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Sorting suffixes by Lyndon factorization

The sorting of the suffixes

Our goal

The goal is to introduce a new strategy for sorting the suffixes of a word w.

The process of sorting the suffixes of a word plays a fundamental role
in Text Algorithms with several applications in many areas of
Computer Science and Bioinformatics.

For instance, it is a fundamental step, in implicit or explicit way, for
the construction of

the Suffix Array (SA): the array containing the starting positions of
the suffixes of a word, sorted in lexicographic order;
the Burrows-Wheeler Transform (BWT ): the array containing a
permutation of the symbols of a word according to the sorting of its
suffixes.
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Sorting suffixes by Lyndon factorization

Sorting suffixes by Lyndon factorization

Our idea

Our strategy uses the Lyndon factorization and is based on a
combinatorial property that allows to sort the suffixes of w (“global
suffixes”) by using the sorting of the suffixes inside blocks of consecutive
Lyndon factors of the decomposition (“local suffixes”).
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Sorting suffixes by Lyndon factorization

Lyndon Words

Two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some
x, y ∈ Σ∗. Thus conjugate words are just cyclic shifts of one another.

A word w ∈ Σ+ is primitive if w = uh implies w = u and h = 1.

Definition

A Lyndon word is a (primitive) word that is smaller in lexicographic order
than all of its conjugates.

Example

u = mathematics is not a Lyndon word;

v = athematicsm is a Lyndon word.

There exist linear algorithms for the computation of the Lyndon word of a
given word [Duval, 1983].
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Sorting suffixes by Lyndon factorization

Lyndon Factorization

Theorem (Chen, Fox and Lyndon: 1958)

Every word w ∈ Σ+ has a unique factorization w = L1 · · ·Lk such that

L1 ≥ · · · ≥ Lk

is a non-increasing sequence of Lyndon words.

Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of w is

ab|aaaab|aaaaabaaaab|aaaaaab

Note that each Li is strictly less than any of its proper conjugates/suffixes.

The Lyndon factorization of a given word can be computed

in linear time [Duval, 1983];
in parallel way [Apostolico and Crochemore, 1989] and [Daykin, Iliopoulos and Smyth,
1994];
in external memory [Roh, Crochemore, Iliopoulos and Par, 2008].
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Sorting suffixes by Lyndon factorization

Local and Global suffixes

For each factor u of w, we denote by first(u) and last(u) the position of
the first and the last symbol, respectively, of the factor u in w.
We denote by

sufu(i) = w[i, last(u)] and we call it local suffix at the position i
with respect to u.

suf(i) = w[i, n] and we call it global suffix of w at the position i.

w =
u

first(u) last(u)1 n

i︸ ︷︷ ︸
sufu(i)

︸ ︷︷ ︸
suf(i)
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Sorting suffixes by Lyndon factorization

Compatible sorting

Definition

Let w be a word and let u be a factor of w. We say that the sorting of the
local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all i, j with first(u) ≤ i < j ≤ last(u),

sufu(i) < sufu(j) ⇐⇒ suf(i) < suf(j).

In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
example shows.

Example

Consider the word w = abababb and its factor u = ababa.
Then sufu(1) = ababa > a = sufu(5)
whereas suf(1) = abababb < abb = suf(5).
Such sorting is not compatible.
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Sorting suffixes by Lyndon factorization

Our result

Theorem

Let w ∈ Σ∗ and let w = L1L2 · · ·Lk be its Lyndon factorization. For each
factor u = LrLr+1 · · ·Ls, the sorting of the local suffixes with respect to u
is compatible with the sorting of the global suffixes of w.

w =
L1

u︷ ︸︸ ︷
Lr Ls Lk

i j

︸ ︷︷ ︸
sufu(i)

︸ ︷︷ ︸
sufu(j)

u︷ ︸︸ ︷
suf(i)︷ ︸︸ ︷

suf(j)︷ ︸︸ ︷
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that

i is the position of the first symbol of Lr

j is the position of the first symbol of Ls

u is the smallest factor containing both Lr and Ls: LrLr+1 · · ·Ls.

w =
L1

u︷ ︸︸ ︷
Lr Ls Lk

i j

︸ ︷︷ ︸
sufu(i)

︸ ︷︷ ︸
sufu(j)

u︷ ︸︸ ︷
suf(i)︷ ︸︸ ︷

suf(j)︷ ︸︸ ︷

Since r < s and L1 ≥ · · · ≥ Lr ≥ · · · ≥ Ls ≥ · · · ≥ Lk. It is easy to verify that

LrLr+1 · · ·Ls > Ls

LrLr+1 · · ·Lk > LsLs+1 · · ·Lk

We don’t need to compare any symbol.
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Sorting suffixes by Lyndon factorization

Other cases

The theorem is true when the two suffixes of w start inside the same
factor u of consecutive Lyndon words.

Suppose that

i is a position inside Lr;

j is a position inside Ls;

u is the smallest factor containing both Lr and Ls: LrLr+1 · · ·Ls.

suf(i) =
Lr[i, last(Lr)] Lr+1 Ls Lk︸ ︷︷ ︸

sufu(i)

suf(j) = Ls[j, last(Ls)] Ls+1 Lk︸ ︷︷ ︸
sufu(j)

How many symbol comparisons we need to establish the order relation
between suf(i) and suf(j)?
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j is a position inside Ls;
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How many symbol comparisons?

u︷ ︸︸ ︷
1

L1 Lr

i last(Lr)

︸ ︷︷ ︸
w[i,last(Lr)]

Lr+1 Ls

j last(Ls)
last(u)

sufu(i)︷ ︸︸ ︷
︸ ︷︷ ︸
sufu(j)

︸ ︷︷ ︸
sufu(j)=w[j,last(Ls)]

Lk

n

Possible cases:

There is a different symbol inside w[i, last(Lr)] and w[j, last(Ls)].

There is not a different symbol inside w[i, last(Lr)] and
w[j, last(Ls)]:

w[i, last(Lr)] = w[j, last(Ls)];
w[j, last(Ls)] is a prefix of w[i, last(Lr)];
w[i, last(Lr)] is a prefix of w[j, last(Ls)].
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First case

u︷ ︸︸ ︷
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L1 Lr

i last(Lr)︸ ︷︷ ︸
w[i,last(Lr)]

Lr+1 Ls

j last(Ls)
last(u)

sufu(i)︷ ︸︸ ︷
︸ ︷︷ ︸

sufu(j)=w[j,last(Ls)]

Lk

n

There is a different symbol inside w[i, last(Lr)] and w[j, last(Ls)].

It is easy to verify that the order relation between the local and the
global suffixes is the same!

We need lcp(i, j) + 1 ≤ min(|w[i, last(Lr)]|, |w[j, last(Ls)]|) symbol
comparisons, where lcp(i, j) denotes the length of the longest
common prefix between the suffixes w[i, n] and w[j, n].
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Second case: w[i, last(Lr)] = w[j, last(Ls)]

u︷ ︸︸ ︷
1

L1 Lr

i last(Lr)︸ ︷︷ ︸
w[i,last(Lr)]

Lr+1 Ls

j last(Ls)
last(u)

sufu(i)︷ ︸︸ ︷
︸ ︷︷ ︸

sufu(j)=w[j,last(Ls)]

Lk

n

Since r < s and L1 ≥ · · · ≥ Lr ≥ · · · ≥ Ls ≥ · · · ≥ Lk. It is easy to
verify that the order relation between the local and the global suffixes
is the same! So we don’t need to compare further symbols.

We need l(j) = |w[j, last(Ls)]| = |w[i, last(Lr)]| symbol
comparisons.
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Second case: w[j, last(Ls)] is a prefix of w[i, last(Lr)]

u︷ ︸︸ ︷
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Since r < s, L1 ≥ · · · ≥ Lr ≥ · · · ≥ Ls ≥ · · · ≥ Lk and Lr is strictly
less than any of its proper suffixes, it is easy to verify that the order
relation between the local and the global suffixes is the same!
So we don’t need to compare further symbols.

We need l(j) = |w[j, last(Ls)]| symbol comparisons.
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Second case: w[i, last(Lr)] is a prefix of w[j, last(Ls)]
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sufu(i)︷ ︸︸ ︷
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sufu(j)=w[j,last(Ls)]

Lk

n

w[i, i + l(j) − 1] w[j, j + l(j) − 1]

Ls+1 · · ·Lksuf(j) =

suf(i) =

In order to get the mutual order between suf(i) and suf(j), we need
to compare at most l(j) = |sufu(j)| symbol comparisons.
Consider w[i, i + l(j)− 1] and w[j, j + l(j)− 1] = sufu(j).

There is a mismatch, then we need lcp(i, j) + 1 ≤ l(j) symbol
comparisons.
There is not a mismatch, then we use the property of the Lyndon
factorization: Ls+1 · · ·Lk is smaller than any suffix of u and of w.
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There is not a mismatch, then we use the property of the Lyndon
factorization: Ls+1 · · ·Lk is smaller than any suffix of u and of w.
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Sorting suffixes by Lyndon factorization

How many symbol comparisons?

u︷ ︸︸ ︷
1

L1 Lr

i︸ ︷︷ ︸
w[i,i+l(j)−1]

Lr+1 Ls

j last(u)

sufu(i)︷ ︸︸ ︷
︸ ︷︷ ︸
sufu(j)

Lk

n

l(j)

In order to get the mutual order between suf(i) and suf(j) it is
sufficient to execute at most l(j) = |sufu(j)| symbol comparisons.

Note that l(j), as shown by the following example, can be smaller
than lcp(i, j) + 1.
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Sorting suffixes by Lyndon factorization

Example

Let w = abaaaabaaaaabaaaabaaaaaab. Its Lyndon factorization is
ab|aaaab|aaaaabaaaab|aaaaaab. Let u = ab|aaaab|aaaaabaaaab|.

i = 2 j = 13

last(u) = 18

↓ ↓

↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
w = a b | a a a a b | a a a a a b a a a a b | a a a a a a b |

↑ ↑ ↑ ↑
2 + l(13)− 1 2 + lcp(2, 13)− 1 13 + l(13)− 1 13 + lcp(2, 13)− 1

Consider the following suffixes:

2

2 + l(13) 2 + lcp(2, 13)

↓

↓ ↓

suf(2) = b a a a a b a a a a a b a a a a b a a a a a a b
suf(13) = b a a a a b a a a a a a b

↑

↑ ↑

13

13 + l(13) 13 + lcp(2, 13)

We have lcp(2, 13) = 11 and l(13) = 6.
We need only 6 symbol comparisons, indeed for Lyndon properties
w[8, 25] > w[19, 25]⇒ suf(2) > suf(13).
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Sorting suffixes by Lyndon factorization

Our strategy for sorting all suffixes

Let w = L1L2 · · ·LlLl+1 · · ·Lk. We propose an algorithm that is based on
the following

Proposition

Let sort(L1L2 · · ·Ll) and sort(Ll+1Ll+2 · · ·Lk) denote the sorted lists of
the suffixes of L1L2 · · ·Ll and the suffixes Ll+1Ll+2 · · ·Lk, respectively.
Then
sort(L1L2 · · ·Lk) = merge(sort(L1L2 · · ·Ll), sort(Ll+1Ll+2 · · ·Lk)).

The sorted list of the global suffixes of w can be obtained by merging
the sorted lists of the local suffixes inside L1L2 · · ·Ll and
Ll+1Ll+2 · · ·Lk.

Note that the mutual order of the local suffixes is preserved after the
merge operation.
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Sorting suffixes by Lyndon factorization

Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

find the Lyndon decomposition of w: L1L2 · · ·Lk;

find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of L2;

merge the sorted lists in order to obtain the sorted list of the suffixes
of L1L2;

find the sorted list of the suffixes of L3 and merge it to the previous
sorted list;

repeat until all the Lyndon factors are processed;

One can use this strategy for computing the suffix array and for
constructing the Burrows-Wheeler Transform.
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Sorting suffixes by Lyndon factorization

Compute the BWT and the SA
the Suffix Array (SA): the array containing the starting positions of the suffixes of a
word, sorted in lexicographic order;
the Burrows-Wheeler Transform (BWT ): the array containing a permutation of the
symbols of a word according to the sorting of its suffixes.

Let w = aabcabbaabaabdabbaaabbdc. Its Lyndon factorization is
aabcabb|aabaabdabb|aaabbdc.

w$ =
L1 = aabcabb L2 = aabaabdabb L3 = aaabbdc L4 = $

Consider: L1$ = aabcabb$

Compute the BWT (L1$) and SA(L1$):

L1$
SA BWT Sorted Suffixes
8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$
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Sorting suffixes by Lyndon factorization

Compute the BWT and the SA

w =
L1 = aabcabb L2 = aabaabdabb L3 = aaabbdc

L1$ = aabcabb$

Consider: L2$ = aabaabdabb$

Note that |L1| = j1 = 7. Compute the BWT (L2$) and SA(L2$).

L1$
SA BWT Sorted Suffixes
8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$

L2$
SA BWT Sorted Suffixes

11 + 7 = 18 b $
1 + 7 = 8 $ aabaabdabb$
4 + 7 = 11 b aabdabb$
2 + 7 = 9 a abaabdabb$
8 + 7 = 15 d abb$
5 + 7 = 12 a abdabb$
10 + 7 = 17 b b$
3 + 7 = 10 a baabdabb$
9 + 7 = 16 a bb$
6 + 7 = 13 a bdabb$
7 + 7 = 14 b dabb$
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Sorting suffixes by Lyndon factorization

Compute the BWT and the SA

L1$
SA BWT Sorted Suffixes
8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$

L2$
G SA BWT Sorted Suffixes
0 11 + 7 = 18 b $
0 1 + 7 = 8 $ aabaabdabb$
2 4 + 7 = 11 b aabdabb$
2 2 + 7 = 9 a abaabdabb$
2 8 + 7 = 15 d abb$
4 5 + 7 = 12 a abdabb$
4 10 + 7 = 17 b b$
5 3 + 7 = 10 a baabdabb$
5 9 + 7 = 16 a bb$
7 6 + 7 = 13 a bdabb$
8 7 + 7 = 14 b dabb$

merge
⇒

L1L2$
SA BWT Sorted Suffixes
18 b $
8 b aabaabdabb$
1 $ aabcabbaabaabdabb$
11 b aabdabb$
9 a abaabdabb$
15 d abb$
5 c abbaabaabdabb$
2 a abcabbaabaabdabb$
12 a abdabb$
17 b b$
7 b baabaabdabb$
10 a baabdabb$
16 a bb$
6 a bbaabaabdabb$
3 a bcabbaabaabdabb$
13 a bdabb$
4 b cabbaabaabdabb$
14 b dabb$
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Sorting suffixes by Lyndon factorization

Compute the BWT and the SA

w =
L1 = aabcabb L2 = aabaabdabb L3 = aaabbdc

L1L2$ = aabcabbaabaabdabb$

Consider: L3$ = aaabbdc$

Compute the BWT (L3$) and SA(L3$).

L3$
SA BWT Sorted Suffixes

17 + 8 = 25 c $
17 + 1 = 18 $ aaabbdc$
17 + 2 = 19 a aabbdc$
17 + 3 = 20 a abbdc$
17 + 4 = 21 a bbdc$
17 + 5 = 22 b bdc$
17 + 7 = 24 d c$
17 + 6 = 23 b dc$

By merging the sorted list of the suffixes of L1L2$ and of L3$, we obtain
the SA/BWT of w$ = L1L2L3$.
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L3$
SA BWT Sorted Suffixes

17 + 8 = 25 c $
17 + 1 = 18 $ aaabbdc$
17 + 2 = 19 a aabbdc$
17 + 3 = 20 a abbdc$
17 + 4 = 21 a bbdc$
17 + 5 = 22 b bdc$
17 + 7 = 24 d c$
17 + 6 = 23 b dc$

By merging the sorted list of the suffixes of L1L2$ and of L3$, we obtain
the SA/BWT of w$ = L1L2L3$.
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Conclusions

Further work: Parallel sorting

The word could be partitioned into several sequences of consecutive
blocks of Lyndon words, and the sorting algorithm can be applied in
parallel to each of those sequences. Then one should merge the
sorted lists.

Furthermore, also the Lyndon factorization can be performed in
parallel, as shown in [Apostolico and Crochemore, 1989] and [Daykin,
Iliopoulos and Smyth, 1994].

Sorting suffixes of a text via its Lyndon Factorization PSC 2013 24 / 27



Conclusions

Further work

One can compute the BWT without the SA by using our strategy and the
strategies already used in the following papers:

Hon, Lam, Sadakane, Sung and Yiu, 2007;

Ferragina, Gagie and Manzini, 2010 and 2012;

Bauer, Cox and R., 2011 and 2013;

Crochemore, Grossi, Kärkkäinen and Landau, 2013.

In this way, one could obtain algorithms that work:

in external memory;

in place.

One could use efficient dynamic data structures for the rank and insert
operations, for instance by using Navarro and Nekrich’s recent results on
optimal representations of dynamic sequences.
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Conclusions

Further work: linear algorithm

Does there exist a linear algorithm that uses the Lyndon Factorization in
order to sort (implicity or explicity) the suffixes?

Open problem!
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Conclusions

Thank you for your attention!

Sorting suffixes of a text via its Lyndon Factorization PSC 2013 27 / 27


	Introduction
	Sorting suffixes by Lyndon factorization
	Conclusions

