
The General Idea
Experiment

Analysis
Final Remarks

On Compile Time Knuth-Morris-Pratt
Precomputation

Justin Kourie1 Bruce Watson2,1 Loek Cleophas3,1

1 FASTAR Research Group, Department of Computer Science, University of Pretoria, 0002 Pretoria, Republic
of South Africa (justin@fastar.org)

2 FASTAR Research Group, Centre for Knowledge Dynamics and Decision-making, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa (bruce@fastar.org)

3 Software Engineering & Technology Group, Department of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (loek@fastar.org)

Prague Stringology Conference 2011

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Outline

1 The General Idea

2 Experiment
Benchmark Requirements
Implementation Experience

3 Analysis
Theoretical Speculation
Results and Observations

4 Final Remarks

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Outline

1 The General Idea

2 Experiment
Benchmark Requirements
Implementation Experience

3 Analysis
Theoretical Speculation
Results and Observations

4 Final Remarks

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Outline

1 The General Idea

2 Experiment
Benchmark Requirements
Implementation Experience

3 Analysis
Theoretical Speculation
Results and Observations

4 Final Remarks

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Outline

1 The General Idea

2 Experiment
Benchmark Requirements
Implementation Experience

3 Analysis
Theoretical Speculation
Results and Observations

4 Final Remarks

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Taxonomological Optimization Targets[?]

(Watson, BW, Taxonomies and Toolkits of Regular Language
Algorithms, 1995)

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Taxonomological Optimization Targets[?]

(Watson, BW, Taxonomies and Toolkits of Regular Language
Algorithms, 1995)

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Taxonomological Optimization Targets[?]

(Watson, BW, Taxonomies and Toolkits of Regular Language
Algorithms, 1995)

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Taxonomological Optimization Targets[?]

(Watson, BW, Taxonomies and Toolkits of Regular Language
Algorithms, 1995)

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Keywords Known at Compile Time

Perform precomputation at compile time (metaprogramming)

Runtime search will receive performance boost

Questions Asked

When will this be useful?

How can it be implemented?

Why KMP?

Need a starting point to experiment with implementation
techniques

Start as simply as possible

Primary aim was probatory research

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

Design Overview

Compile time requirements

Generate a set of keywords (K)

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

Design Overview

Compile time requirements

Generate a set of keywords (K)

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

Design Overview

Compile time requirements

Generate a set of keywords (K)

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

Design Overview

Compile time requirements

Generate a set of keywords (K)

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

Design Overview

Compile time requirements

Generate a set of keywords (K)

For each keyword k ∈ K , precompute KMP fail index

Run time requirements

Benchmark the following using some target text (x)

Traditional (non optimised) KMP
Optimised KMP
Precomputation algortihm at runtime

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

A Pipelined Approach

source

code

C1 C2 C3 R

text file text file

NOTE: Complexity Analysis VS Complex Experiment

Decided to analyse non matching case only (i.e, optimized =
O(n), traditional = O(n +m))

Generated K such that no k ∈ K present in x

Simple way to build large, consistent data to analyse

Allowed focus to be on implementation and analysis (not
design paralysis)

Not ideal, can be improved

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

C++
Eventualy Hit a Dead End

Severe Metaprogramming Constraints

Constrained string length

Very high computational overhead

’Poor’,’ wri’,tabi’,lity’
typedef mpl::string<’hell’,’o wo’,’rld’> hello;

Variadic compile time array initialisation
fail idx[] = { precomp<k>::compute };
// i.e., int foo = { 0, 0, 1, ... }

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Benchmark Requirements
Implementation Experience

D
Designed for Metaprogramming

Addresses all problems encountered in C++ (length, computation,
writability, array initialisation).

Why?

Ground up design = more powerful metaprogramming
constructs

Compile Time Function Evaluation

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

In depth discussion of:

Sanity checks

Postulations about usefulness

No strict claims or generalisations

Interesting results to observe nonetheless

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Hypotheses

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

C++ VS D
A Limited Comparison

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Interpeting D Data
When can we justify Compile Time Optimizations?

Strong case for optimized search observed where |k | ≥ ≈ |x |
4

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Theoretical Speculation
Results and Observations

Interpeting D Data
When is Compile Time Optimizations Redundant?

Optimized search gains neared redundancy where |k | ≤ ≈ |x |
50

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Answers to the Original Questions

When could this technique be useful?

Size of keyword is large relative to the size of text (e.g.,
realtime monitoring).

Size of keyword is relatively small, gains tend towards
redundancy (e.g., bulk analysis)

Not strict generalisations nor surprising in themselves but...

...How could this technique be implemented?

Avoid C++ string metaprogramming pitfalls

Choose a language designed for string metaprogramming

General idea of the benchmark’s design

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Thanks and Acknowledgements

...and of course questions! =/

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

The General Idea
Experiment

Analysis
Final Remarks

Thanks and Acknowledgements

...and of course questions! =/

Justin Kourie, Bruce Watson, Loek Cleophas On Compile Time Knuth-Morris-Pratt Precomputation

	The General Idea
	Experiment
	Benchmark Requirements
	Implementation Experience

	Analysis
	Theoretical Speculation
	Results and Observations

	Final Remarks

