





Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

### Approximation of Greedy Algorithms for Max-ATSP, Maximal Compression, Maximal Cycle Cover, and Shortest Cyclic Cover of Strings

Bastien Cazaux and Eric Rivals

Prague Stringology Conference 2014 Tuesday, September 02, 2014

# Shortest Superstring and Shortest Cyclic Cover of linear strings

- Two problems related to assembly of string from overlaps of shorter strings.
- A basic step in DNA assembly
- Shortest superstring is a model for DNA assembly
- well studied hard problem, with approximation algorithms using Cyclic Covers.
- Question: what is the compression achieved by a greedy algorithm?
- Result: A new proof of 1/2 compression ratio using subset systems.

### Strings and maximum overlaps

- $\bullet\,$  We consider finite strings over an alphabet  $\Sigma\,$
- and denote by |v| the length of a string v.



#### Definition

Let  $P = \{s_1, s_2, \dots, s_p\}$  be a set of strings. A superstring of P is a string w such that any  $s_i$  is a substring of w.



**Problem**: Shortest Superstring Problem (SSP)

**Input**: P a set of strings over  $\Sigma$ **Output**: w a superstring of P of minimal length.

### Known results on Shortest Superstring

#### State of the art

- Problem is NP-hard [Gallant 1980]
- 2 and difficult to approximate [Blum et al. 1991]
- Many variations of this problem: e.g. with fixed length input strings [Gusfield 1997]

Many approximation algorithms, most use a similar approach best known superstring ratio 2<sup>11</sup>/<sub>30</sub> [Paluch 2014]
& conjecture optimum ratio equals 2 [Gallant 1980]

#### Applications

- DNA Assembly in bioinformatics
- 2 Data compression
- Satural language processing, translation, inference

Two possible approximation measures:

- the length of the obtained superstring
- the compression of the input strings:  $\sum_{i=1..p} |s_i| |s'|$



Output superstring has length 6 Compression of 2 symbols; Theoretical Computer Science 57 (1988) 131-145 North-Holland 131

#### A GREEDY APPROXIMATION ALGORITHM FOR CONSTRUCTING SHORTEST COMMON SUPERSTRINGS\*

Jorma TARHIO and Esko UKKONEN

Department of Computer Science, University of Helsinki, Teollisuuskatu 23, SF-00510 Helsinki, Finland

**Theorem 3.2.** Let H be the approximate longest Hamiltonian path constructed by the greedy heuristic for the overlap graph of R, and let  $H_{max}$  be a longest Hamiltonian path. Then  $|H| \ge \frac{1}{2}|H_{max}|$ .

(日) (四) (日) (日) (日)

#### Definition

A subset system is a pair  $(E, \mathcal{L})$  comprising

- a finite set of elements E, and
- $\mathcal{L}$  a familly of subsets of E

satisfying two conditions:

(SS1)  $\mathcal{L} \neq \emptyset$ , (SS2) If  $A' \subseteq A$  and  $A \in \mathcal{L}$ , then  $A' \in \mathcal{L}$ . Input :  $(E, \mathcal{L})$ The elements  $e_i$  of E sorted by increasing weight:  $p(e_1) \leq p(e_2) \leq \ldots \leq p(e_n)$   $F \leftarrow \emptyset$ for i = 1 to n do  $\lfloor$  if  $F \cup \{e_i\} \in \mathcal{L}$  then  $F \leftarrow F \cup \{e_i\}$ ; return FOutput: A set F of  $\mathcal{L}$  that is maximal for inclusion.

In our case,  $e_i$  is a maximum overlap, its weight is its length.

### Greedy algorithm for Maximum Compression [Gallant 1980]



< A

### Greedy algorithm for Maximum Compression [Gallant 1980]



Bastien Cazaux and Eric Rivals

< A

9 / 22

### Greedy algorithm for Maximum Compression [Gallant 1980]



Bastien Cazaux and Eric Rivals

9 / 22

### Overlap Graph



3

イロト イポト イヨト イヨト

### Superstring on the overlap graph



Bastien Cazaux and Eric Rivals

э



æ

- 4 伊 ト 4 ヨ ト 4 ヨ ト



Bastien Cazaux and Eric Rivals

3

- 4 伊 ト 4 ヨ ト 4 ヨ ト



Bastien Cazaux and Eric Rivals

3

- 4 伊 ト 4 ヨ ト 4 ヨ ト



Bastien Cazaux and Eric Rivals

12 / 22

æ

### Subset system for Maximum Compression

Notation

- $s \odot t$ : the maximum overlap between s and t
- $E_S$ : the set of maximum overlaps between words of S $E_S := \{s_i \odot s_j \mid s_i \text{ and } s_j \in S\}.$

#### Definition (Subset system for Maximum Compression)

We define  $\mathcal{L}_{\mathcal{S}}$  as the set of  $F \subseteq E_{\mathcal{S}}$  such that:

- (L1) for each string, there is only one overlap to the left
- (L2) and only one overlap to the right
- (L3) there exists no cycle  $(s_{i_1} \odot s_{i_2}, \ldots, s_{i_{r-1}} \odot s_{i_r}, s_{i_r} \odot s_{i_1})$  in F, such that  $\forall k \in \{1, \ldots, r\}, s_{i_k} \in S$ .

### Subset system for Maximum Compression

Notation

- $s \odot t$ : the maximum overlap between s and t
- $E_S$ : the set of maximum overlaps between words of S $E_S := \{s_i \odot s_j \mid s_i \text{ and } s_j \in S\}.$

#### Definition (Subset system for Maximum Compression)

We define  $\mathcal{L}_{S}$  as the set of  $F \subseteq E_{S}$  such that: (L1)  $\forall s_{i}, s_{j}$  and  $s_{k} \in S, s_{i} \odot s_{k}$  and  $s_{j} \odot s_{k} \in F \Rightarrow i = j$ , (L2)  $\forall s_{i}, s_{j}$  and  $s_{k} \in S, s_{k} \odot s_{i}$  and  $s_{k} \odot s_{i} \in F \Rightarrow i = j$ , (L3) there exists no cycle  $(s_{i_{1}} \odot s_{i_{2}}, \dots, s_{i_{r-1}} \odot s_{i_{r}}, s_{i_{r}} \odot s_{i_{1}})$  in F, such that  $\forall k \in \{1, \dots, r\}, s_{i_{k}} \in S$ . Definition (Extension)

Let  $A, B \in \mathcal{L}_{\mathcal{P}}$ . B is an extension of A if  $A \subseteq B$  and  $B \in \mathcal{L}_{\mathcal{P}}$ .

#### Definition (k-Extensibility)

Let  $k \ge 1$  be an integer. A subset system  $(E, \mathcal{L})$  is said to be *k*-extensible if for all  $C \in \mathcal{L}$  and  $x \notin C$  such that  $C \cup \{x\} \in \mathcal{L}$ , and for any extension D of C, there exists a subset  $Y \subseteq D \setminus C$  with  $\#(Y) \le k$  satisfying  $D \setminus Y \cup \{x\} \in \mathcal{L}$ .  $D \setminus C$  contains the red egdes and satisfies SS conditions we wish to add x to the set Question: which edges do we need to remove?



Answer: at most  $\{u, v, w\}$ .

#### Theorem ([Mestre06])

Let  $(E, \mathcal{L})$  be a subset system that is k-extensible. The greedy algorithm defined for  $(E, \mathcal{L})$  with weight p yields an approximation ratio of  $\frac{1}{k}$ .

#### Theorem (1/3 approximation for Maximum Compression)

The approximation ratio of greedy algorithm for the maximum compression equals  $\frac{1}{3}$ .

#### Proof

Follows from the 3-extensibility of  $(E_S, \mathcal{L}_S)$ .

The system  $(E_S, \mathcal{L}_S)$  isn't 2-extensible.

Example (Non 2-extensible) Let  $P := \{s_1, \dots, s_5\}$ ,  $C := \emptyset$ ,  $x := s_1 \odot s_2$  and  $D := \{s_1 \odot s_3, s_4 \odot s_2, s_5 \odot s_1, s_2 \odot s_5\}$ , then  $D \setminus C = D$ . For any  $Y_S \subseteq D$  such that  $D \setminus Y_S \cup \{x\} \in \mathcal{L}_S$ we have  $\#(Y_S) \ge 3$  because  $\{s_1 \odot s_3, s_5 \odot s_1, s_2 \odot s_5\} \subseteq Y_s$ .

#### Lemma Monge's inequality

Let  $s_1$ ,  $s_2$ ,  $s_3$  and  $s_4$  be four different words satisfying

$$|s_1 \odot s_2| \ge |s_1 \odot s_4|$$

**2** and 
$$|s_1 \odot s_2| \ge |s_3 \odot s_2|$$
.

Then:

$$|s_1 \odot s_2| + |s_3 \odot s_4| \ge |s_1 \odot s_4| + |s_3 \odot s_2|$$

#### Theorem (1/2 approximation)

The approximation ratio of greedy algorithm for the maximum compression equals  $\frac{1}{2}$ .

#### Proof

Detail the case of 3-extensibility following Mestre's idea.

combine with Monge's inequality

- Variant of SSP in which cycles are allowed
- The system looses the third "no cycle" condition
- Adapt the proof of 3-extensibility for SSP gives 2-extensibility for SCC
- Adapt the proof of 1/2-ratio of SSP gives a perfect ratio for SCC

 $\bullet$  A simple proof of 1/2 compression ratio for Shortest Superstring

• The approach does not work as such when the approximation measure is the length of the output superstring.

• A proof that greedy algorithm solves exactly the Shortest Cyclic Cover

### Funding and acknowledgments







## Thanks for your attention Questions ?



Bastien Cazaux and Eric Rivals

Greedy 1/2-compression