

### Prague Stringology Conference 2014

# Computing Abelian Covers and Runs

<u>Shohei Matsuda</u>, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda Kyushu University





# Background

The study of *Abelian equivalence* of strings dates back to at least the early 60's, as seen in the paper by Erdös.

Two strings *u*, *v* are said to be *Abelian equivalent* if *u* is a permutation of the characters appearing in *v*.





[J.K.Rowling,1997]

**HABATAKITAI Laboratory** 

# Background

The study of *Abelian equivalence* of strings dates back to at least the early 60's, as seen in the paper by Erdös.

Two strings *u*, *v* are said to be *Abelian equivalent* if *u* is a permutation of the characters appearing in *v*.

Example

**TOM MARVOLO RIDDLE** and **I AM LORD VOLDEMORT** are *Abelian equivalent*.

HABATAKITAI LADOra

*Abelian equivalence* of strings has attracted much attention and has been studied extensively in several contexts.

# Our Contributions

♦ Two new regularities on strings with respect to *Abelian equivalence*,

- *Abelian covers* and
- Abelian runs
- of strings, which are generalizations of
- covers [Apostolico et al., 1991] and
- runs [Kolpakov and Kucherov,1999] of strings, respectively.
- ♦ Non-trivial algorithms to compute these new string regularities.

## Parikh vector

$$\Sigma = \{a_1, \dots, a_m\} : \text{ integer alphabet}$$
  

$$w \in \Sigma^* : string$$
  

$$P_w[k] : \text{ num. of occurrences of } k\text{-th character in } w$$
  

$$P_w = \langle P_w[1], \dots, P_w[m] \rangle : \text{ Parikh vector of } w$$



### Partial order on Parikh vectors

 $1 \le k \le m, P_x[k] \ge P_y[k] \text{ and } |x| > |y| \Leftrightarrow P_x > P_y$ 



nabalaki lai lanora



### Abelian equivalence

### $P_x = P_y \iff x \text{ and } y \text{ are Abelian equivalent.}$



HABATAKITAI LADOra

Abelian covers

Definition

For a string *w* of length  $n \ge 2$ , a set  $I = \{[b_k, e_k]: 1 \le b_k \le e_k \le n, 1 \le k \le |I|\}$  of intervals is an *Abelian cover* of *w*, if for every  $1 \le k \le |I|$ ,

HABATAKITAI LADOra

• 
$$[b_k, e_k] \neq [1, n],$$

• 
$$\bigcup_{1 \le k \le |I|} [b_k, e_k] = [1, n]$$
, and

• 
$$P_{W}[b_1, e_1] = P_{W}[b_k, e_k].$$

Abelian covers



**Everything is String.** 

Abelian covers



**Everything is String.** 

Abelian covers

# Problem 1 (Abelian cover existence)

Given a string *w*, determine whether or not *w* has an *Abelian cover*.



Abelian covers

Lemma 1 (*Abelian covers*)  
String w of length n has an *Abelian cover*  
$$\Leftrightarrow P_{w[1, i]} = P_{w[n-i+1, n]}$$
 for some  $1 \le i < n$ .



Lemma 1 (Abelian covers)

String *w* of length *n* has an *Abelian cover* 

 $\Leftrightarrow P_{w[1, i]} = P_{w[n-i+1, n]}$  for some  $1 \le i < n$ .

### $Proof(\rightarrow)$

If w has an Abelian cover  $\{[b_1, e_1], ..., [b_{|I|}, e_{|I|}]\}$ , then  $P_{w[b_1, e_1]} = P_{w[b_{|I|}, e_{|I|}]}$ .



HABAIAKIIAI LAD

Lemma 1 (Abelian covers)

String *w* of length *n* has an *Abelian cover*  $\Leftrightarrow P_{w[1, i]} = P_{w[n-i+1, n]}$  for some  $1 \le i < n$ .

 $Proof(\bigstar)$ 

If, for some  $1 \le i \le n/2$ ,  $P_w[1, i] = P_w[n-i+1, n]$ , then  $P_{w[1, n-i]} = P_{w[i+1, n]}$  and  $I = \{ [1, n-i], [i+1, n] \}$  is an Abelian cover of w. *n-i*+1  ${\mathcal W}$ 

KI IAI LAN

Lemma 1 (Abelian covers)

String *w* of length *n* has an *Abelian cover*  $\Leftrightarrow P_{w[1, i]} = P_{w[n-i+1, n]}$  for some  $1 \le i < n$ .

 $Proof(\bigstar)$ 

If, for some n/2 < i < n,  $P_{w[1, i]} = P_{w[n-i+1, n]}$ ,  $I = \{[1, i], [n-i+1, n]\}$  is an *Abelian cover* of *w*.



String *w* of length *n* has an *Abelian cover* 

 $\Leftrightarrow P_{w[1, i]} = P_{w[n-i+1, n]} \text{ for some } 1 \leq i < n.$ 

We look for an *Abelian border* of *w*.

HABATAKITAI Labora







# w = a b a c b a c a a b c

|   | prefix | suffix |
|---|--------|--------|
| а | 0      | 0      |
| b | 0      | 0      |
| С | 0      | 0      |

*counter* = 3 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = a b a c b a c a a b c

|   | prefix | suffix |
|---|--------|--------|
| a | 1      | 0      |
| b | 0      | 0      |
| С | 0      | 0      |

*counter* = 2 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = a b a c b a c a a b c

|   | prefix | suffix |
|---|--------|--------|
| а | 1      | 0      |
| b | 0      | 0      |
| С | 0      | 1      |

*counter* = 1 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = ab a c b a c a a b c

|   | prefix | suffix |
|---|--------|--------|
| a | 1      | 0      |
| b | 1      | 0      |
| С | 0      | 1      |

*counter* = 0 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = abacbacaabc

|   | prefix | suffix |
|---|--------|--------|
| а | 1      | 0      |
| b | 1      | 1      |
| С | 0      | 1      |

*counter* = 1 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = abacbacaabc

|   | prefix | suffix |
|---|--------|--------|
| a | 2      | 0      |
| b | 1      | 1      |
| С | 0      | 1      |

*counter* = 1 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = abacbacaabc

|   | prefix | suffix |
|---|--------|--------|
| a | 2      | 1      |
| b | 1      | 1      |
| С | 0      | 1      |

*counter* = 1 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = a b a c b a c a a b c

|   | prefix | suffix |
|---|--------|--------|
| a | 2      | 1      |
| b | 1      | 1      |
| С | 1      | 1      |

*counter* = 2 < # of matching elements of the Parikh vectors.

#### **Everything is String.**

# w = abacbacaabc

|   | prefix | suffix |
|---|--------|--------|
| а | 2      | 2      |
| b | 1      | 1      |
| С | 1      | 1      |

*counter* = 3 String *w* has an *Abelian border*.

### **Everything is String.**

# Time and Space (Abelian covers)

Theorem 1

Given a string *w* of length *n*, we can determine whether or not *w* has an *Abelian cover* in O(n) time with  $O(|\Sigma|)$  working space.

- The Parikh vectors of all prefixes and suffixes can be computed and compared in *O*(*n*) time.
- We maintain two Parikh vectors requiring  $O(|\Sigma|)$  space.

### Abelian runs

Definition

Substring *w*[*i*, *j*] of string *w* is an *Abelian run* of *w*, if

• 
$$w[i, j] = u'u_1 \cdots u_r u''$$
 with  $r \ge 2$ ,

• 
$$P_{u'} < P_{u_1} = \cdots = P_{u_r} > P_{u''}$$
,

• 
$$P_{w[i-1]u}$$
,  $\not\leq P_{u_1}$  and

• 
$$P_{u''w[j+1]} \not\leq P_{u_1}$$
,

and is represented by 5-tuple  $(i, |u'|, |u_1|, |u''|, r)$ .

# 1 2 3 4 5 6 7 8 9 10 11

### c a a a b a b a a b c





1 2 3 4 5 6 7 8 9 10 11  
c a a a b a b a a b c  

$$u' u_1 u_2 u_3$$
  
 $P_{u_1} = P_{u_2} = P_{u_3}$ 

 $u_1$ ,  $u_2$  and  $u_3$  are called the <u>cores</u> of this *Abelian run*.



1 2 3 4 5 6 7 8 9 10 11 c a a a b a b a a b c  $u' u_1 u_2 u_3$  $P_{u}, \leq P_{u_1}$  $P_{au}, \not\leq P_{u_1}$ 

*u*' is the *left arm* of this *Abelian run*.

HABATAKITAI Laboratorv



**Everything is String.** 

Abelian runs

# Problem 2 (All Abelian runs)

Given a string *w*, compute all *Abelian runs* in *w*.





# Algorithm (All Abelian runs)

Our algorithm consists of the following three steps:

Compute All Abelian squares
 Merge Abelian squares into cores u<sub>1</sub>,..., u<sub>r</sub>
 Compute left arms u' and right arms u''

# Algorithm (All Abelian runs)

Our algorithm consists of the following three steps:

Compute All Abelian squares
 Merge Abelian squares into cores u<sub>1</sub>,..., u<sub>r</sub>
 Compute left arms u' and right arms u"

We construct a <u>table *T*</u> for steps (1) and (2).

# Algorithm step ① (Abelian runs)

Definition

Table *T* is a  $n/2 \times (n-1)$  table such that for  $1 \le k \le n-1$  and  $1 \le d \le n/2$ 

- T[d, k] = 1 if  $P_{w[k-d+1, k]} = P_{w[k+1, k+d]}$
- *T*[*d*, *k*] = 0 otherwise,
   and *T*[*d*, *k*] are undefined for *n*/2 < *d*,
   *k*-*d*+1 < 1 and *n* < *k*+*d*.

Table *T* represents all *Abelian squares* of *w*.

### Table T

| $d^{k}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---------|---|---|---|---|---|---|---|---|---|----|----|
|         | C | a | a | a | b | a | b | a | a | b  | C  |
|         |   |   |   |   |   |   |   |   |   |    |    |
| 1       | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0  |    |
| 2       |   | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |    |    |
| 3       |   |   | 0 | 0 | 1 | 1 | 0 | 0 |   |    |    |
| 4       |   |   |   | 0 | 1 | 0 | 0 |   |   |    |    |
| 5       |   |   |   |   | 0 | 0 |   |   |   |    |    |

### **Everything is String.**

### Table T

| $d^{k}$ | 1                           | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---------|-----------------------------|---|---|---|---|---|---|---|---|----|----|
|         | C                           | a | a | a | b | a | b | a | a | b  | C  |
|         | $P_{w[4, 6]} = P_{w[7, 9]}$ |   |   |   |   |   |   |   |   |    |    |
| 1       | 0                           | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0  |    |
| 2       |                             | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |    |    |
| 3       |                             |   | 0 | 0 | 1 | 1 | 0 | 0 |   |    |    |
| 4       |                             |   |   | 0 | 1 | 0 | 0 |   |   |    |    |
| 5       |                             |   |   |   | 0 | 0 |   |   |   |    |    |

### **Everything is String.**

### Table T

| $d^{k}$ | 1                               | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---------|---------------------------------|---|---|---|---|---|---|---|---|----|----|
|         | C                               | a | a | a | b | a | b | a | a | b  | C  |
|         | $P_{w[3, 6]} \neq P_{w[7, 10]}$ |   |   |   |   |   |   |   |   |    |    |
| 1       | 0                               | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0  |    |
| 2       |                                 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |    |    |
| 3       |                                 |   | 0 | 0 | 1 | 1 | 0 | 0 |   |    |    |
| 4       |                                 |   |   | 0 | 1 | 0 | 0 |   |   |    |    |
| 5       |                                 |   |   |   | 0 | 0 |   |   |   |    |    |

### **Everything is String.**

# Table $T \longrightarrow$ All Abelian squares of w





### **Everything is String.**



### **Everything is String.**



### **Everything is String.**

Lemma 2

Table *T* requires  $O(n^2)$  space and can be computed in  $O(n^2)$  time.

• Each column of *T* can be computed in O(n) time.

HABATAKITAI LADOra

• It takes  $O(n^2)$  time for all columns.

Step 2 Merge Abelian squares into cores



**Everything is String.** 

### Step 2 Merge Abelian squares into cores



#### **Everything is String.**

Step 2 Merge Abelian squares into cores



**Everything is String.** 



**Everything is String.** 











## Maximum number of Abelian runs

Theorem 2 (*Abelian runs*)

The maximum number of *Abelian runs* in a string w of length n is  $\Omega(n^2)$ .

- The Cummings–Smyth string (aababbab)<sup>*n*</sup> of length 8n has  $\Theta(n^2)$  maximal Abelian runs.
- A naïve algorithm takes  $O(n^3)$  time for all *Abelian runs*.

I will explain how to compute the *left* and *right arms* for all *Abelian runs* in a total of  $O(n^2)$  time.

### **Everything is String.**







**Everything is String.** 



**Everything is String.** 



Case 2 ( $|u'u_1| > |v_1|$ )





HABATAKITAI Laboratorv

Case 2 ( $|u'u_1| > |v_1|$ )



# Time and Space (Abelian runs)

Theorem 3

Given a string *w* of length *n*, we can compute all *Abelian runs* in  $O(n^2)$  time with  $O(n^2)$  working space.

- Table *T* requires *O*(*n*<sup>2</sup>) space and can be computed in *O*(*n*<sup>2</sup>) time. (Steps 1) and 2)
- All *left arms* and *right arms* are computed in O(n<sup>2</sup>) time.
   (Step ③)

MAKI IAI LAD

# Conclusion 1

Problem 1 (Abelian cover existence)

- > O(n) time with  $O(|\Sigma|)$  working space
  - We compute the longest *Abelian cover* of *w*.

### Open problem

Can we compute the shortest *Abelian cover* in faster than  $O(n^2)$  time ?

✓ We can compute the shortest *Abelian cover* of *w* by a naïve algorithm in  $O(n^2)$  time.

# Conclusion 2

Problem 2 (All Abelian runs)

- >  $O(n^2)$  time with  $O(n^2)$  working space
- String w of length n has  $\Omega(n^2)$  Abelian runs.

### Open problem

Can we compute all *Abelian runs* in *w* in O(n + r) time where *r* is the number of *Abelian runs* in *w*?

HABATAKITAI LADOra





### 出力サイズに線形な時間?

本研究では O(n<sup>2</sup>) 時間ですべてのアーベル連を求めたが...



Everything is String.