Using Correctness-by-Construction to Derive
Dead-zone Algorithms

Bruce Watson Loek Cleophas Derrick Kourie

FASTAR Research Group
Stellenbosch University & Pretoria University
South Africa

{bruce, loek, derrick}@fastar.org

Prague Stringology Conference, 1 September 2014

fastar

The journey is the reward

v

Derive an iterative version of the dead-zone algorithm

Give correctness proof

v

Motivate for correctness-by-construction (CbC)

v

Introduce CbC as a way of explaining algorithms

v

Show how CbC can be used in inventing new one

Often in Science of Computer Programming, Elsevier Journal

fastar

Contents

© No bk wh =

What is CbC?

Problem statement

Intuitive solution ideas & related work
From positions to ranges-of-positions
Greater shifts

Representing the set of live-zones
Concurrency

Conclusions & ongoing work

fastar

What is CbC?

1. Start with a specification
2. Refine the specification
...in tiny steps
...each of which is correctness-preserving

3. Stop when it's executable enough

What do we have at the end?
» Algorithm we can run
> Derivation showing how we got there
» Interwoven correctness proof
» ‘Tiny' derivation steps give choices
Family of algorithms
fastar

Problem statement

Single keyword exact pattern matching:

Given two strings x,y € £* over an alphabet ¥ (x is the
pattern, y is the input text) find all occurrences of x as a
contiguous substring of y.

For convenience:

Match(x, y,j) = (x = yjjjrix))

Now we have our postcondition:

MS = U {7}

J€[0,]y]):Match(x,y.j)

For example, y = abbaba and x = ba gives

MS = {2,4} fastar

Intuitive solution

Partition the indices in y — i.e. set [0, |y])
1. MS — a match has already been found
2. Live_Todo — we know nothing
still live.
3. =(MS U Live_Todo) — we know no match occurs

1 and 3 together are the dead-zone

fastar

Intuitive solution (cont.)

Start with Live_Todo = [0, |y|) (all are live) and MS = ()
... reduce to Live_Todo = () (all dead), i.e.

fastar

DO loops

What do we need to derive a loop?

Invariant: ~ » Predicate/assertion
» True before and after the loop
» True at the top and bottom of each iteration

Variant: ~ » Integer expression

» Often based on the loop control variable
» Decreasing each iteration, bounded below
>

Gives us confidence it's not an infinite loop

Bertrand Meyer 2011 (rephrasing Edsger Dijkstra 1970)
“Publish no loop without its invariant”

See also Furia, Meyer, Velder: Loop invariants: Analysis,

Classification and Examples, Computing Surveys 2014. fastar

DO loops

For invariant / and variant expression V we get

{ P}

{1}

do G —
{ I A G A expression V has a particular value }
So
{ I N expression V has decreased }

od

{ IAN=G}

{Q}

fastar

First algorithm

Live_Todo : =0, |y|);

MS : = 0;

{ invariant: (V j:j € MS: Match(x,y,j)) }

{ AV j:j & (MSU Live_Todo) : -Match(x,y,j)) }
{ variant: |Live_Todo| }

S : Some kind of loop

{ invariant A |Live_Todo| =0 }

{ post }

fastar

Ranges of positions

Be cheap:
change Live_Todo to be a pairwise disjoint set of live ranges [/, h)

Live_Todo : = {[0, |y|)};
MS : = 0;
{ invariant: (V j:j € MS: Match(x,y,j)) }
{ AN(Vj:j¢& (MSULive_Todo) : ~Match(x,y,j)) }
{ variant: |Live_Todo| }
do Live_Todo # () —
Extract some [/, h) from Live_Todo;

51 : do some stuff to check matches in [/, h) and update Live_Todo
od
{ invariant A |Live_Todo| =0 }
[post }

fastar

Ranges of positions (stripped of invariant stuff)

Live_Todo : = {[0, |y|)};
MS : = 0;
do Live_Todo # () —
Extract some [/, h) from Live_Todo;

Sp : do some stuff to check matches in [/, h) and update Live_Todo
od
[post }

fastar

Ranges of positions (details)

Choose middle of a live range L#J

and check there (also exclude end):

Live_Todo : = {[0, |y| — |x])};
MS ;= 0;
do Live_ Todo # () —
Extract [/, h) from Live_Todo;
mi=|5h]:
if Match(x,y, m) —
MS :=MS U {m}
fi;
Live_Todo : = Live_Todo U [/, m) U [m + 1, h)
od
{ post }

. . : . fastar
What if we insert an empty range into Live_Todo??

Ranges of positions (details)

Live_Todo := {[0, |y| — [x])};
MS : = 0;
do Live_Todo # () —
Extract [/, h) from Live_Todo;
if /> h— { empty range } skip

Live_Todo : = Live_Todo U [/, m) U[m + 1, h)

| I<h—
m:= |38,
if Match(x,y, m) —
MS :=MS U {m}
fi;
fi
od
[post }

fastar

Greater shifts

We can of course user Match (or other) information to make larger
window shifts

I'h := m — shl, m + shr,
Live_Todo := Live_Todo U [/, I") U [, h);

fastar

Representing the ‘set’ of live-zones

> Live_Todo are pairwise disjoint. .. can be done in parallel

Simone & Thierry have presented an algorithm with similar
characteristics

> Live_Todo is a set
Extracting [/, h) gives an arbitrary pair
Very poor performance with cache misses in y
» Live_Todo can easily be represented using a queue or stack

Breadth- or depth-wise traversals of the ranges in y

, best case [nyl‘|

Ix]

Queue: worst case size |y

Stack: worst case size loga|y|

fastar

Live_Todo as a stack

Live_Todo : = ([0, |y| — |x]));
MS := {;
do Live_Todo # () —
Pop [/, h) from Live_Todo;
if / > h— { empty range } skip
| I<h—
m:—= L/-Q—hJ
if Match(x,y, m) —
MS :=MS U {m}
fi;
I')h := m — shl,m + shr,

Push [, h) onto Live_Todo;

Push [/, /") onto Live_Todo

od
{ post }

fastar

Optimization: L-R deadness sharing
maintain integer z with invariant (such that)
(Vi:0<i<z:iisdead)

and keep z maximal, giving:

z:=0;

do Live_Todo # () —
Pop [/, h) from Live_Todo;
| :=Imaxz;
z:= 1
if /> h— { empty range } skip

fastar

Concurrency: decouple match verification from shifting

Live_Todo := ([0, |y| — |x]));
MS : = 0;
do Live_Todo # () —
Pop [/, h) from Live_Todo;
if /> h— { empty range } skip

| I<h—
m= Ll+hJ
Add m to queue Attempt, for some thread t;
I')h := m — shl, m+ shr,
Push [, h) to Live_Todo;
Push [/, /") to Live_Todo
fi
od
{ post }

fastar

Conclusions & ongoing work

> Interesting new algorithm skeleton
» Performance is similar to comparable algorithms

Not yet clear how to integrate advances in other algorithms
» CbC is robust and relatively easy

Creativity is not hampered: new algorithms can be invented
» Useful methodology for bringing coherence to a field

...and detecting unexplored parts

fastar

Performance

(x = nhh) / nhh * 100

40
|

-40
|

-80

-100

1 8 17 27 37 47 57 67 77 87 97 109 122 135 148
fastar

Data Sources: i7 / Wall plug / Sequential / * / * / Bible / Machine time

	Introduction

