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Questions Asked

When will this be useful?

How can it be implemented?
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Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research
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Design Overview

Compile time requirements

Generate a set of keywords (K )

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime
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C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved
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Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

C++ VS D
A Limited Comparison

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation



The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Interpeting D Data
When can we justify Compile Time Optimizations?

Strong case for optimized search observed where |k | ≥ ≈ |x |
4
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When is Compile Time Optimizations Redundant?

Optimized search gains neared redundancy where |k | ≤ ≈ |x |
50
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When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design
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