Fast Regular Expression Matching
Based On Dual Glushkov NFA

Ryutaro Kurai, Norihito Yasuda,
Hiroki Arimura, Shinobu Nagayama
and Shin-lchi Minato

PSC 2014
Prague, Czech Republic, September 1-3, 2014

f?'\ ‘, 30001 kKED
[O i HOKKAIDO X £B%ixs
2 e

S AY RIS B D

Outline

e Research Definition

* Regular Expression Matching with NFA
— Previous works
— Look-Ahead(LA) Matching
— Glushkov NFA, and Dual Glushkov NFA

* LA Matching by Using Dual Glushkov NFA

— Memory Space Analysis
— Experimental Results

Outline

* Regular Expression Matching with NFA
— Previous works
— Look-Ahead(LA) Matching
— Glushkov NFA, and Dual Glushkov NFA

* LA Matching by Using Dual Glushkov NFA

— Memory Space Analysis
— Experimental Results

Research Definition and Purpose

* Regular Expression(RE) Matching Problem

— Searching substring s that matches to the pattern
p of regular expression R from given text T.

— Example
 R="‘aa(al|b)’
T ="‘aabababbaaa’

* Purpose of the Research

— Develop high-speed and space efficient matching
method for RE Matching to process huge amount
of data.

— Investigate efficient algorithm for RE Matching.

Targeted Application of Our Research

ARemote-Party-ID\x3A\s+[A\r\n]+\x40[A\r\n]*?[\x80-\xFF]
AAuthorization\x3A[A\r\n]+?response=[\x00-\x09\x0B\x0C\xOE-
\X7F]*[\x80-\xFF]

ADate\x3A[A\r\n]*[\x2D\x2B]
AContent-Type[A\r\n]+[\x01-\xO08\x0B\xOC\xOE-\x1F\x80-\xFF]
AContent-Type\x3A\s*[A\r\n%]*%
AContact\x3a\s+\x22[A\x22]*\x3c

Network intrusion detection systems.
* Using huge size of RE patterns.

* Above patterns come from ‘Snort’.
* Each line has about 100 symbols.

e Each patterns will be joined by conjunction symbol ‘|’.
e Number of lines is about 6,000

Major Approaches To
The RE Matching Problem

Backtracking Can use back reference Slows down for some bad

Good space efficiency pattern (when it backtracks

many times)

Deterministic Fast matching speed Use exponential memory space
Finite O(2™), m is the size of RE
Automata pattern
(DFA)
Nondetermin Good space efficiency Slows in case active states grow
istic Finite Matches fast enough
Automata

(NFA)

Major Approaches To
The RE Matching Problem

Backtracking Can use back reference Slows down for some bad

Good space efficiency pattern (when it backtracks

many times)

Deterministic Fast matching speed Use exponential memory space
Finite O(2™), m is the size of RE
Automata pattern
(DFA)
Nondetermin Good space efficiency Slows in case active states grow
istic Finite Matches fast enough
Automata

We have to Control growth

(NFA) :
of active states!

Outline

e Research Definition

— Previous works
— Look-Ahead(LA) Matching
— Glushkov NFA, and Dual Glushkov NFA

* LA Matching by Using Dual Glushkov NFA

— Memory Space Analysis
— Experimental Results

Nondeterministic Finite Automata

* NFA is defined as following 5-tuple.
— a finite set of states E
— a finite set of input symbols 2
— a transition function o
— a finite set of initial states /
— a finite set of final states F

Previous Research on
Improving RE Matching Using NFA

* Bit parallel techniques
— S.Wu and U. Manber, 92
— G.Navarro and M.Raffinot, 99

— Efficient for the patterns that is smaller than word size
of processors.

* Multi-stride/multi-character NFA
— B. Brodie et al. 06
— Transitions are labeled by multi symbols.

* Look-ahead Matching
— Well known remedly.

Outline

* Research Definition
* Regular Expression Matching with NFA

— Previous works

— Glushkov NFA, and Dual Glushkov NFA

* LA Matching by Using Dual Glushkov NFA

— Memory Space Analysis
— Experimental Results

Regular expression example

pattern ‘@’
— matches to text

ll ”

pattern ‘ab’ (concatenation)
— matches to text “ab”

pattern ‘(a|b)’ (disjunction)

o_n o bl)

— matches to text “a” or

pattern ‘a*’ (cline closure)

a»$» “_r

— matches to text d aa”, or “aa...a”

combination of above parts

— pattern ‘(ab]ac)*’ matches to “ab”, “ac” or “abac...”

Look-Ahead Matching Method for
Regular Expression

NFA treats multiple states as active state.

Each active state needs simulation of transition.
It costs almost all of calculation time.

Therefore, we want to decrease active states.

Main Idea

— Make state active if and only if the state have
transition that use next input symbol.

— If we use such transition, we only use states that can
transit in connected next state. This property can
decrease active states.

Normal NFA Matching Example

= slal e s

a

a 1 2

a 1 3

a 2 4

b b 3 5

* |nput text: “aab...” 1. ;
— We activate state No. 2. and No. 3

— Then we activate states No. 4 b 4 7

but No. 5. e "

* |nput text: “adb..” e ,

— we activate state No. 2. and No.3
— But, for next symbol, we can not activate any state.

Look-Ahead Matching Example

[e[
a a 1 2

a b 1 3

a a 2 4

a b 2 4

* |Input text: “aab...” b a 3 5
— We activate state only No. 2. b b 3 c

of active state is decreased.

— Then we activate states No. 4 a * 4 6

* |nput text: “adb..” b * 4 7
— Since ‘d’ is not presentin t, 4 * 5 6

column, no state activated.

Look-Ahead Matching Example

[e[
a a 1 2

a b 1 3

a a 2 4

a b 2 4

* LA matching can decrease ba 3 5
number of active states. b b 3 5

* LA matching can give up 2 * 4 6
matching in early timing. Ny .

e But, it use extra memory space - .

for extended transition table.

Outline

* Research Definition
* Regular Expression Matching with NFA

— Previous works
— Look-Ahead(LA) Matching

* LA Matching by Using Dual Glushkov NFA

— Space Analysis
— Experimental Results

Thompson NFA (T-NFA)

* NFA that transformed from regular expression
by Thompson’s method.

* Thompson’s method convert regular
expression syntax tree into partial NFA
inductively.

* |t has following property
— It has epsilon transition
— # of transitions is 4m at most .

. —#of states is 2m at most.
@/@—A@—T@\‘TAATA@E
R D TN A aTienaear

Glushkov NFA (G-NFA)

* NFA that transformed from regular expression.

* Glushkov NFA has following properties.
— |t has no e-transitions.
— Incoming transitions are labeled by the same symbol.
— It has only one initial state.
— |t has one or more final states.

= (aaab)(a|b)

A2 o)
@QQ

Dual Glushkov NFA

* NFA with dual property of Glushkov NFA.

— no e-transitions.
— Outgoing transitions are labeled by the same symbol.
— It has only one final state.

— It has one or more initial states.

= (aalab)(a|b)

@@Q
()
@QQb

Outline

e Research Definition

* Regular Expression Matching with NFA
— Previous works
— Look-Ahead(LA) Matching
— Glushkov NFA, and Dual Glushkov NFA

— Memory Space Analysis
— Experimental Results

Proposed Method

* Look-Ahead Matching by Using Dual Glushkov
NFA

* To solve the problem of consumption of extra
memory space by the Look-Ahead matching
method, we propose the approach of Dual G-NFA
to reduce memory space consumption.

* If we use Look-Ahead Matching by dual G-NFA,
we can simulate NFAs without increasing the size
of transition tables.

Memory Space Comparison
Glushkov NFA Dual Glushkov NFA

mam mnm

a 1 2 1

a b 1 3 a b 2 4
a a 2 4 a a 3 5
a b 2 4 a b 3 6
b a 3 5 b a 4 5
b b 3 5 b b 4 6
a * 4 6 a * 5 7
b * 4 7 b * 6 7
a * 5 6

b * 6

Memory Space Comparison

Glushkov NFA Dual Glushkov NFA

nmm mam
a 1 2 1

a b 1 3 a b 2 4

a a 2 4 a a 3 5

a b 2 4 a b 3 6

b a 3 5 b a 4 5

b b 3 5 b b 4 6

* The size of transition table of Glushkov NFA is
O(|E||Z])

* The size of Dual Glushkov NFA is O(|E|)

 Our method use memory space by|2| times
smaller.

Look-Ahead Matching
by Using Dual Glushkov NFA

* The size of transition table of Glushkov NFA is
O(|E||Z])

* The size of Dual Glushkov NFA is O(|E|)

* Our method use memory space by|2| times
smaller.

Outline

* Research Definition
* Regular Expression Matching with NFA

— Previous works
— Look-Ahead(LA) Matching
— Glushkov NFA, and Dual Glushkov NFA

* LA Matching by Using Dual Glushkov NFA
— Memory Space Analysis

Experimental Settings

Method: match 3 types of regular expression patterns
with one text data.

The text data used in the experiments is
“English.100MB” from Pizza & Chili corpus.

We compared proposed method (Dual G-NFA with LA)
with Dual G-NFA, G-NFA, G-NFA with LA, Thompson
NFA and NR-grep[Navarro 01].

Each experiment is iterated 10 times, and the average
elapsed time is recorded.

The elapsed time and average size of active states are
compared.

Fixed pattern

* Pattern
— n fixed strings are joined by disjunction symbol.

— n fixed strings are randomly collected from /usr/
share/dict/words on Mac OS X 10.9

 Example
R = alpha|blabo|chary|delta]...|Juliet

sec

200
180
160
140
120
100
80
60
40
20
0

Results: Elapsed Time(sec)

G-NFA
==G-NFA with LA

Dual G-NFA
==Dual G-NFA with LA
==Thompson NFA

NR-grep

Our proposed method
(red line) is 2"d fastest,

—— 3N it has better space

/

. o
20 40 60 80 100 120 140 160 180 200 €fficiency than 1
of strings n fastest G-NFA with LA

29

of average states

O N W b U1 O N 00 O

Results: # of Average Active States

G-NFA
===@G-NFA with LA

Dual G-NFA
==Dual G-NFA with LA

Active state of our

-~ proposed method
- —— (redline)is smallest.

20 40 60 80 100 120 140 160 180 200

of strings n
30

Flexible pattern

e Pattern
— n fixed strings used same as previous pattern.

— a special symbol is inserted to each of the n fixed
strings.

— Inserted strings are joined by disjunction symbol.
 Example
— R = al*pha|bla+bo|ch+ary|d*elta]...|Juliet

sec

200
180
160
140
120
100
80
60
40
20

Results: Elapsed Time(sec)

/ G-NFA

/ ——G-NFA with LA
/ ==Dual G-NFA
/ —=Dual G-NFA with LA
/ ==Thompson NFA

/ NR-grep

/ If the patterns have

special symbols of RE,

our proposed method

I I] . . nd
20 40 60 80 100 120 140 160 180 200 (redline)is 2" fastest

of strings n again.
32

of average states

N W R O NN 0 O

Results: # of Average Active States

G-NFA
===@G-NFA with LA
Dual G-NFA
===Dual G-NFA with LA

If the patterns have

-~ ——— special symbol, the
- ——— number of active

20 40 60 80 100 120 140 160 180 200 States of our
of strings n pI’OpOSEd method

(red line) is smallest.

Reasonable patterns

Some reasonable regular expression patterns are made as
follows.

“Suffix”

— [a-zA-Z]+(able]|ible]|al]...|ise) (total 35 suffixes)
“Prefix”

— (in]il]im|infra]...]under) [a-zA-Z]+ (total 32 prefixes)
“Names”

— (Jackson|Aiden]|...|Jack) (Smith|Johnson]|...| Wilson)
“User”

— [a-zA-Z]+@[a-zA-Z]+

“Title”

— ([A-Z]+)+

Results

Elapsed time (sec)

pattern T-NFA NR-grep G-NFA | G-NFA | Dual G-NFA | Dual G-NFA
with LA with LA

suffix 113.48 20.24 9.74 7.51 106.64 3.35
prefix 14.33 5.295 2.74 3.97 78.39 3.82
names 12.95 0.216 2.97 2.74 3.21 2.76

Colors
user 78.14 0.08 12.11 7.41 185.22 3.36 o st
title 38.88 0.186 2.93 2.38 2.68 2.21 °

Average number of active states

pattern G-NFA | G-NFA | Dual G-NFA | Dual G-NFA Our Method:
with LA with LA p -
e Fastest for ‘suffix’;

suffix 2.33 1.65 50.44 1.15
. 5 1 . 11 — 2nd fastest for other
P | ' ‘ | patterns;
names 1.01 1.00 0.01 0.001 .
L L 5o 40.67 0.5 * Decreases active
USer ' ' ' ' states in all

title 1.03 1.01 0.75 0.01 patterns.

Conclusion

We developed efficient regular expression
matching method that combines Dual
Glushkov NFA and Look-Ahead Matching.

Our proposed method is very fast especially in
"large-scale" & "sparsely active" patterns.

We plan to use our method for extended
regular expressions such as ‘character class’,
‘wild card’, and so on.

We also plan to use our method to network
intrusion detection patterns.

Thank youl!

Thank youl!

What is Duality?

— Incoming transitions are — Outgoing transitions are
labeled by the same symbol. labeled by the same

— It has only one initial state. symbol.

— It has one or more final — It has only one final state.

states. — It has one or more initial
states.
= (aa|ab)(a|b) R =(aa|ab)(a|b)

200 o ORI OO S OX

()
NOAD @QQ

