
Analyzing Edit Distance on Trees
Tree Swap Distance is Intractable

Martin Berglund, mbe@cs.umu.se

Department of Computing Science
Natural and Formal Languages (NFL) Group

August 29, 2011

Outline

• Recall string correction problem (Damerau-Levenshtein)

• Recall tree correction problem (Selkow)

• Define a swap operation for trees and discuss the problem of
integrating it in Selkow tree correction problems

• Show that swaps in tree correction is intractable in general
through a three step reduction

Background: String edit distance

• Edit distance on strings is well known. The operations
• Delete a single symbol anywhere in a string (abc ⇒ ac)
• Insert a single symbol anywhere in a string (abc ⇒ adbc)
• (Replace a single symbol by another: ignored here)

make up Levenshtein distance

• Damerau-Levenshtein distance adds a swap operation (abc ⇒
bac or abc ⇒ acb)

• The distance from s ∈ Σ∗ to s ′ ∈ Σ∗ is the number of
operations necessary to transform s into s ′, the decision
problem becomes:

Damerau-Levenshtein String Correction Problem

Given s, s ′ ∈ Σ∗ and k ∈ N, can s be turned into s ′ by performing
at most k symbol deletions, insertions, and swaps?

Tree correction problem

Tree correction was defined by Selkow in ’77:

Tree Correction Problem

Given two trees t and t ′ and k ∈ N, can t be turned into t ′ by
performing at most k node deletions, and insertions?

a

b

c d e

f ⇒delete a

c d e f

a

c d e f ⇒
insert parent

a

c g

d e

f

Efficient algorithms available (Zhang-Shasha for example)

Adding swaps to tree correction?

• Selkow tree correction only has deletions and insertions

• Swaps in trees are easy to define though:

a

b

c d e

f ⇒
swap

a

b

c e d

f ⇒

swap a

f b

c e d

• Having swaps is also useful in all kinds of applications

• So why isn’t it done? The correction problem becomes
NP-complete!

No swaps in tree edit distance?

Unordered tree inclusion (NP-complete)

Given two unordered trees t and t ′, can t ′ be obtained from t by a
sequence of deletions?

• We can reduce to this to tree correction as follows

• Set budget k = (1 + |t| − |t ′|)|t|2 − 1

• Replace each node in both t and t ′ by a unary tree of height
|t|2, simulating a cost of |t|2 for deletions/insertions

• Then the budget allows at most |t| − |t ′| deletions/insertions,
so no insertions possible

• The left-over budget |t|2 − 1 is enough to make any
reordering using swaps

• In summary, only deletes can be used and t can be freely
reordered, so tree correction with swaps is NP-complete

So, what to do about tree swaps?

• What now? Subtree movements is desirable in real
applications

• Polynomial algorithms exist which weaken the swap (each tree
may only participate in a constant number of swaps: Barnard
et al., ’95)

• How about the other route, where swaps are allowed but the
other operations are weakened?

• The simplest and most extreme approach: allowing only swaps
is also NP-complete! Let’s look at why

Tree swap distance: NP-complete

Tree swap distance problem

Given two trees t and t ′ and k ∈ N, can t be turned into t ′ by
performing at most k swaps on t?

We demonstrate NP-completeness with a sequence of reductions

Extended string
correction problem
(only deletes/swaps)

Swap assignment problem

Even swap assignment problemTree swap distance problem

The first is known to be strongly NP-complete, the rest are new

Delete/swap string correction and swap assignment

Wagner generalized the string correction problem where each
operation has a cost. Cases where inserts has cost ∞ turns out
strongly NP-complete:

Extended string correction problem, deletes/swaps only

Given s, s ′ ∈ Σ∗ and k ∈ N can s be transformed into s ′ by
deleting symbols from s and then performing at most k swaps?

We reduce this to the intermediary problem:

Swap assignment problem

Given a square matrix M ∈ Nd×d and k ∈ N, is there a sequence
of n swaps of adjacent rows in M such that k ≥ n +

∑
diag(M)?

Basically: swap rows to get a small diagonal

The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem s = aacb, s ′ = abc, and
k = 1, this constructs the swap assignment problem:

M =


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4

 , k ′ = 5

aacb


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4



The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem s = aacb, s ′ = abc, and
k = 1, this constructs the swap assignment problem:

M =


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4

 , k ′ = 5

aacb


0 6 6 2
0 6 6 1
6 6 0 3
6 0 6 4



The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem s = aacb, s ′ = abc, and
k = 1, this constructs the swap assignment problem:

M =


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4

 , k ′ = 5

aacb


0 6 6 2
6 6 0 3
0 6 6 1
6 0 6 4



The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem s = aacb, s ′ = abc, and
k = 1, this constructs the swap assignment problem:

M =


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4

 , k ′ = 5

acb


0 6 6 2
6 6 0 3
6 0 6 4
0 6 6 1



The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem s = aacb, s ′ = abc, and
k = 1, this constructs the swap assignment problem:

M =


0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4

 , k ′ = 5

abc


0 6 6 2
6 0 6 4
6 6 0 3
0 6 6 1


The general reduction shows swap assignment strongly

NP-complete

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 2 3 3
9 4 12
1 2 8

 , k = 11 ⇒



2 16 16 2 16 2
16 8 4 16 12 16
16 0 2 16 8 16

0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 2 3 3
1 2 8
9 4 12

 , k = 11 ⇒



2 16 16 2 16 2
16 0 2 16 8 16
16 8 4 16 12 16

0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
2 3 3
9 4 12

 , k = 11 ⇒



16 0 2 16 8 16
2 16 16 2 16 2

16 8 4 16 12 16

0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



16 0 2 16 8 16
16 8 4 16 12 16
2 16 16 2 16 2

0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



16 0 2 16 8 16
16 8 4 16 12 16
0 0 16 16 16 16
2 16 16 2 16 2

16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



16 0 2 16 8 16
0 0 16 16 16 16

16 8 4 16 12 16
2 16 16 2 16 2

16 16 0 0 16 16
16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



16 0 2 16 8 16
0 0 16 16 16 16

16 8 4 16 12 16
16 16 0 0 16 16
2 16 16 2 16 2

16 16 16 16 0 0

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



16 0 2 16 8 16
0 0 16 16 16 16

16 8 4 16 12 16
16 16 0 0 16 16
16 16 16 16 0 0
2 16 16 2 16 2

 , k
′ = 14

Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix M ∈ Nd×d , containing only even numbers,
and k ∈ N, can adjacent rows in M be swapped n times such that
k ≥ n +

∑
diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:

 1 2 8
9 4 12
2 3 3

 , k = 11 ⇒



0 0 16 16 16 16
16 0 2 16 8 16
16 8 4 16 12 16
16 16 0 0 16 16
16 16 16 16 0 0
2 16 16 2 16 2

 , k
′ = 14

Even swap assignment problem → tree swap distance

This reduction requires us to represent a number as a tree:

0 ⇒

γ

γ

1 0 0 0

γ′

0 0 0 1

2 ⇒

γ

γ

0 1 0 0

γ′

0 0 1 0

6 ⇒

γ

γ

0 0 0 1

γ′

1 0 0 0

⊥ ⇒

γ

γ

1 0 0 0

γ′

1 0 0 0

Notice how the swap distance between each is equal to the
numerical difference, and ⊥ is 3 swaps from all the others

Even swap assignment problem → tree swap distance

Take the even swap assignment problem

M =

[
6 0
2 2

]
, k = 3.

M is translated into the tree t and t ′ is constructed

t =

α

β

6 0

β

2 2

t ′ =

α

β

0 ⊥

β

⊥ 0

The constructed budget for the tree swap problem is k ′ = 9

Even swap assignment problem → tree swap distance

Take the even swap assignment problem

M =

[
2 2
6 0

]
, k = 3.

M is translated into the tree t and t ′ is constructed

t =

α

β

2 2

β

6 0

t ′ =

α

β

0 ⊥

β

⊥ 0

The constructed budget for the tree swap problem is k ′ = 9

With the one swap performed both problems are exactly solved

From the general reduction it follows that Tree swap distance
problem is NP-complete

Summary

In summary we have seen:

• Tree edit distance, in the form of the tree correction problem,
is both useful and well-known but only has deletion and
insertion operators

• Adding subtree movement operators to these makes the
correction problem intractable

• A correction problem using only swaps also turns out to be
intractable in the case of trees

• This suggests that different subtree movement operations
should be considered (linear distance?)

• The fact that tree swap distance is NP-complete may be
helpful for analyzing other problems, since it is simple to define

Thanks for listening

Summary

In summary we have seen:

• Tree edit distance, in the form of the tree correction problem,
is both useful and well-known but only has deletion and
insertion operators

• Adding subtree movement operators to these makes the
correction problem intractable

• A correction problem using only swaps also turns out to be
intractable in the case of trees

• This suggests that different subtree movement operations
should be considered (linear distance?)

• The fact that tree swap distance is NP-complete may be
helpful for analyzing other problems, since it is simple to define

Thanks for listening

	Introduction
	History
	Summary

