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HABATAKITAI Laboratory Everything is String. 

The study of Abelian equivalence of strings dates back to at 
least the early 60’s, as seen in the paper by Erdös.  
 
Two strings u, v are said to be Abelian equivalent if u is a 
permutation of the characters appearing in v.  

Background �
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[J.K.Rowling,1997] 
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The study of Abelian equivalence of strings dates back to at 
least the early 60’s, as seen in the paper by Erdös.  
 
Two strings u, v are said to be Abelian equivalent if u is a 
permutation of the characters appearing in v.  

TOM MARVOLO RIDDLE and I AM LORD VOLDEMORT 
are Abelian equivalent. 

Example 

Abelian equivalence of strings has attracted much attention 
and has been studied extensively in several contexts.  

Background �
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²  Two new regularities on strings with respect to 
Abelian equivalence, 
•  Abelian covers and 
•  Abelian runs 
of strings, which are generalizations of 
•  covers [Apostolico et al., 1991] and 
•  runs [Kolpakov and Kucherov,1999] 
of strings, respectively. 

 
²  Non-trivial algorithms to compute these new string 

regularities. 

Our Contributions �
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w = a a b a b 
Pw = ⟨3，2⟩	

Example 

Σ = {a1,...,am} : integer alphabet 
w∈Σ* : string  
Pw[k] : num. of occurrences of k-th character in w 
Pw = ⟨Pw[1] ,…, Pw[m]⟩ : Parikh vector of w	

Parikh vector �
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1 ≤ k ≤ m, Px[k] ≥ Py[k] and |x| > |y| ó Px > Py  

 x = ababbaa    y = aabab  
Px = ⟨4，3⟩       Py = ⟨3，2⟩ 
                Px > Py  

Example 

Partial order on Parikh vectors �
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Px = Py   ó  x and y are Abelian equivalent. 

x = aabab , y = baaba  
Px = Py = ⟨3, 2⟩  

x and y are Abelian equivalent. 

Example 

Abelian equivalence �
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For a string w of length n ≥ 2, a set 
I ={[bk, ek]:1 ≤ bk ≤ ek ≤ n, 1 ≤ k ≤ |I |} of intervals 
is an Abelian cover of w, if for every 1 ≤ k ≤ |I |, 
•  [bk, ek] ≠ [1, n], 
•  ∪1 ≤ k ≤ |I | [bk, ek] = [1, n], and 
•  Pw[b1, e1] = Pw[bk, ek]. 

Definition	

Abelian covers �
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

a	 a	 b	 b	 a	 a	 b	 a	 b	 a	

Abelian covers �

Example 

Set {[1, 3], [4, 6], [5, 7], [6, 8], [8, 10]} of 
intervals is an Abelian cover of this string.	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

a	 a	 b	 b	 a	 a	 b	 a	 b	 a	

Abelian covers �

Example 

Set {[1, 4], [4, 7], [7, 10]} of intervals 
is also an Abelian cover of this string.	
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Given a string w, determine whether or not w has an 
Abelian cover.	

Problem 1 (Abelian cover existence)	

Abelian covers �
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String w of length n has an Abelian cover  
ó Pw[1, i] = Pw[n-i+1, n] for some 1 ≤ i < n.	

Lemma 1 (Abelian covers)	

Abelian covers �
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Proof (è)	

String w of length n has an Abelian cover  
ó Pw[1, i] = Pw[n-i+1, n] for some 1 ≤ i < n.	

Lemma 1 (Abelian covers)	

If w has an Abelian cover {[b1, e1], …, [b|I|, e|I|]}, 
then Pw[b1, e1] = Pw[b|I|, e|I|].	

w  	
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If, for some 1 ≤ i ≤ n/2, Pw[1, i] = Pw[n-i+1, n], 
then Pw[1, n-i] = Pw[i+1, n] and 
I ={[1, n-i], [i+1, n]} is an Abelian cover of w.	

w  	 i	 n-i+1	

String w of length n has an Abelian cover  
ó Pw[1, i] = Pw[n-i+1, n] for some 1 ≤ i < n.	

Lemma 1 (Abelian covers)	

Proof (ç)	
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If, for some n/2 < i < n, Pw[1, i] = Pw[n-i+1, n], 
I ={[1, i], [n-i+1, n]} is an Abelian cover of w.	

w  	 i	n-i+1	

String w of length n has an Abelian cover  
ó Pw[1, i] = Pw[n-i+1, n] for some 1 ≤ i < n.	

Lemma 1 (Abelian covers)	

Proof (ç)	
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We look for an Abelian border of w.	

String w of length n has an Abelian cover  
ó Pw[1, i] = Pw[n-i+1, n] for some 1 ≤ i < n.	

Lemma 1 (Abelian covers)	

Algorithm (Abelian covers) �



HABATAKITAI Laboratory Everything is String. 

We scan w from left and from right, and check 
if w[1, i] and w[n-i+1, n] are Abelian equivalent 
for some i. 

Algorithm (Abelian covers) �

w	
n	i	 n-i+1	
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 0	 0	

b	 0	 0	

c	 0	 0	

Algorithm (Abelian covers) �

counter = 3	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 1	 0	

b	 0	 0	

c	 0	 0	

Algorithm (Abelian covers) �

counter = 2	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 1	 0	

b	 0	 0	

c	 0	 1	

Algorithm (Abelian covers) �

counter = 1	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 1	 0	

b	 1	 0	

c	 0	 1	

Algorithm (Abelian covers) �

counter = 0	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 1	 0	

b	 1	 1	

c	 0	 1	

Algorithm (Abelian covers) �

counter = 1	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 2	 0	

b	 1	 1	

c	 0	 1	

Algorithm (Abelian covers) �

counter = 1	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 2	 1	

b	 1	 1	

c	 0	 1	

Algorithm (Abelian covers) �

counter = 1	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 2	 1	

b	 1	 1	

c	 1	 1	

Algorithm (Abelian covers) �

counter = 2	 # of matching elements of the Parikh vectors. 
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w = a b a c b a c a a b c	

prefix	 suffix	

a	 2	 2	

b	 1	 1	

c	 1	 1	

Algorithm (Abelian covers) �

counter = 3	 String w has an Abelian border.  
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•  The Parikh vectors of all prefixes and suffixes can be 
computed and compared in O(n) time. 

•  We maintain two Parikh vectors requiring O(|∑|) space. �

Time and Space (Abelian covers) �

Given a string w of length n, we can determine 
whether or not w has an Abelian cover in 
O(n) time with O(|Σ|) working space.	

Theorem 1	
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Substring w[i, j] of string w is an Abelian run of w,  
if	
• w[i, j] = u’u1··· ur u” with r ≥ 2, 
• Pu’ < Pu1 = ··· = Pur > Pu” , 
• Pw[i−1]u’ ≤ Pu1 and 
• Pu”w[ j+1] ≤ Pu1,	

/	
/	

and is represented by 5-tuple (i, |u’|, |u1|, |u”|, r).	
	

Definition	

Abelian runs �
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

Example 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

Example 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	 u3	u’	

Pu1 = Pu2 = Pu3	

Example 

u1, u2 and u3 are called the cores of this 
Abelian run.	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	 u3	u’	

Pu’ < Pu1	

Pau’ ≤ Pu1 /	

Example 

u’ is the left arm of this Abelian run.	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	 u3	u’	

Example 

u” = ε	
Pu1 > Pu”	

u” is the right arm of this Abelian run.	
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Problem 2 (All Abelian runs)	

Given a string w, compute all Abelian runs 
in w. 

Abelian runs �
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Algorithm (All Abelian runs)	

① Compute All Abelian squares 
② Merge Abelian squares into cores u1,…, ur  
③ Compute left arms u’ and right arms u” 	
	

Our algorithm consists of the following three steps:	
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Algorithm (All Abelian runs)	

① Compute All Abelian squares 
② Merge Abelian squares into cores u1,…, ur  
③ Compute left arms u’ and right arms u” 	
	

Our algorithm consists of the following three steps:	

We construct a table T  for steps ① and ②.	
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Algorithm step ① (Abelian runs)	

Table T is a n/2 × (n-1) table such that for 
1 ≤ k ≤ n-1 and 1 ≤ d ≤ n/2 
•  T [d, k] = 1 if Pw[k-d+1, k] = Pw[k+1, k+d] 
•  T [d, k] = 0 otherwise, 
and T [d, k] are undefined for n/2 < d, 
 k-d+1 < 1 and n < k+d. 

Definition 	

Table T represents all Abelian squares of w.	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 0	

2	 0	 0	 0	 1	 1	 0	 1	 0	

3	 0	 0	 1	 1	 0	 0	

4	 0	 1	 0	 0	

5	 0	 0	

k	d	

Table T �
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 0	

2	 0	 0	 0	 1	 1	 0	 1	 0	

3	 0	 0	 1	 1	 0	 0	

4	 0	 1	 0	 0	

5	 0	 0	

k	d	

Pw[4, 6] = Pw[7, 9] 

Table T �
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 0	

2	 0	 0	 0	 1	 1	 0	 1	 0	

3	 0	 0	 1	 1	 0	 0	

4	 0	 1	 0	 0	

5	 0	 0	

k	d	

Table T �

Pw[3, 6] ≠ Pw[7, 10] 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 0	

2	 0	 0	 0	 1	 1	 0	 1	 0	

3	 0	 0	 1	 1	 0	 0	

4	 0	 1	 0	 0	

5	 0	 0	

k	d	

Table T � All Abelian squares of w	

Pw[3, 6] ≠ Pw[7, 10] 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	

2	 0	 0	 0	 1	

3	 0	 0	 1	

4	 0	 1	

5	 0	

k	d	

Step ① Compute All Abelian squares 

Pw[6, 6]  ≠ Pw[7, 7] 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	

2	 0	 0	 0	 1	 1	

3	 0	 0	 1	

4	 0	 1	

5	 0	

k	d	

Step ① Compute All Abelian squares 

Pw[5, 6] = Pw[7, 8] 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	

2	 0	 0	 0	 1	 1	

3	 0	 0	 1	 1	

4	 0	 1	 0	

5	 0	 0	

k	d	

Pw[2, 6] = Pw[7, 11] 

Step ① Compute All Abelian squares 
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Table T requires O(n2) space and can be 
computed in O(n2) time.	

Lemma 2	

•  Each column of T can be computed in O(n) time. 
•  It takes O(n2) time for all columns.	

Step ① Compute All Abelian squares 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

Step ②  Merge Abelian squares into cores 

All Abelian 
squares	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

1	 0	 1	 1	 0	 0	 0	 0	 1	 0	 0	

2	 0	 0	 0	 1	 1	 0	 1	 0	

3	 0	 0	 1	 1	 0	 0	

4	 0	 1	 0	 0	

5	 0	 0	

k	d	

d=2	

d=1	

Step ②  Merge Abelian squares into cores 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

Cores of all 
Abelian runs	

Step ②  Merge Abelian squares into cores 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	

We scan w from u1 to left and from ur to right, and check if 
• Pu’ < Pu1 = ··· = Pur > Pu” , 
• Pw[i−1]u’ ≤ Pu1 and 
• Pu”w[ j+1] ≤ Pu1.	

Step ③ Left arms and right arms 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	

Left string	 u1	

a	 1	 2	

b	 0	 1	

c	 0	 0	
counter = 0	 # of k such that PLeft string[k] > Pu1[k] 	

Step ③ Left arms and right arms 
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	

Left string	 u1	

a	 2	 2	

b	 0	 1	

c	 0	 0	
counter = 0	

Step ③ Left arms and right arms 

# of k such that PLeft string[k] > Pu1[k] 	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	

Left string	 u1	

a	 2	 2	

b	 0	 1	

c	 1	 0	
counter =1	

Step ③ Left arms and right arms 

# of k such that PLeft string[k] > Pu1[k] 	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

c	 a	 a	 a	 b	 a	 b	 a	 a	 b	 c	
u1	 u2	

Left string	 u1	

a	 2	 2	

b	 0	 1	

c	 0	 0	

u’	

Step ③ Left arms and right arms 
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The maximum number of Abelian runs in a 
string w of length n is Ω(n2).  

Theorem 2 (Abelian runs)	

•  The Cummings–Smyth string (aababbab)n of length 
8n has Θ(n2) maximal Abelian runs. 

•  A naïve algorithm takes O(n3) time for all Abelian 
runs. 

Maximum number of Abelian runs �

I will explain how to compute the left and right arms 
for all Abelian runs in a total of O(n2) time.	
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Step ③ Left arms and right arms 

w  	
u1	

… 
 u’	 u2	

Pu1 = Pu2 Pu’ < Pu1 
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Step ③ Left arms and right arms 

w  	
u1	

… 
 u’	 u2	

Pu1 = Pu2 
v1	 v2	

Pv1 = Pv2 
… 
 

Pu’ < Pu1 

Case 1 (|u’u1| < |v1|) 
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Step ③ Left arms and right arms 

w  	
u1	

… 
 u’	

Case 1 (|u’u1| < |v1|) 

u2	

Pu1 = Pu2 
v1	 v2	

Pv1 = Pv2 
… 
 

Pu’ < Pu1 
v’	

Pv’ < Pv1 
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Step ③ Left arms and right arms 

w  	
u1	

… 
 u’	

Case 2 (|u’u1| > |v1|) 

u2	

Pu1 = Pu2 
v1	 v2	

Pv1 = Pv2 

Pu’ <  
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Step ③ Left arms and right arms 

w  	 … 
 

Case 2 (|u’u1| > |v1|) 

u1	u’	 u2	

Pu1 = Pu2 
v1	 v2	

Pv1 = Pv2 

Pu’ <  
v’	
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Time and Space (Abelian runs)	

Given a string w of length n, we can compute 
all Abelian runs in O(n2) time with 
O(n2) working space.	

Theorem 3	

•  Table T requires O(n2) space and can be computed 
in O(n2) time. (Steps ① and ②)	

•   All left arms and right arms are computed in O(n2) time. 
 (Step ③) 
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Conclusion 1	
Problem 1 (Abelian cover existence) 
Ø  O(n) time with O(|Σ|) working space  

•  We compute the longest Abelian cover of w. 

 
Open problem 
Can we compute the shortest Abelian cover in faster 
than O(n2) time ?  
ü  We can compute the shortest Abelian cover of w 

by a naïve algorithm in O(n2) time. 
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Conclusion 2	
Problem 2 (All Abelian runs) 
Ø  O(n2) time with O(n2) working space 
Ø  String w of length n has Ω(n2) Abelian runs. 

Open problem 
Can we compute all Abelian runs in w in O(n + r) time 
where r is the number of Abelian runs in w ? 
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アーベル連も 
Ω(n2)個	

L. J. Cummings と W. F. Smyth が  
w = (aababbab)n       長さ 8n 
には Ω(n2)個の連接するアーベル同値な
文字列(アーベルスクエア)が存在すること
を示した． 

出力サイズに線形な時間？	

本研究では O(n2) 時間ですべてのアーベル連を求めたが…	

アーベルスクエア	

アーベル連	


