
Improved and Self-Tuned Occurrence Heuristics

Simone Faro and Domenico Cantone

Department of Mathematics and Computer Science
Department of Linguistics and Humanities

University of Catania (Italy)

web-page: http://www.dmi.unict.it/~faro
email: faro@dmi.unict.it

Prague Stringology Conference
September 2, 2013

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

http://www.dmi.unict.it/~faro
faro@dmi.unict.it

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Online Exact String Matching Problem

Definition

Given a text t of length n and a pattern p of length m over some
alphabet Σ of size σ, the exact string matching problem consists in
finding all occurrences of the pattern p in t.

It has been extensively studied in computer science because of its
direct application to many areas.

It is basic components in many software applications

It plays an important role in theoretical computer science by
providing challenging problems.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Online Exact String Matching Problem

Definition

Given a text t of length n and a pattern p of length m over some
alphabet Σ of size σ, the exact string matching problem consists in
finding all occurrences of the pattern p in t.

An example

a b c a c a b b a c a b b a c a b c a a b a

a c a b b a c a b

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Online Exact String Matching Problem

Definition

Given a text t of length n and a pattern p of length m over some
alphabet Σ of size σ, the exact string matching problem consists in
finding all occurrences of the pattern p in t.

An example

a b c a c a b b a c a b b a c a b c a a b a

a c a b b a c a b

3

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Online Exact String Matching Problem

Definition

Given a text t of length n and a pattern p of length m over some
alphabet Σ of size σ, the exact string matching problem consists in
finding all occurrences of the pattern p in t.

An example

a b c a c a b b a c a b b a c a b c a a b a

a c a b b a c a b

8

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Boyer-Moore Algorithm

The Boyer-Moore algorithm checks whether s is a valid shift, by scanning
the pattern P from right to left and, at the end of the matching phase, it
computes the shift increment as the maximum value suggested by the
good-suffix heuristic and the bad-character heuristic below, using the
functions gsP and bcP respectively.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Boyer-Moore Algorithm

The Boyer-Moore algorithm checks whether s is a valid shift, by scanning
the pattern P from right to left and, at the end of the matching phase, it
computes the shift increment as the maximum value suggested by the
good-suffix heuristic and the bad-character heuristic below, using the
functions gsP and bcP respectively.

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Boyer-Moore Algorithm

The Boyer-Moore algorithm checks whether s is a valid shift, by scanning
the pattern P from right to left and, at the end of the matching phase, it
computes the shift increment as the maximum value suggested by the
good-suffix heuristic and the bad-character heuristic below, using the
functions gsP and bcP respectively.

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Boyer-Moore Algorithm

The Boyer-Moore algorithm checks whether s is a valid shift, by scanning
the pattern P from right to left and, at the end of the matching phase, it
computes the shift increment as the maximum value suggested by the
good-suffix heuristic and the bad-character heuristic below, using the
functions gsP and bcP respectively.

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d e a d b d c a d

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d e a d b d c a d

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d e a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d a a d b d c a d

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d a a d b d c a d

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

s

a b c a b b c e d c a d c b a a d c e a b a

d a a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Bad-Character Rule

The shift increment suggested by the bad-character heuristic is given by
the expression (j − bcP(T [s + j − 1])− 1), where

bcP(c) = max({0 ≤ k < m | P[k] = c} ∪ {−1}),

An example

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Horpool Algorithm

The Horspool algorithm uses a similar shifting strategy as Boyer-Moore.
It simply drops the good-suffix rule and uses only the bad-character rule
for shifting. In order to avoid negative advancement it always uses the
rightmost character of the current window for computing the shift
amount.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

Efficient Occurrence Heuristics

Due to the simplicity and ease of implementation of the bad-character
heuristic, some variants of the Boyer-Moore algorithm have focused just
around it and dropped the good-suffix heuristic.
This is the case, for instance, of the following algorithms

Horspool 1980
Zhu-Takaoka 1987
Quick-Search 1990
Tuned-Boyer-Moore 1991
Smith 1991
Berry-Ravindran 1999

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Quick-Search Algorithm

The Quick-Search algorithm, presented by Sunday in 1990, also uses a
modification of the original occurrence heuristic. When a mismatching
character is encountered, the pattern is always shifted to the right by at
least one character, but never by more than m characters. Thus, the
character t[s +m] is always involved in testing for the next alignment
and can be used for computing the shift.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Quick-Search Algorithm

The Quick-Search algorithm, presented by Sunday in 1990, also uses a
modification of the original occurrence heuristic. When a mismatching
character is encountered, the pattern is always shifted to the right by at
least one character, but never by more than m characters. Thus, the
character t[s +m] is always involved in testing for the next alignment
and can be used for computing the shift.

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Smith Algorithm

The Smith algorithm computes its shift advancements by taking the
largest value suggested by the Horpool and the Quick-Search
bad-character rules.

An example

a b c a b b c a b c a d a d a a a d e a b a

b c a d b d c b d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Smith Algorithm

The Smith algorithm computes its shift advancements by taking the
largest value suggested by the Horpool and the Quick-Search
bad-character rules.

An example

a b c a b b c a b c a d a d a a a d e a b a

b c a d b d c b d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Zhu-Takaoka Algorithm

The Zhu-Takaoka algorithm extends the Horspool algorithm by using the
last two characters t[s +m − 2] and t[s +m − 1] in place of only
t[s +m − 1].

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d b a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Zhu-Takaoka Algorithm

The Zhu-Takaoka algorithm extends the Horspool algorithm by using the
last two characters t[s +m − 2] and t[s +m − 1] in place of only
t[s +m − 1].

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d b d b a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Berry-Ravindran Algorithm

A more effective algorithm, due to Berry and Ravindran, extends the
Quick-Search algorithm in a similar manner, by using the characters
t[s +m] and t[s +m + 1] in place of only t[s +m].

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d c d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

The Exact String Matching Problem
The Boyer Moore Algorithm
The Horspool Variant
Efficient Occurrence Heuristics

The Berry-Ravindran Algorithm

A more effective algorithm, due to Berry and Ravindran, extends the
Quick-Search algorithm in a similar manner, by using the characters
t[s +m] and t[s +m + 1] in place of only t[s +m].

An example

a b c a b b c a b c a d c b a a d c e a b a

b c a d c d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

An example

s

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

s+i

i

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

An example

s

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

s+i

i

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

An example

s

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

s+i

igbc(i,a)

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

An example

s

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

s+i

i

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The generalized Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbc
p
(i , t[s + i])

is the shift advancement such that the character t[s + i] is aligned with
its rightmost occurrence in p[0 .. min(i ,m)− 1], if present; otherwise
gbcp(i , t[s + i]) evaluates to i + 1.

gbc
p
(i , c) =Def min({i − k | 0 ≤ k < min(i ,m) and p[k] = c} ∪ {i + 1}),

An example

s

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

s+i

i+1

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] = t[s +m − 1] :
Let i0 be the rightmost position in the substring p[0 ..m− 2] such
that p[i0] = p[m − 1], provided that p[m − 1] occur in p[0 ..m− 2];
otherwise let i0 be −1. Then the occurrence relative position
q1 = 2m− i0 − 2 is safe for shifting.

q1=Defmin({2m−i−2|p[i] = p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] = t[s +m − 1] :
Let i0 be the rightmost position in the substring p[0 ..m− 2] such
that p[i0] = p[m − 1], provided that p[m − 1] occur in p[0 ..m− 2];
otherwise let i0 be −1. Then the occurrence relative position
q1 = 2m− i0 − 2 is safe for shifting.

q1=Defmin({2m−i−2|p[i] = p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

i0

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] = t[s +m − 1] :
Let i0 be the rightmost position in the substring p[0 ..m− 2] such
that p[i0] = p[m − 1], provided that p[m − 1] occur in p[0 ..m− 2];
otherwise let i0 be −1. Then the occurrence relative position
q1 = 2m− i0 − 2 is safe for shifting.

q1=Defmin({2m−i−2|p[i] = p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

i0

��

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] = t[s +m − 1] :
Let i0 be the rightmost position in the substring p[0 ..m− 2] such
that p[i0] = p[m − 1], provided that p[m − 1] occur in p[0 ..m− 2];
otherwise let i0 be −1. Then the occurrence relative position
q1 = 2m− i0 − 2 is safe for shifting.

q1=Defmin({2m−i−2|p[i] = p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

i0

��

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] = t[s +m − 1] :
Let i0 be the rightmost position in the substring p[0 ..m− 2] such
that p[i0] = p[m − 1], provided that p[m − 1] occur in p[0 ..m− 2];
otherwise let i0 be −1. Then the occurrence relative position
q1 = 2m− i0 − 2 is safe for shifting.

q1=Defmin({2m−i−2|p[i] = p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c a d

i0

��

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] 6= t[s +m − 1] :
In this case, let i0 be the rightmost position in p[0 ..m− 2] such that
p[i0] 6= p[m − 1], provided that p[0 ..m− 2] contain some character
distinct from p[m − 1], otherwise let i0 be −1. Then the occurrence
relative position q2 = 2m− i0 − 2 is safe for shifting.

q2=Defmin({2m−i−2|p[i] 6= p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] 6= t[s +m − 1] :
In this case, let i0 be the rightmost position in p[0 ..m− 2] such that
p[i0] 6= p[m − 1], provided that p[0 ..m− 2] contain some character
distinct from p[m − 1], otherwise let i0 be −1. Then the occurrence
relative position q2 = 2m− i0 − 2 is safe for shifting.

q2=Defmin({2m−i−2|p[i] 6= p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a c d c e a b a

d c a d b d d d a

i0

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] 6= t[s +m − 1] :
In this case, let i0 be the rightmost position in p[0 ..m− 2] such that
p[i0] 6= p[m − 1], provided that p[0 ..m− 2] contain some character
distinct from p[m − 1], otherwise let i0 be −1. Then the occurrence
relative position q2 = 2m− i0 − 2 is safe for shifting.

q2=Defmin({2m−i−2|p[i] 6= p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a c d c e a b a

d c a d b d d d a

i0

��

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] 6= t[s +m − 1] :
In this case, let i0 be the rightmost position in p[0 ..m− 2] such that
p[i0] 6= p[m − 1], provided that p[0 ..m− 2] contain some character
distinct from p[m − 1], otherwise let i0 be −1. Then the occurrence
relative position q2 = 2m− i0 − 2 is safe for shifting.

q2=Defmin({2m−i−2|p[i] 6= p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a c d c e a b a

d c a d b d d d a

i0

�	

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

Case p[m − 1] 6= t[s +m − 1] :
In this case, let i0 be the rightmost position in p[0 ..m− 2] such that
p[i0] 6= p[m − 1], provided that p[0 ..m− 2] contain some character
distinct from p[m − 1], otherwise let i0 be −1. Then the occurrence
relative position q2 = 2m− i0 − 2 is safe for shifting.

q2=Defmin({2m−i−2|p[i] 6= p[m−1] and 0 ≤ i ≤ m−2}∪{2m−1}) .

An example

a b c a b b c b d c a d c b a c d c e a b a

d c a d b d d d a

q2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

d c a d b d c d d

q1 q2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c d d

q1 q2

case 1

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d c b a a d c e a b a

d c a d b d c d d

q1 q2

case 1

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d b b a a d c e a b a

d c a d b d c d d

q1 q2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d b b a a d c e a b a

d c a d b d c d d

q1 q2

case 1

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d b b a a c c e a b a

d c a d b d c d d

q1 q2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Heuristic

The two occurrence relative positions q1 and q2 are then used by our
Improved Occurrence Heuristic to calculate the shift advancements
during the searching phase of the algorithm:

ibc1p(c) =Def gbcp
(q1, c) , ibc2p(c) =Def gbcp

(q2, c) .

An example

a b c a b b c b d c a d b b a a c c a a b a

d c a d b d c d d

q1 q2

case 2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Matcher

PrecomputeIOH(p,m, step)
1. for each c ∈ Σ do
2. ibc[c]← step + 1
3. for i ← 0 to m − 1 do
4. ibc[p[i]]← step − i

5. return ibc

ImprovedOccurrenceMatcher(p, m, t, n)
1. step1 ← step2 ← 2m − 1
2. for i ← 0 to m − 2 do
3. if p[i] = p[m− 1] then
4. then step1 ← 2m − i − 2
5. else step2 ← 2m − i − 2
6. ibc1 ← PrecomputeIOH(p,m, step1)
7. ibc2 ← PrecomputeIOH(p,m, step2)
8. s ← 0
9. while (s ≤ n − m) do

10. if (p[m − 1] = t[s + m − 1]) then
11. i ← 0
12. while (i < m and p[i] = t[s + i]) do
13. i ← i + 1
14. if (i = m) then Output(s)
15. s ← s + ibc1[t[s + step1]]
16. else s ← s + ibc2[t[s + step2]]

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Matcher

100 101 102 103

20

25

30

R
u
n
n
in
g
T
im

es

Running Times on a Random Binary Sequence

HOR
QS

SMITH
IOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Matcher

100 101 102 103

10

15

20

25

R
u
n
n
in
g
T
im

es

Running Times on a Genome Sequence

HOR
QS

SMITH
IOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
The Improved Occurrence Heuristic
The Improved Occurrence Matcher
Experimental Results

A Simple Improved Occurrence Heuristic

The Improved Occurrence Matcher

100 101 102 103

5

10

15

R
u
n
n
in
g
T
im

es

Running Times on a Protein Sequence

HOR
QS

SMITH
IOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P

f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequency

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequency�

adv(i) = f(a) gbc(i,a) + f(b) gbc(i,b) + f(c) gbc(i,c) + f(d) gbc(i,d)

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequencyi

adv(i) = 0.5 x 3 + f(b) gbc(i,b) + f(c) gbc(i,c) + f(d) gbc(i,d)

gbc(i,a) = 3

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequencyi

adv(i) = 0.5 x 3 + 0.25 x 1 + f(c) gbc(i,c) + f(d) gbc(i,d)

gbc(i,b) = 1

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequencyi

adv(i) = 0.5 x 3 + 0.25 x 1 + 0.15 x 4 + f(d) gbc(i,d)

gbc(i,c) = 4

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequencyi

adv(i) = 0.5 x 3 + 0.25 x 1 + 0.15 x 4 + 0.1 x 2

gbc(i,d) = 2

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

For a given occurrence relative position 0 ≤ i ≤ m, the average shift
advancement of the generalized occurrence function gbc

p
is given by the

function
adv p,f (i) =Def

∑

c∈Σ

f (c) · gbc
p
(i , c) .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequencyi

adv(i) = 2.55

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

We then define the worst-occurrence relative position q∗ as the smallest
position 0 ≤ q ≤ m which maximizes adv p,f (q), i.e.,

q∗ =Def min{q | 0 ≤ q ≤ m and adv p,f (q) = max
0≤i≤m

adv p,f (i)} .

An example

d c a d b d c d d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequency

adv(5)=2.55

5

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

We then define the worst-occurrence relative position q∗ as the smallest
position 0 ≤ q ≤ m which maximizes adv p,f (q), i.e.,

q∗ =Def min{q | 0 ≤ q ≤ m and adv p,f (q) = max
0≤i≤m

adv p,f (i)} .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequency0 1 2 3 4 5 6 7 8

2.55

1

1.9

2.6

2.1

2.75

2.05

2.3 2.3

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

We then define the worst-occurrence relative position q∗ as the smallest
position 0 ≤ q ≤ m which maximizes adv p,f (q), i.e.,

q∗ =Def min{q | 0 ≤ q ≤ m and adv p,f (q) = max
0≤i≤m

adv p,f (i)} .

An example

d c a d b a c a d

P
f(a) = 0.5

f(b) = 0.25

f(c) = 0.15

f(d) = 0.1

frequency0 1 2 3 4 5 6 7 8

2.55

1

1.9

2.6

2.1

2.75

2.05

2.3 2.3

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

Finding the relative frequency of characters

(1) In a preprocessing phase, compute the character frequencies of
an initial segment of the text (say of no more than γ characters).

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

Finding the relative frequency of characters

(1) In a preprocessing phase, compute the character frequencies of
an initial segment of the text (say of no more than γ characters).

(2) Run the first γ iterations of the algorithm, assuming a priori a
default distribution of characters (e.g., the uniform distribution). At
the same time, compute the relative frequency of the first γ
characters and then recompute the occurrence heuristic according to
the estimated frequency.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

Finding the relative frequency of characters

(1) In a preprocessing phase, compute the character frequencies of
an initial segment of the text (say of no more than γ characters).

(2) Run the first γ iterations of the algorithm, assuming a priori a
default distribution of characters (e.g., the uniform distribution). At
the same time, compute the relative frequency of the first γ
characters and then recompute the occurrence heuristic according to
the estimated frequency.

(3) While running the algorithm, keep updating the relative
frequencies of the characters. At regular intervals (say of γ
characters), or when the difference between the current relative
frequencies and the one used in the worst-occurrence heuristic
exceeds a threshold, recompute the heuristic.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

FindWorstOccurrence(p,m, Σ, f)
1. for each c ∈ Σ do
2. lp[c] ← −1
3. adv ← 1
4. max ← 1
5. q ← 0
6. for i ← 1 to m do
7. gbc ← i − lp[p[i − 1]]− 1
8. adv ← adv − f (p[i − 1]) · gbc + 1
9. lp[p[i − 1]] ← i − 1

10. if (adv > max) then
11. max ← adv

12. q ← i

13. return q

PrecomputeWOH(p,m, q)
1. for each c ∈ Σ do
2. wo[c] ← q + 1
3. for i ← 0 to q − 1 do
4. wo[p[i]]← q − i

5. return wo

WorstOccurrenceMatcher(p,m, t, n)
1. q ← FindWorstOccurrence(p,m, Σ, f)
2. wo ← PrecomputeWOH(p,m, q)
3. s ← 0
4. while (s ≤ n − m) do
5. i ← 0
6. while (i < m and p[i] = t[s + i]) do
7. i ← i + 1
8. if (i = m) then Output(s)
9. s ← s + wo[t[s + q]]

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

100 101 102 103

10

20

30

R
u
n
n
in
g
T
im

es

Running Times on a Random Binary Sequence

HOR
QS

SMITH

IOM
WOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

100 101 102 103

10

20

R
u
n
n
in
g
T
im

es

Running Times on a Genome Sequence

HOR
QS

SMITH
IOM

WOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Finding the Relative Frequency
The Algorithm
Experimental Results

A Self Tuned Occurrence Heuristic

A Self Tuned Occurrence Heuristic

100 101 102 103

5

10

15

R
u
n
n
in
g
T
im

es

Running Times on a Protein Sequence

HOR
QS

SMITH
IOM

WOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Some algorithms use an occurrence heuristic based on two consecutive
characters. In such cases the distance between the two characters
involved in the occurrence heuristics is 1. However it may be possible
that other occurrence jump distances generate larger shift advancements.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Some algorithms use an occurrence heuristic based on two consecutive
characters. In such cases the distance between the two characters
involved in the occurrence heuristics is 1. However it may be possible
that other occurrence jump distances generate larger shift advancements.

An example

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Some algorithms use an occurrence heuristic based on two consecutive
characters. In such cases the distance between the two characters
involved in the occurrence heuristics is 1. However it may be possible
that other occurrence jump distances generate larger shift advancements.

An example

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

i is the relative occurrence position, the position in the text of the first
character involved in the computation of the occurrence heuristic;
j is the occurrence jump distance, the distance between the two
characters involved in the computation of the occurrence heuristic.

An example

a b c a b b c a d c a d c b a a d c e a b a

d c a d b d c a d

i

j

the relative ocurrence position

the occurrence jump distance

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

We introduce the generalized double occurrence function gbc 2

p
(i , j , c1, c2)

relative to p, with 0 ≤ i ≤ m, 1 ≤ j ≤ m and c1, c2 ∈ Σ, intended to
calculate the largest safe shift advancement for p compatible with the
constraints t[s + i] = c1 and t[s + i + j] = c2, when p has shift s with
respect to a text t.

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

We introduce the generalized double occurrence function gbc 2

p
(i , j , c1, c2)

relative to p, with 0 ≤ i ≤ m, 1 ≤ j ≤ m and c1, c2 ∈ Σ, intended to
calculate the largest safe shift advancement for p compatible with the
constraints t[s + i] = c1 and t[s + i + j] = c2, when p has shift s with
respect to a text t.

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪{i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪{i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪{i + j + 1}).

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪ {i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i + j + 1}).

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪ {i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i + j + 1}).

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪ {i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i + j + 1}).

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪ {i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i + j + 1}).

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

Mathematical Definition

gbc2p(i , j, c1, c2) =Def min({i − k | m − j ≤ k < i ∧ p[k] = c1}

∪ {i − k | 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}

∪ {i + j − k | 0 ≤ k < j ∧ p[k] = c2}

∪ {i + j + 1}).

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Let j be a fixed relative jump distance to be used by the generalized
double occurrence function gbc 2

p
with relative occurrence position i . In

order for the character t[s + i + j] to be involved in the computation of
the advancement by gbc 2

p
, we must have

gbc
p
(i , t[s + i]) ≥ j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Let j be a fixed relative jump distance to be used by the generalized
double occurrence function gbc 2

p
with relative occurrence position i . In

order for the character t[s + i + j] to be involved in the computation of
the advancement by gbc 2

p
, we must have

gbc
p
(i , t[s + i]) ≥ j

An example

i

j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Let j be a fixed relative jump distance to be used by the generalized
double occurrence function gbc 2

p
with relative occurrence position i . In

order for the character t[s + i + j] to be involved in the computation of
the advancement by gbc 2

p
, we must have

gbc
p
(m − 1, t[s + i]) ≥ j

An example

i

j

≥ j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

Thus, for a fixed bound 0 ≤ β ≤ 1, the computation of the shift
advancement will involve the second character with a probability of at
least β if and only if its jump distance j satisfies

Pr{gbc
p
(i , c) ≥ j | c ∈ Σ} ≥ β .

This suggests to use the following relative jump distance

j∗
β
=Def max

{

ℓ | 1 ≤ ℓ ≤ m and Pr
{

gbc
p
(i , c) ≥ ℓ | c ∈ Σ

}

≥ β
}

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Heuristic

101
102

103
0,6

0,8

10

20

m
β

R
u
n
n
in
g
T
im

es
Running Times on a Random Binary Sequence

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Heuristic

101
102

103
0,6

0,8

4

6

8

10

m
β

Running Times on a Genome Sequence

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

PrecomputeJOH(p,m, i, j)
1. for each a ∈ Σ do
2. for each b ∈ Σ do
3. jbc(a, b)← i + 1 + j

4. for each a ∈ Σ do
5. for k ← 0 to j − 1 do
6. jbc(a, p[k])← i + 1 + j − 1− k

7. for k ← 0 to i + 1− j − 1 do
8. jbc(p[k], p[k + len])← i + 1 − 1 − k

9. for k ← i + 1 − j to m − 1 do
10. for each a ∈ Σ do
11. jbc(p[k], a) ← i + 1 − 1− j

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Matcher

FindJumpDistance(p,m, i, Σ, f , β)
1. for each c ∈ Σ do v [c] ← 1
2. frq ← j ← 1
3. while (frq ≥ β and j ≤ i + 1) do
4. if (v [p[i + 1 − j]] = 1) then
5. v [p[i + 1 − j]] = 0
6. frq ← frq − f (p[i + 1 − j])
7. j ← j + 1
8. return j − 1

JumpingOccurrenceMatcher(p,m, t, n)
1. i ← FindWorstOccurrence(p,m,Σ, f)
2. j ← FindJumpDistance(p,m, i, Σ, f , 0.9)
3. jbc ← PrecomputeJOH(p,m, i, j)
4. s ← 0
5. while (s ≤ n − m) do
6. k ← 0
7. while (k < m and p[k] = t[s + k]) do k ← k + 1
8. if (k = m) then Output(s)
9. s ← s + jbc(t[s + i], t[s + i + j])

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Heuristic

100 101 102 103

10

20

30

R
u
n
n
in
g
T
im

es

Running Times on a Random Binary Sequence

HOR
QS

SMITH

IOM
WOM
BR

ZT
JOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Heuristic

100 101 102 103

10

20

R
u
n
n
in
g
T
im

es

Running Times on a Genome Sequence

HOR
QS

SMITH

IOM
WOM
BR

ZT
JOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

Introduction
A Simple Improved Occurrence Heuristic

A Self-Tuned Occurrence Heuristic
A Jumping-Occurrence Heuristic

Definition
Computing the Occurrence Jump Distance
The Algorithm
Experimental Results

The Jumping Occurrence Heuristic

The Jumping Occurrence Heuristic

100 101 102 103

5

10

15

R
u
n
n
in
g
T
im

es

Running Times on a Protein Sequence

HOR
QS

SMITH

IOM
WOM
BR

ZT
JOM

Simone Faro and Domenico Cantone Improved and Self-Tuned Occurrence Heuristics

	Inizio Prima Parte
	Introduction
	The Exact String Matching Problem
	The Boyer Moore Algorithm
	The Horspool Variant
	Efficient Occurrence Heuristics

	A Simple Improved Occurrence Heuristic
	Definition
	The Improved Occurrence Heuristic
	The Improved Occurrence Matcher
	Experimental Results

	A Self-Tuned Occurrence Heuristic
	Definition
	Finding the Relative Frequency
	The Algorithm
	Experimental Results

	A Jumping-Occurrence Heuristic
	Definition
	Computing the Occurrence Jump Distance
	The Algorithm
	Experimental Results

