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Recall string correction problem (Damerau-Levenshtein)
Recall tree correction problem (Selkow)

Define a swap operation for trees and discuss the problem of
integrating it in Selkow tree correction problems

Show that swaps in tree correction is intractable in general
through a three step reduction



Background: String edit distance

e Edit distance on strings is well known. The operations

e Delete a single symbol anywhere in a string (abc = ac)
e Insert a single symbol anywhere in a string (abc = adbc)
o (Replace a single symbol by another: ignored here)

make up Levenshtein distance

e Damerau-Levenshtein distance adds a swap operation (abc =
bac or abc = ach)

e The distance from s € X* to s’ € L* is the number of
operations necessary to transform s into s/, the decision
problem becomes:

Damerau-Levenshtein String Correction Problem

Given s,s’ € ¥* and k € N, can s be turned into s’ by performing
at most k symbol deletions, insertions, and swaps?



Tree correction was defined by Selkow in '77:

Given two trees t and t’ and k € N, can t be turned into t’ by
performing at most k node deletions, and insertions?
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Efficient algorithms available (Zhang-Shasha for example)
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Adding swaps to tree correction?

Selkow tree correction only has deletions and insertions

Swaps in trees are easy to define though:
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Having swaps is also useful in all kinds of applications

So why isn't it done? The correction problem becomes
NP-complete!



No swaps in tree edit distance?

Unordered tree inclusion (NP-complete)

Given two unordered trees t and t’, can t’ be obtained from t by a
sequence of deletions?

e We can reduce to this to tree correction as follows

e Set budget k = (1 + [t| — |t'|)[t]> — 1

e Replace each node in both t and t’ by a unary tree of height
|2, simulating a cost of |t|? for deletions/insertions

e Then the budget allows at most |t| — |t/| deletions/insertions,
SO no insertions possible

e The left-over budget |t|?> — 1 is enough to make any
reordering using swaps

e In summary, only deletes can be used and t can be freely
reordered, so tree correction with swaps is NP-complete



So, what to do about tree swaps?

What now? Subtree movements is desirable in real
applications

Polynomial algorithms exist which weaken the swap (each tree
may only participate in a constant number of swaps: Barnard
et al., '95)

How about the other route, where swaps are allowed but the
other operations are weakened?

The simplest and most extreme approach: allowing only swaps
is also NP-complete! Let's look at why



Tree swap distance: NP-complete

Tree swap distance problem

Given two trees t and t’ and k € N, can t be turned into t’ by
performing at most k swaps on t?

We demonstrate NP-completeness with a sequence of reductions

Extended string

correction problem > Swap assignment problem
(only deletes/swaps)

Tree swap distance problem Even swap assignment problem

The first is known to be strongly NP-complete, the rest are new



Delete /swap string correction and swap assignment

Wagner generalized the string correction problem where each
operation has a cost. Cases where inserts has cost oo turns out
strongly NP-complete:

Extended string correction problem, deletes/swaps only

Given s,s’ € ¥* and k € N can s be transformed into s’ by
deleting symbols from s and then performing at most k swaps?

We reduce this to the intermediary problem:

Swap assignment problem

Given a square matrix M € Nyx g4 and k € N, is there a sequence
of n swaps of adjacent rows in M such that k > n+ )" diag(M)?

Basically: swap rows to get a small diagonal



Take the delete/swap correction problem s = aacb, s’ = abc, and

k =1, this constructs the swap assignment problem:
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Take the delete/swap correction problem s = aacb, s’ = abc, and

k =1, this constructs the swap assignment problem:
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Take the delete/swap correction problem s = aacb, s’ = abc, and

k =1, this constructs the swap assignment problem:
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The delete/swap correction — swap assignment reduction

Take the delete/swap correction problem s = aach, s’ = abc, and
k =1, this constructs the swap assignment problem:
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The general reduction shows swap assignment strongly
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Swap assignment — even swap assignment reduction

A simple modification of swap assignment:
Even swap assignment problem

Given a square matrix M € Ny, containing only even numbers,
and k € N, can adjacent rows in M be swapped n times such that
k> n+>_ diag(M)?

Reducing swap assignment to even swap assignment is done by
rounding numbers down to be even and adding rows which
simulate the odd costs:
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Swap assignment — even swap assignment reduction

A simple modification of swap assignment:
Even swap assignment problem
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Swap assignment — even swap assignment reduction

A simple modification of swap assignment:
Even swap assignment problem

Given a square matrix M € Ny, 4, containing only even numbers,
and k € N, can adjacent rows in M be swapped n times such that
k> n+ ) diag(M)?

Reducing swap assignment to even swap assignment is done by
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Even swap assignment problem — tree swap distance

This reduction requires us to represent a number as a tree:
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Notice how the swap distance between each is equal to the
numerical difference, and L is 3 swaps from all the others



Even swap assignment problem — tree swap distance

Take the even swap assignment problem
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M is translated into the tree t and t’ is constructed
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The constructed budget for the tree swap problem is k' =9



Even swap assignment problem — tree swap distance

Take the even swap assignment problem
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M is translated into the tree t and t’ is constructed
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The constructed budget for the tree swap problem is k' =9
With the one swap performed both problems are exactly solved

From the general reduction it follows that Tree swap distance
problem is NP-complete



Summary

In summary we have seen:

Tree edit distance, in the form of the tree correction problem,
is both useful and well-known but only has deletion and
insertion operators

Adding subtree movement operators to these makes the
correction problem intractable

A correction problem using only swaps also turns out to be
intractable in the case of trees

This suggests that different subtree movement operations
should be considered (linear distance?)

The fact that tree swap distance is NP-complete may be
helpful for analyzing other problems, since it is simple to define
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Thanks for listening
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