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Motivation

Based on computational results (Kolpakov+

Kucherov for binary alphabets up to n = 60,

Franek+Smyth for all alphabets up to n = 34),

it was hypothesized that

ρ(n) = max{r(x) |x | = n} ≤ n

where r(x) denotes the number of runs in a

string x .
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Motivation, cont.

This become known as the
maximum-number-of-runs conjecture.

Additional conjectures were put forth, for

instance that the maximum is atained by a binary

string, reflecting the intuitive believe that the

binary case is the hardest.



Parameterized
maximum-

numer-of-runs
problem

Motivation

New results

Conclusion

Motivation, cont.

To this end Deza+Franek introduced d-step

approach inspired by a similar approach to the

Hirsch conjecture. The size of the alphabet is

considered an additional parameter to the

traditional length of the string.
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Hence we investigate ρd(n) = max{r(x) : |x | =

n & x has exactly d distinct symbols}
We could organize the values ρd(n) in a

2-dimensional table where d indexes rows and

n indexes columns.

For technical reasons, we organize them into a

skewed table, where the columns are indexed by

n − d rather than n (we refer to is as (d , n−d)
table):
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(d , n−d) table
n − d

1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 .
2 1 2 2 3 4 5 5 6 7 8 .
3 1 2 3 3 4 5 6 6 7 8 .
4 1 2 3 4 4 5 6 7 7 8 .
5 1 2 3 4 5 5 6 7 8 8 .
6 1 2 3 4 5 6 6 7 8 9 ρ6(17)
7 1 2 3 4 5 6 7 7 8 9 .
8 1 2 3 4 5 6 7 8 8 9 .
9 1 2 3 4 5 6 7 8 9 9 .
10 1 2 3 4 5 6 7 8 9 10 .
11 . . . . . ρ11(17) . . . . ρ11(22)
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The table indicates remarkable regularities:

non-decreasing along a row from left-to-right
(proven in D+F)
non-decrasing along a column from
top-to-down (proven in D+F)
non-decreasing along a diagonal from
left-to-right (proven in D+F)
constant below the diagonal (new result here)
below and on the diagonal the values
≥ n − d (proven in D+F)
all values ≤ n − d (only for known values, we
conjecture for all values)
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the main (red) and the second (green)
diagonals are identical (only for known
values, equivalent with the conjecture)

the main (red) diagonal increments by 1
(only for known values, equivalent with the
conjecture)

the second (green) diagonal increments by 1
(only for known values, equivalent with the
conjecture)
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The value above the main diagonal is strictly
greater (only for known values, equivalent
with the conjecture)

The structure of all run-maximal strings on
the main diagonal is very simple: aabbcc ...
(only for known values, equivalent with the
conjecture)
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Proven in D+F

for any 2 ≤ d ≤ n:

ρd(n) ≤ n − d iff ρd(2d) = d

ρd(2d) = ρd(2d + 1)⇒ ρd(2d) ≤ n − d

i.e. the diagonals determine all.
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Immediate neigbourhood of the main diagonal

Constant under the main diagonal:
ρd(n) = ρn−d(2n − 2d) for 2 ≤ d ≤ n < 2d .

Note that this explains the dominance of the
main diagonal

Gap at most 1 just above the main diagonal:
ρd(2d) ≤ ρd−1(2d − 1) + 1 for d ≥ 3.

if exactly 1, the conjectuer holds
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Immediate neigbourhood .., cont.

The three immediate values above the main
diagonal are identical:

ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3)
for d ≥ 5.

Strengthening the previous result:
ρd(2d) + 1 ≥ ρd(2d + 1)⇒ ρd(2d) ≤ n − d
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Structural propertis of run-maximal strings

This section deals with structural properties of
run-maximal strings on the main diagonal. The
series of results is used to establish the main
result of this section:

Theorem

{ρd(n) ≤ n − d for all 2 ≤ d ≤ n} ⇔
{ρd(9d) ≤ 8d forall d ≥ 2}.
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Structural propertis of run-maximal strings, cont.

Lemma

Let ρd ′(2d ′) ≤ d ′ for 2 ≤ d ′ < d. Let x be a
run-maximal string in Sd(2d). Either
r(x) = ρd(2d) = d or x has at least d7d8 e
singletons, and no symbol occurs exactly 2, 3,
. . . 8 times in x.



Parameterized
maximum-

numer-of-runs
problem

Motivation

New results

Conclusion

Structural propertis of run-maximal strings, cont.

Proof.
Each symbol must be a singleton or occur at
least 9 times.Let x ∈ Sd(2d) be run-maximal.
Let m1 denote the number of singletons and m2

the number of multiply-occurring symbols of x .
Then m1 + 9m2 ≤ 2d and m1 + m2 = d . The
solution of the two inequalities gives m2 ≤ d

8 .
Let d = 8d1 + r where 0 ≤ r ≤ 7.
(a) r = 0: m2 ≤ d1, m1 ≥ d−d1 = 8d1 = d7d8 e.
(b) r ≥ 1: then m1 ≥ d−d1 = 7d1 + r .
d7d8 e = d7·8d1+7r

8 e = d7d1+ r
8e = 7d1+1 ≤

7d1+r ≤ m1
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Structural propertis of run-maximal strings, cont.

If 2 ≤ d ≤ 6, then d7d8 e = d and so for a
run-maximal x ∈ Sd(2d), r(x) = d as otherwise
it would have to consist of singletons.

For 7 ≤ d ≤ 15, d7d8 e = d − 1 and so for a
run-maximal x ∈ Sd(2d), r(x) = d as otherwise
it would have to consist of singletons and one
repeating letter.
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Structural propertis of run-maximal strings, cont.

Since the values of ρ2(n) have been computed for
n ≤ 60, we can determine the values on the main
diagonal for 16 ≤ d ≤ 23: let x ∈ Sd(2d), since
d7d8 e = d − 2, either r(x) = d or
r(x) = ρ2(d + 2) ≤ d .
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Structural propertis of run-maximal strings, cont.

Lemma

Let ρd ′(2d ′) ≤ d ′ for 2 ≤ d ′ < d. Let
x ∈ Sd(2d) be run-maximal. Either
r(x) = ρd(2d) = d or x does not contain a pair.

Lemma

Let ρd ′(2d ′) ≤ d ′ for 2 ≤ d ′ < d. Let x ∈ Sd(2d)
be run-maximal. Either r(x) = ρd(2d) = d or x
does not contain a triple.
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Structural propertis of run-maximal strings, cont.

Lemma

Let ρd ′(2d ′) ≤ d ′ for 2 ≤ d ′ < d. Let x ∈ Sd(2d)
be run-maximal. Either r(x) = ρd(2d) = d or x
does not contain a k-tuple, 4 ≤ k ≤ 8.

The rest of thge results in the full version
submitted to JDA.
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Conclusion

The resuluts presented in this paper constrain
the behaviour of the entries in the (d , n − d)
table below the main diagonal and in an
immediate neighbourhood above the main
diagonal.

One of the the main contributions lies in the
characterization of structural properties of the
run-maximal strings on the main diagonal,
giving yet another property equivalent with
the maximum number of runs conjecture.
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Conclusion, cont.

these results provide a faster way to
computationally check the validity of the
conjecture for greater lengths

they also indicate a possible way to prove the
conjecture: the first counter-example on the
main diagonal could not possibly have a
k-tuple for any conceivable k

Thank you
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