Minimization of acyclic DFAs

Johannes Bubenzer

University of Potsdam
Department of Linguistics

30. August 2011

Johannes Bubenzer Minimization of acyclic DFAs

Overview

Definitions
Minimality
Revuz algorithm

New algorithm

e 6 6 o6 o

Evaluation

Johannes Bubenzer Minimization of acyclic DFAs

Deterministic Finite-State Automaton (DFA)
A=(Q,q,F,0,X)

@ @ finite set of states

@ X finite alphabet

@ gp € Q start state

o F C @ final states

@ §: QXX — @ transition function

Acyclic DFA (ADFA)
@ DFA which contains no cycles.
Connected DFA
@ All states can be reached from the start state

o All states are connected to a final state.

Johannes Bubenzer Minimization of acyclic DFAs

Extended transition function §*: (Vg € Q,a € X, w € L*)

0*(q,€) =q
5*(q7 a- W) :5*(5(q7 3)7 W)

Right-Language f(q)7 ge @

o L(q)={w| 5 (q,w) € F}
Language £(A)

o L(A) = £ (q0)

Johannes Bubenzer Minimization of acyclic DFAs

Nerode Equivalence ~ of g,p € Q

o g~ p L(q)=L(p)

@ [qg] denotes equivalence class of g wrt. ~.
Right-Language Signature 7 of state g € Q

o 7(p)=(q € F,(a,p)|5(q,2) =p)) P.gER,a€EXL

o 7(p)=7(9) > p~g
Note: | assume the transitions to be ordered on the alphabet
symbol.

Johannes Bubenzer Minimization of acyclic DFAs

Minimal DFA (MDFA) A with L(A) = L:
@ DFA with the minimal number of states accepting £

o iff Vg, peQ@:g~p—>qg=p

DFA Minimization:
o Create/Determine the MDFA for a given DFA

@ Join all ~-equivalent states into one. Adjust transitions.

Johannes Bubenzer Minimization of acyclic DFAs

Minimal State g € Q:
@ All successor states are minimal
@ No other equivalent state exists
Minimal Signature Tmin(q):
e 7(q) where all successors of g are minimal states.

° Tmin(P) = Tmin(q) ——p~q

Johannes Bubenzer Minimization of acyclic DFAs

Minimization

General Idea

@ Determine the minimal signatures of some states

e Minimize those states (join the equal, adjust transitions)
ADFA case

@ Signature of a state depends on its direct successors

@ and we have no cycles

@ => minimizing states requires minimizing their successors first

Johannes Bubenzer Minimization of acyclic DFAs

Minimizaion - Two approaches

Revuz (1992) - Minimization of Acyclic Deterministic Automata in
Linear Time:

@ Process states layerwise

@ Starting with final states with no outgoing transitions.
New approach:

@ Preorder processing of states.

@ All successors are (recursively) minimized before the actual
state is

both are O(n).

Johannes Bubenzer Minimization of acyclic DFAs

Example Revuz '92

Start with final states:
o All states without outgoing transition have minimal signatures.
@ They are all final, so they are all equivalent.
@ Joining them yields one minimal state.

Proceed layerwise:

@ All states that have only transitions into previously minimized
layers have minimal signatures.

@ Minimizing them leads to a new layer of minimal states.

@ When the start state is reached all states are minimal

Johannes Bubenzer Minimization of acyclic DFAs

Informal algorithm:
@ computes a height for each state (max. distance to a final
state)
@ process height-levels from low to high:
@ sort states of same height according to 7
@ sorting requires O(n) wrt. |X|. (radix sort with tricks)

@ merges states of same height and same 7

Johannes Bubenzer Minimization of acyclic DFAs

Disadvantages:

Quite complicated to implement in practice

@ Requires precomputation of heights.

@ Requires partitioning of states according to height-levels.
o

Requires external sorting phase.

Johannes Bubenzer Minimization of acyclic DFAs

Depth-first minimization

Minimize a state g (recursive):

Minimize all of its successors.
If a state p with same 7(q) exists replace g by p.

Otherwise g is a new representative of class 7(q).

Terminates at states with no outgoing transitions.

Requires a map of 7 — Q (Register).

@ Requires a map of @ — Q mapping states to class
representatives. (StateMap)

Johannes Bubenzer Minimization of acyclic DFAs

Algorithm

begin minimize (q)

foreach trans € g.transitions() do

if / StateMap [trans.destination] then
L minimize (trans.destination)

if Register [7(q)] then
StateMap [q] := Register [7(q)]
| Q=0 —{q}
else
10 L StateMap [q] := Register [7(q)] := ¢
11 end

1
2
3
4
5 trans.destination := StateMap [trans.destination]
6
7
8
9

Johannes Bubenzer Minimization of acyclic DFAs

Algorithm requires linear space

e StateMap contains | Q| states at the end

o Register contains | Q| states at most
Algorithm runs in linear time

@ consists in just a pre-order traversal.
Reduced constant factors

@ no height-precomputing, no state partitioning

@ no sorting

Johannes Bubenzer Minimization of acyclic DFAs

Evaluation

Performed evaluation

on random-sampled sets of strings (two different distributions)
variing maximum string lengths

variing alphabet sizes

and on natural-language data sets

compiled into a trie

Implemented new algorithm in a C++ finite-state library. Run
against an existing (optimized) Revuz implementation.

Johannes Bubenzer Minimization of acyclic DFAs

Evaluation (uniform distribution)

9 2
S e S
1 2
o @
£ | E
S v | ~g-B g T Do g og-n = w
> ~ > =9
= c .
€ 5 \
2 384 2 84 ~s
% % T8-f-8-g. 8.5 00
g o S g
5 & 5
< B
o o A
T T T T
0 1000000 0 1000000
number of words number of words
max. string len. = 10, || =5, max. string len. = 10, |Z| = 50,
=) =
S oo oo S
Bl Sl
@ @
£ o | £ v o
=z ~ = ~
£ 1= \
g a g |
5 84 = 2 84
% T gom-B.g 8- g % o
i i oo oo
5 & 5 &7
8 E
S
o 4 ° Bubenzer
T T T T
0 1000000 0 1000000
number of words number of words
max. string len. = 50, [2] = 5, max. string len. = 50, |%| = 50,

hannes Bubenzer

Conclusion

o faster (in practice)
@ simpler (to implement)

@ incremental (can be stopped at any time)

Johannes Bubenzer Minimization of acyclic DFAs

Johannes Bubenzer Minimization of acyclic DFAs

