
Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

An improved version of the runs algorithm
based on Crochemore’s partitioning algorithm

F. Franek, M. Jiang, and C. Weng

Advanced Optimization Laboratoty
Dept. of Computing and Software

McMaster University

Prague Stringology Conference
Aug. 29-31, 2011

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Outline

1 Motivation

2 Background

3 The algorithm

4 Conclusion

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Motivation

The purpose of this short note is twofold:

to make researchers in the field aware that a
C++ implementation of a reasonably fast and
reasonably efficient algorithm to compute
runs, maximal repetitions, or distinct squares
in a string is available (can be downloaded).

solicit other C/C++ implementations of runs
algorithms for potential comparison and
bench-marking.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background

Since the advent of linear-time algorithms to
compute suffix arrays

Kärkkäinen+Sanders 2003
Kim+Sim+Park+Park 2003
Ko+Aluru 2003

an avenue opened for true linear-time algorithms

to compute runs. Such algorithms follow the

same general strategy:

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background, cont.

(a) compute suffix array using any of the
linear-time algorithms

(b) compute LCP (longest common prefix) array
using any of the linear-time algorithms

(c) compute Lempel-Ziv factorization using any
of the linear-time algorithms

(d) compute some runs that include all leftmost
runs from the Lempel-Ziv factorization using
Main’s algorithm

(e) from the runs computed in (d), compute all
runs using Kolpakov-Kucherov’s approach

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background, cont.

This is laborious and circuitous, and as Smyth

et. al. showed, does not lead to particularly fast

or memory efficient algorithms.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background, cont.

Franek+Jiang 2009 extended Crochemore’s

repetitions algorithm to compute runs. The

extension was based on a memory efficient

implementation of Crochemore’s algorithm by

Franek+Smyth+Xiao 2003 and required

additional data structures of O(n log n) integers

while preservening the original worst-time

complexity of O(n log n).

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background, cont.

The algorithm was straighforward:

collect the maximal repetitions as output by
the underlying Crochemore’s algorithm

consolidate them into runs

Three variants produced differing the strategy in

when and how the collected maximal repetitions

are consolidated into runs.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Background, cont.

Our computational investigation of the

maximum-number-of-runs conjecture and the

maximum-number-of-distinct-squares conjecture

using the d-step approach required a fast and

memory efficient computer program. The new

and improved algorithm was developed to satisfy

this need.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm

We skip the description of the implementation

details that use mupltiplexing and other various

methods to reduce the memory requirement to

13n integers, where n is the size of the input

string.

Moreover, all memory is allocated as a single

segment prior to the processing and no other

dynamic memory allocation/deallocation takes

place.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

Crochemore’s partitioning algorithm computes

level-by-level using refinement the classes of

equivalence and maintains a gap function.

The process of refinement and update of the gap

function is kept to O(n log n) complexity.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

The maximal repetitions are determined from the

information in the gap function once a level is

completed.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

Frantisek Franek and Mei Jiang 4

run, e ≥ 2 is the exponent (or power) of the run, and 0 ≤ t < p is the tail of the run. Moreover,
it is required that either s = 0 or that x[s−1] �= x[s+2p−1] (in simple terms it means that it is a
leftmost repetition) and that x[s+(ep)+t+1] �= x[s+(e+1)p+t+1] (in simple terms it means that the
tail cannot be extended to the right). It is also required, that the generator be irreducible.

3 A brief description of Crochemore algorithm

Let x[0..n−1] be a string. We define an equivalence ≈p on positions {0, · · · , n−1} by i ≈p j if
x[i..i+p−1] = x[j..j+p−1]. In Fig.1, the classes of ≈p, p = 1..8 are illustrated. For technical
reasons, a sentinel symbol $ is used to denote the end of the input string; it is consider to be the
lexicographically smallest character. If i, i+p are in the same class of ≈p (as illustrated by 5, 8 in
the class {0, 3, 5, 8, 11} on level 3, or 0,5 in class {0, 5, 8} on level 5, in Fig.1) then there is a tandem
repeat of period p (thus x[5..7] = x[8..10] =aba and x[0..4] = x[5..9] =abaab).

a b a a b a b a a b a a b a b $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{0,2,3,5,7,8,10,11,13} a {1,4,6,9,12,14} b

level

1

{2,7,10}aa {1,4,6,9,12} ba2 {0,3,5,8,11,13} ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11} aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5,8}abaabaa {0}abaabab {1}baababa

{1,9}baabab

{9}baabab $

8 {5}abaabaab {8}abaabaa $

{15}$

Figure 1: Classes of equivalence and their refinements for a string abaababaabaabab

Thus the computation of the classes and identification of repeats of the same “gap” as the level
(period) being computed lei in the heart of Crochemore algorithm. A naive approach following the
scheme of Fig.1 would lead to an O(n2) algorithm, as there are potentially ≤ n classes on each level
and there can be potentially ≤ n

2 levels.

The first level is computed directly by a simple left-to-right scan of the input string - of course we
are assuming that the input alphabet is {0, · · · , n−1}, if it is not, in O(n log n) the alphabet of the

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

Once a level is completed, the gap function

contains the following information:

Gap[p] = e iff e has an immediate predecessor ê

in the same class and e − ê = p.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

Thus if processing level p, every entry in Gap[p]

determines a primitevely rooted square in the

input string.

For instance consider the class {0, 3, 5, 8, 11, 13}
on level 2 capturing the occurrences of ab. It

follows that there are square abab starting at

positions 3 and 11.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

Since every run consists of a “bunch” of

primitevely rooted squares, we can “consolidate”

all the squares into runs. The problem is that

there is no discernible order of the entries in the

gap list, hence we get the squares in an arbitrary

order if we just follow the gap list.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

We instead test in constant time if a square can

be “shifted” one position to the left and/or one

position to the right. If so, we continue, but we

must use auxialiary data structures (the ones

used for refinemt but idle at this point) to

“remember” that we already used a particular

square in order not to use it when we come

to it in the gap list.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

The algorithm, cont.

The tracing of maximal repetitions is as before,

while for counting of distinct squares, only the

first square of each class is counted.

The control of what should be computed,
whether

runs, repetitions, or distinct squares is via

compilation flags.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Conclusion

We presented an implementation of

Crochemore’s partitioning algorithm based

algorithm to compute runs, maximal repetitions,

and primitively rooted distinct squares. The

algorithm is reasonably memory efficient (13n

inetegers) and reasonably fast (empirical

observation).

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Conclusion, cont.

A true validation of how fast it is is missing. A

graduate student of Smyth and myself is working

on comparison with Chen+Puglisi+Smyth 2007

algorithm (reputedly the fastest) and with

Hirashima+Bannai+Matsubara+Ishino+Shinohara

(reported at PSC in 2009) bit-parallel

implementation.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Conclusion, cont.

Another graduate student of mine is working on a

C/C++ implementation of a linear runs algorithm

based on a Java implementation by Johannes

Fischer. This will also be used for comparison

measurements.

Partitioning-
based Runs
Algorithm

Motivation

Background

Algorithm

Conclusion

Conclusion, cont.

We would welcome any C/C++ implementation of

runs algorithm for further comparisons.

Thank you

	Motivation
	 Background
	The algorithm
	Conclusion

