
Minimization of acyclic DFAs

Johannes Bubenzer

University of Potsdam

Department of Linguistics

30. August 2011

Johannes Bubenzer Minimization of acyclic DFAs

Overview

De�nitions

Minimality

Revuz algorithm

New algorithm

Evaluation

Johannes Bubenzer Minimization of acyclic DFAs

De�nitions

Deterministic Finite-State Automaton (DFA)
A = 〈Q, q0,F , δ,Σ〉

Q �nite set of states

Σ �nite alphabet

q0 ∈ Q start state

F ⊆ Q �nal states

δ : Q × Σ→ Q transition function

Acyclic DFA (ADFA)

DFA which contains no cycles.

Connected DFA

All states can be reached from the start state

All states are connected to a �nal state.

Johannes Bubenzer Minimization of acyclic DFAs

De�nitions

Extended transition function δ∗: (∀q ∈ Q, a ∈ Σ,w ∈ Σ∗)

δ∗(q, ε) =q

δ∗(q, a · w) =δ∗(δ(q, a),w)

Right-Language
−→
L (q), q ∈ Q

−→
L (q) = {w | δ∗(q,w) ∈ F}

Language L(A)

L(A) =
−→
L (q0)

Johannes Bubenzer Minimization of acyclic DFAs

De�nitions

Nerode Equivalence ∼ of q, p ∈ Q

q ∼ p ↔
−→
L (q) =

−→
L (p)

[q] denotes equivalence class of q wrt. ∼.
Right-Language Signature τ of state q ∈ Q

τ(p) = 〈q ∈ F , 〈a, p〉 | δ(q, a) = p〉〉 p, q ∈ Q, a ∈ Σ

τ(p) = τ(q)→ p ∼ q

Note: I assume the transitions to be ordered on the alphabet
symbol.

Johannes Bubenzer Minimization of acyclic DFAs

Minimality

Minimal DFA (MDFA) A with L(A) = L:
DFA with the minimal number of states accepting L
i� ∀q, p ∈ Q : q ∼ p → q = p

DFA Minimization:

Create/Determine the MDFA for a given DFA

Join all ∼-equivalent states into one. Adjust transitions.

Johannes Bubenzer Minimization of acyclic DFAs

Minimality

Minimal State q ∈ Q:

All successor states are minimal

No other equivalent state exists

Minimal Signature τmin(q):

τ(q) where all successors of q are minimal states.

τmin(p) = τmin(q)←→ p ∼ q

Johannes Bubenzer Minimization of acyclic DFAs

Minimization

General Idea

Determine the minimal signatures of some states

Minimize those states (join the equal, adjust transitions)

ADFA case

Signature of a state depends on its direct successors

and we have no cycles

=> minimizing states requires minimizing their successors �rst

Johannes Bubenzer Minimization of acyclic DFAs

Minimizaion - Two approaches

Revuz (1992) - Minimization of Acyclic Deterministic Automata in
Linear Time:

Process states layerwise

Starting with �nal states with no outgoing transitions.

New approach:

Preorder processing of states.

All successors are (recursively) minimized before the actual
state is

both are O(n).

Johannes Bubenzer Minimization of acyclic DFAs

Example Revuz '92

Start with �nal states:

All states without outgoing transition have minimal signatures.

They are all �nal, so they are all equivalent.

Joining them yields one minimal state.

Proceed layerwise:

All states that have only transitions into previously minimized
layers have minimal signatures.

Minimizing them leads to a new layer of minimal states.

When the start state is reached all states are minimal

Johannes Bubenzer Minimization of acyclic DFAs

Revuz '92

Informal algorithm:

computes a height for each state (max. distance to a �nal
state)

process height-levels from low to high:

sort states of same height according to τ

sorting requires O(n) wrt. |Σ|. (radix sort with tricks)

merges states of same height and same τ

Johannes Bubenzer Minimization of acyclic DFAs

Revuz '92

Disadvantages:

Quite complicated to implement in practice

Requires precomputation of heights.

Requires partitioning of states according to height-levels.

Requires external sorting phase.

Johannes Bubenzer Minimization of acyclic DFAs

Depth-�rst minimization

Minimize a state q (recursive):

Minimize all of its successors.

If a state p with same τ(q) exists replace q by p.

Otherwise q is a new representative of class τ(q).

Terminates at states with no outgoing transitions.

Requires a map of τ → Q (Register).

Requires a map of Q → Q mapping states to class
representatives. (StateMap)

Johannes Bubenzer Minimization of acyclic DFAs

Algorithm

begin minimize(q)1

foreach trans ∈ q.transitions() do2

if ! StateMap [trans.destination] then3

minimize(trans.destination)4

trans.destination := StateMap [trans.destination]5

if Register [τ(q)] then6

StateMap [q] := Register [τ(q)]7

Q := Q − {q}8

else9

StateMap [q] := Register [τ(q)] := q10

end11

Johannes Bubenzer Minimization of acyclic DFAs

Runnning Time

Algorithm requires linear space

StateMap contains |Q| states at the end
Register contains |Q| states at most

Algorithm runs in linear time

consists in just a pre-order traversal.

Reduced constant factors

no height-precomputing, no state partitioning

no sorting

Johannes Bubenzer Minimization of acyclic DFAs

Evaluation

Performed evaluation

on random-sampled sets of strings (two di�erent distributions)

variing maximum string lengths

variing alphabet sizes

and on natural-language data sets

compiled into a trie

Implemented new algorithm in a C++ �nite-state library. Run
against an existing (optimized) Revuz implementation.

Johannes Bubenzer Minimization of acyclic DFAs

Evaluation (uniform distribution)

● ● ● ● ● ● ● ● ● ● ●

max. string len. = 10, |Σ| = 5,
number of words

%
 o

f m
ax

. r
un

ni
ng

 ti
m

e

0 1000000

0
25

50
75

10
0

● ● ● ● ● ● ● ● ● ● ●

max. string len. = 10, |Σ| = 50,
number of words

%
 o

f m
ax

. r
un

ni
ng

 ti
m

e

0 1000000

0
25

50
75

10
0

● ● ● ● ● ● ● ● ● ● ●

max. string len. = 50, |Σ| = 5,
number of words

%
 o

f m
ax

. r
un

ni
ng

 ti
m

e

0 1000000

0
25

50
75

10
0

● ● ● ● ● ● ● ● ● ● ●

max. string len. = 50, |Σ| = 50,
number of words

%
 o

f m
ax

. r
un

ni
ng

 ti
m

e

0 1000000

0
25

50
75

10
0

● Revuz
Bubenzer

Johannes Bubenzer Minimization of acyclic DFAs

Conclusion

faster (in practice)

simpler (to implement)

incremental (can be stopped at any time)

Johannes Bubenzer Minimization of acyclic DFAs

Thank you!

Johannes Bubenzer Minimization of acyclic DFAs

