m3

m4

m5

m2 m3
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Greedy algorithm for Maximum Compression [Gallant 1980]

m1

m2

m3

m4
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Greedy algorithm for Maximum Compression [Gallant 1980]

m1

m2

m3

m4

m5

m2 M m3
m2 M m3
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Overlap Graph
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Superstring on the overlap graph

aabab

baaba

babaa

babba

43

3

0

4

2

1

2

1
3

20

3

2

2

2

3

2

0

a compression of 10 symbols
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Greedy on the overlap graph
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Subset system for Maximum Compression

Notation

s O t: the maximum overlap between s and t

ES : the set of maximum overlaps between words of S

ES := {si O sj | si and sj ∈ S}.

De�nition (Subset system for Maximum Compression)

We de�ne LS as the set of F ⊆ ES such that:

(L1) for each string, there is only one overlap to the left

(L2) and only one overlap to the right

(L3) there exists no cycle (si1 O si2 , . . . , sir−1
O sir , sir O si1) in F ,

such that ∀k ∈ {1, . . . , r}, sik ∈ S .
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Extension and extensibility

De�nition (Extension)

Let A,B ∈ LP . B is an extension of A if A ⊆ B and B ∈ LP .

De�nition (k-Extensibility)

Let k ≥ 1 be an integer.

A subset system (E ,L) is said to be k-extensible if

for all C ∈ L and x /∈ C such that C ∪ {x} ∈ L, and
for any extension D of C ,

there exists a subset Y ⊆ D \ C with #(Y ) ≤ k satisfying

D \ Y ∪ {x} ∈ L.
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Greedy 3-extensible

D \ C contains the red egdes and satis�es SS conditions

we wish to add x to the set

Question: which edges do we need to remove?

x

u v

w

Answer: at most {u, v ,w}.
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Mestre's theorem

Theorem ([Mestre06])

Let (E ,L) be a subset system that is k-extensible. The greedy

algorithm de�ned for (E ,L) with weight p yields an approximation

ratio of 1

k
.

Theorem (1/3 approximation for Maximum Compression)

The approximation ratio of greedy algorithm for the maximum

compression equals 1

3
.

Proof

Follows from the 3-extensibility of (ES ,LS).
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Greedy is not 2-extensible

The system (ES ,LS) isn't 2-extensible.

Example (Non 2-extensible)

Let P := {s1, . . . , s5},
C := ∅, x := s1 O s2 and

D := {s1 O s3, s4 O s2, s5 O s1, s2 O s5}, then
D \ C = D. For any YS ⊆ D such that D \ YS ∪ {x} ∈ LS
we have #(YS) ≥ 3 because {s1 O s3, s5 O s1, s2 O s5} ⊆ Ys .
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Monge's inequality

Lemma Monge's inequality

Let s1, s2, s3 and s4 be four di�erent words satisfying

1 |s1 O s2| ≥ |s1 O s4|
2 and |s1 O s2| ≥ |s3 O s2|.

Then:

|s1 O s2|+ |s3 O s4| ≥ |s1 O s4|+ |s3 O s2|
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Main result

Theorem (1/2 approximation)

The approximation ratio of greedy algorithm for the maximum

compression equals 1

2
.

Proof

Detail the case of 3-extensibility following Mestre's idea.

combine with Monge's inequality
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Shortest Cyclic Cover (SCC)

Variant of SSP in which cycles are allowed

The system looses the third "no cycle" condition

Adapt the proof of 3-extensibility for SSP gives 2-extensibility for

SCC

Adapt the proof of 1/2-ratio of SSP gives a perfect ratio for SCC
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Conclusion

A simple proof of 1/2 compression ratio for Shortest Superstring

The approach does not work as such when the approximation

measure is the length of the output superstring.

A proof that greedy algorithm solves exactly the Shortest Cyclic

Cover
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