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De�nitions

Deterministic Finite-State Automaton (DFA)
A = 〈Q, q0,F , δ,Σ〉

Q �nite set of states

Σ �nite alphabet

q0 ∈ Q start state

F ⊆ Q �nal states

δ : Q × Σ→ Q transition function

Acyclic DFA (ADFA)

DFA which contains no cycles.

Connected DFA

All states can be reached from the start state

All states are connected to a �nal state.
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De�nitions

Extended transition function δ∗: (∀q ∈ Q, a ∈ Σ,w ∈ Σ∗)

δ∗(q, ε) =q

δ∗(q, a · w) =δ∗(δ(q, a),w)

Right-Language
−→
L (q), q ∈ Q

−→
L (q) = {w | δ∗(q,w) ∈ F}

Language L(A)

L(A) =
−→
L (q0)
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De�nitions

Nerode Equivalence ∼ of q, p ∈ Q

q ∼ p ↔
−→
L (q) =

−→
L (p)

[q] denotes equivalence class of q wrt. ∼.
Right-Language Signature τ of state q ∈ Q

τ(p) = 〈q ∈ F , 〈a, p〉 | δ(q, a) = p〉〉 p, q ∈ Q, a ∈ Σ

τ(p) = τ(q)→ p ∼ q

Note: I assume the transitions to be ordered on the alphabet
symbol.
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Minimality

Minimal DFA (MDFA) A with L(A) = L:
DFA with the minimal number of states accepting L
i� ∀q, p ∈ Q : q ∼ p → q = p

DFA Minimization:

Create/Determine the MDFA for a given DFA

Join all ∼-equivalent states into one. Adjust transitions.
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Minimality

Minimal State q ∈ Q:

All successor states are minimal

No other equivalent state exists

Minimal Signature τmin(q):

τ(q) where all successors of q are minimal states.

τmin(p) = τmin(q)←→ p ∼ q
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Minimization

General Idea

Determine the minimal signatures of some states

Minimize those states (join the equal, adjust transitions)

ADFA case

Signature of a state depends on its direct successors

and we have no cycles

=> minimizing states requires minimizing their successors �rst
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Minimizaion - Two approaches

Revuz (1992) - Minimization of Acyclic Deterministic Automata in
Linear Time:

Process states layerwise

Starting with �nal states with no outgoing transitions.

New approach:

Preorder processing of states.

All successors are (recursively) minimized before the actual
state is

both are O(n).
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Example Revuz '92

Start with �nal states:

All states without outgoing transition have minimal signatures.

They are all �nal, so they are all equivalent.

Joining them yields one minimal state.

Proceed layerwise:

All states that have only transitions into previously minimized
layers have minimal signatures.

Minimizing them leads to a new layer of minimal states.

When the start state is reached all states are minimal
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Revuz '92

Informal algorithm:

computes a height for each state (max. distance to a �nal
state)

process height-levels from low to high:

sort states of same height according to τ

sorting requires O(n) wrt. |Σ|. (radix sort with tricks)

merges states of same height and same τ
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Revuz '92

Disadvantages:

Quite complicated to implement in practice

Requires precomputation of heights.

Requires partitioning of states according to height-levels.

Requires external sorting phase.
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Depth-�rst minimization

Minimize a state q (recursive):

Minimize all of its successors.

If a state p with same τ(q) exists replace q by p.

Otherwise q is a new representative of class τ(q).

Terminates at states with no outgoing transitions.

Requires a map of τ → Q (Register).

Requires a map of Q → Q mapping states to class
representatives. (StateMap)
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Algorithm

begin minimize(q)1

foreach trans ∈ q.transitions() do2

if ! StateMap [trans.destination] then3

minimize(trans.destination)4

trans.destination := StateMap [trans.destination]5

if Register [τ(q)] then6

StateMap [q] := Register [τ(q)]7

Q := Q − {q}8

else9

StateMap [q] := Register [τ(q)] := q10

end11
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Runnning Time

Algorithm requires linear space

StateMap contains |Q| states at the end
Register contains |Q| states at most

Algorithm runs in linear time

consists in just a pre-order traversal.

Reduced constant factors

no height-precomputing, no state partitioning

no sorting
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Evaluation

Performed evaluation

on random-sampled sets of strings (two di�erent distributions)

variing maximum string lengths

variing alphabet sizes

and on natural-language data sets

compiled into a trie

Implemented new algorithm in a C++ �nite-state library. Run
against an existing (optimized) Revuz implementation.
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Evaluation (uniform distribution)
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Conclusion

faster (in practice)

simpler (to implement)

incremental (can be stopped at any time)
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Thank you!
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