
Introduction
Our Contributions

Summary

Finding all covers of an indeterminate string in
O(n) time on average

Md. Faizul Bari M. Sohel Rahman Rifat Shahriyar

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

The Prague Stringology Conference 2009

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Basic Definitions

For a strings x = uwv :
|x | is the length of x
ε is the empty string
x [i] is the i-th symbol of x
w is a substring of x and x is a superstring of w
u(v) is a prefix (suffix) of x
x [i . . . j] denotes the substring of x starting at position i and
ending at j

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Basic Definitions

For strings x = x [1 . . . n] and y = y [1 . . .m]:
xy denotes the concatenation of strings x and y .
xk denotes the concatenation of k copies of x .
If x [n − i + 1 . . . n] = y [1 . . . i] for some i ≥ 1, the string
x [1 . . . n]y [i + 1 . . .m] is a superposition of x and y . We
also say that x overlaps y .

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Border and Border Array

Border and Border Array:
A border u of x is a prefix of x that is also a suffix of x .
That is u = x [1 . . . b] = x [n − b + 1 . . . n] for some
b ∈ {0 . . . n − 1}.
The border array of x is an array β such that for all
i ∈ {1 . . . n}, β[i] = length of the longest border of
x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Cover and Cover Array

Cover and Cover Array:
A substring w of x is called a cover of x , if x can be
constructed by concatenating or overlapping copies of
w . We also say that w covers x .
For example, if x = ababaaba, then aba and x are covers
of x .
The cover array γ, is a data structure used to store the
length of the longest proper cover of every prefix of x ;
That is for all i ε 1 . . . n, γ[i] = length of the longest proper
cover of x [1 . . . i] or 0.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Indeterminate Strings

Indeterminate Strings:
An indeterminate string is a sequence T =
T [1]T [2] . . .T [n], where T [i] ⊆ Σ for each i , and Σ is a
given alphabet of fixed size.
If at any position in an indeterminate string, |T [i]| = 1, we
call this a solid symbol. However, when |T [i]| ≥ 1, we call
this a non-solid symbol.
In an indeterminate string a non-solid position can contain
up to |Σ| symbols.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

The Problems That We Studied

The problems that we studied here are
Finding all the covers of an indeterminate string
Finding the cover array of an indeterminate string

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

The Problems That We Studied

The problems that we studied here are
Finding all the covers of an indeterminate string
Finding the cover array of an indeterminate string

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Previous Works

Regularities of conservative indeterminate strings
In [1], the authors investigated the regularities of
conservative indeterminate strings.
In a conservative indeterminate string the number
indeterminate positions is bounded by a constant.
The authors presented algorithms for finding

The smallest conservative cover (number of indeterminate
position in the cover is bounded by a given constant)
λ-conservative covers (conservative covers having a fixed
length λ)
λ-conservative seeds.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Previous Works

Regularities of conservative indeterminate strings
In [1], the authors investigated the regularities of
conservative indeterminate strings.
In a conservative indeterminate string the number
indeterminate positions is bounded by a constant.
The authors presented algorithms for finding

The smallest conservative cover (number of indeterminate
position in the cover is bounded by a given constant)
λ-conservative covers (conservative covers having a fixed
length λ)
λ-conservative seeds.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Previous Works

Regularities of conservative indeterminate strings
In [1], the authors investigated the regularities of
conservative indeterminate strings.
In a conservative indeterminate string the number
indeterminate positions is bounded by a constant.
The authors presented algorithms for finding

The smallest conservative cover (number of indeterminate
position in the cover is bounded by a given constant)
λ-conservative covers (conservative covers having a fixed
length λ)
λ-conservative seeds.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Previous Works

Regularities on indeterminate strings (without any restriction)
Antoniou et al. presented an O(n log n) algorithm to find
the smallest cover of an indeterminate string in [2].
They showed that their algorithm can be easily extended to
compute all the covers of x . The later algorithm runs in
O(n2 log n) time.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Definitions
The Problems That We Studied
Previous Works

Previous Works

Regularities on indeterminate strings (without any restriction)
Antoniou et al. presented an O(n log n) algorithm to find
the smallest cover of an indeterminate string in [2].
They showed that their algorithm can be easily extended to
compute all the covers of x . The later algorithm runs in
O(n2 log n) time.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Main Results

We devise an algorithm for computing all the covers of an
indeterminate string x of length n in O(n2) time in the worst
case.
We also show that our algorithm works in O(n) time on the
average.
We extend our algorithm to compute the cover array of x in
O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [1], does not
enforce the restriction that the cover or the input string x
must be conservative.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Main Results

We devise an algorithm for computing all the covers of an
indeterminate string x of length n in O(n2) time in the worst
case.
We also show that our algorithm works in O(n) time on the
average.
We extend our algorithm to compute the cover array of x in
O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [1], does not
enforce the restriction that the cover or the input string x
must be conservative.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Main Results

We devise an algorithm for computing all the covers of an
indeterminate string x of length n in O(n2) time in the worst
case.
We also show that our algorithm works in O(n) time on the
average.
We extend our algorithm to compute the cover array of x in
O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [1], does not
enforce the restriction that the cover or the input string x
must be conservative.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Main Results

We devise an algorithm for computing all the covers of an
indeterminate string x of length n in O(n2) time in the worst
case.
We also show that our algorithm works in O(n) time on the
average.
We extend our algorithm to compute the cover array of x in
O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [1], does not
enforce the restriction that the cover or the input string x
must be conservative.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Outline

1 Introduction
Definitions
The Problems That We Studied
Previous Works

2 Our Contributions
Main Results
Our Algorithm

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Definition of the The First Problem

We start with a formal definition of the first problem we handle
in this paper.

Problem
Computing All Covers of an Indeterminate String over a fixed
alphabet.
Input: We are given an indeterminate string x, of length n on a
fixed alphabet Σ.
Output: We need to compute all the covers of x.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Our Algorithm Depends on the Following Facts

Fact

Every cover of string x is also a border of x.

Fact

If u and c are covers of x and |u| < |c| then u must be a cover
of c.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Our Algorithm Depends on the Following Lemma

Lemma

The expected number of borders of an indeterminate string is
bounded by a constant.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Algorithm

In the first step, the deterministic border array of x is
computed.
In the second step, we check each border whether it is a
cover of x or not.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Algorithm

In the first step, the deterministic border array of x is
computed.
In the second step, we check each border whether it is a
cover of x or not.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step

Here, we utilize the algorithm provided by Holub and
Smyth [3] for computing the deterministic border of an
indeterminate string.
The output of the algorithm is a two dimensional list β.
Each entry βi of β contains a list of pair (b, νa), where b is
the length of the border and νa represents the required
assignment.
This list is kept sorted in decreasing order of border
lengths of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step

Here, we utilize the algorithm provided by Holub and
Smyth [3] for computing the deterministic border of an
indeterminate string.
The output of the algorithm is a two dimensional list β.
Each entry βi of β contains a list of pair (b, νa), where b is
the length of the border and νa represents the required
assignment.
This list is kept sorted in decreasing order of border
lengths of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step

Here, we utilize the algorithm provided by Holub and
Smyth [3] for computing the deterministic border of an
indeterminate string.
The output of the algorithm is a two dimensional list β.
Each entry βi of β contains a list of pair (b, νa), where b is
the length of the border and νa represents the required
assignment.
This list is kept sorted in decreasing order of border
lengths of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step

Here, we utilize the algorithm provided by Holub and
Smyth [3] for computing the deterministic border of an
indeterminate string.
The output of the algorithm is a two dimensional list β.
Each entry βi of β contains a list of pair (b, νa), where b is
the length of the border and νa represents the required
assignment.
This list is kept sorted in decreasing order of border
lengths of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step: Running Time Analysis

If we assume that the maximum number of borders of any
prefix of x is m, then the worst case running time of the
algorithm is O(nm).
But from Lemma 3 we know that the expected number of
borders of an indeterminate string is bounded by a
constant.
As a result the expected running time of the above
algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step: Running Time Analysis

If we assume that the maximum number of borders of any
prefix of x is m, then the worst case running time of the
algorithm is O(nm).
But from Lemma 3 we know that the expected number of
borders of an indeterminate string is bounded by a
constant.
As a result the expected running time of the above
algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The First Step: Running Time Analysis

If we assume that the maximum number of borders of any
prefix of x is m, then the worst case running time of the
algorithm is O(nm).
But from Lemma 3 we know that the expected number of
borders of an indeterminate string is bounded by a
constant.
As a result the expected running time of the above
algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step

Now, we find out the covers of string x . Here we need only
the last entry of the border array, βn, where n = |x |.
To identify a border as a cover of x we use the pattern
matching technique of an Aho-Corasick automaton.
We build an Aho-Corasick automaton with the dictionary
containing the border of x and parse x through the
automaton to find out whether x can be covered by the it or
not.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step

Now, we find out the covers of string x . Here we need only
the last entry of the border array, βn, where n = |x |.
To identify a border as a cover of x we use the pattern
matching technique of an Aho-Corasick automaton.
We build an Aho-Corasick automaton with the dictionary
containing the border of x and parse x through the
automaton to find out whether x can be covered by the it or
not.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step

Now, we find out the covers of string x . Here we need only
the last entry of the border array, βn, where n = |x |.
To identify a border as a cover of x we use the pattern
matching technique of an Aho-Corasick automaton.
We build an Aho-Corasick automaton with the dictionary
containing the border of x and parse x through the
automaton to find out whether x can be covered by the it or
not.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Building the Aho-Corasick
automaton

Suppose in iteration i , we have the length of the i th border
of βn equal to b.
In this iteration, we build an Aho-Corasick automaton for
the following dictionary:

D = {x [1]x [2] . . . x [b]}, where ∀j ∈ 1 to b , x [j] ∈ Σ

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Building the Aho-Corasick
automaton

Suppose in iteration i , we have the length of the i th border
of βn equal to b.
In this iteration, we build an Aho-Corasick automaton for
the following dictionary:

D = {x [1]x [2] . . . x [b]}, where ∀j ∈ 1 to b , x [j] ∈ Σ

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Building the Aho-Corasick
automaton

Suppose in iteration i , we have the length of the i th border
of βn equal to b.
In this iteration, we build an Aho-Corasick automaton for
the following dictionary:

D = {x [1]x [2] . . . x [b]}, where ∀j ∈ 1 to b , x [j] ∈ Σ

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Function isCover

Algorithm 1 formally presents the steps of a function isCover(),
which is the heart of the second step.

1: Construct the Aho-Corasick automaton for c
2: parse x and compute the positions where c occurs in x and

put the positions in the array Pos
3: for i = 2 to |Pos| do
4: if Pos[i]− Pos[i − 1] > |c| then
5: Return FALSE
6: end if
7: end for
8: Return TRUE

Algorithm 1: Function isCover(x, c)

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis of
Algorithm 1

Clearly, Steps 3 and 2 run in O(n).
Now, the complexity of Step 1 is linear in the size of the
dictionary on which the automaton is build.
Here the length of the string in the dictionary can be n − 1
in the worst case. So, the time and space complexity of
this algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis of
Algorithm 1

Clearly, Steps 3 and 2 run in O(n).
Now, the complexity of Step 1 is linear in the size of the
dictionary on which the automaton is build.
Here the length of the string in the dictionary can be n − 1
in the worst case. So, the time and space complexity of
this algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis of
Algorithm 1

Clearly, Steps 3 and 2 run in O(n).
Now, the complexity of Step 1 is linear in the size of the
dictionary on which the automaton is build.
Here the length of the string in the dictionary can be n − 1
in the worst case. So, the time and space complexity of
this algorithm is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: A Further Improvement

According to Fact 2, if u and c are covers of x and |u| < |c|
then u must be a cover of c.
Now if βn = {b1,b2, . . . ,bm} then from the definition of
border array b1 > b2 > . . . > bn.
Now if in any iteration we find a bi that is a cover of x then
from Fact 2, we can say that for all j ∈ i + 1 . . .m, if bj is a
cover of x if and only if bj is a cover of bi .
So instead of parsing x we can parse bi for the subsequent
automatons and as |bi | ≤ |x |.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: A Further Improvement

According to Fact 2, if u and c are covers of x and |u| < |c|
then u must be a cover of c.
Now if βn = {b1,b2, . . . ,bm} then from the definition of
border array b1 > b2 > . . . > bn.
Now if in any iteration we find a bi that is a cover of x then
from Fact 2, we can say that for all j ∈ i + 1 . . .m, if bj is a
cover of x if and only if bj is a cover of bi .
So instead of parsing x we can parse bi for the subsequent
automatons and as |bi | ≤ |x |.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: A Further Improvement

According to Fact 2, if u and c are covers of x and |u| < |c|
then u must be a cover of c.
Now if βn = {b1,b2, . . . ,bm} then from the definition of
border array b1 > b2 > . . . > bn.
Now if in any iteration we find a bi that is a cover of x then
from Fact 2, we can say that for all j ∈ i + 1 . . .m, if bj is a
cover of x if and only if bj is a cover of bi .
So instead of parsing x we can parse bi for the subsequent
automatons and as |bi | ≤ |x |.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: A Further Improvement

According to Fact 2, if u and c are covers of x and |u| < |c|
then u must be a cover of c.
Now if βn = {b1,b2, . . . ,bm} then from the definition of
border array b1 > b2 > . . . > bn.
Now if in any iteration we find a bi that is a cover of x then
from Fact 2, we can say that for all j ∈ i + 1 . . .m, if bj is a
cover of x if and only if bj is a cover of bi .
So instead of parsing x we can parse bi for the subsequent
automatons and as |bi | ≤ |x |.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Overall Algorithms

1: k ← n
2: AC ← φ {AC is a list used to store the covers of x}
3: for all b ε βn do
4: if isCover(x [1..k], x [1..b]) = true then
5: m← b
6: AC.Add(k)
7: end if
8: end for

Algorithm 2: Computing all covers of x

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

The running time of Algorithm 2 is O(nm), where m is
number of borders of x or alternatively number of entries in
βn.
Again, from Lemma 3 we can say that the number of
borders of an indeterminate string is bounded by a
constant on average.
Hence, the expected running time of Algorithm 2 is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

The running time of Algorithm 2 is O(nm), where m is
number of borders of x or alternatively number of entries in
βn.
Again, from Lemma 3 we can say that the number of
borders of an indeterminate string is bounded by a
constant on average.
Hence, the expected running time of Algorithm 2 is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

The running time of Algorithm 2 is O(nm), where m is
number of borders of x or alternatively number of entries in
βn.
Again, from Lemma 3 we can say that the number of
borders of an indeterminate string is bounded by a
constant on average.
Hence, the expected running time of Algorithm 2 is O(n).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

It follows from above that our algorithm for finding all the
covers of an indeterminate string of length n runs in O(n)
time on the average.
The worst case complexity of our algorithm is O(nm), i.e.,
O(n2).
Which is also an improvement since the current best
known algorithm [2] for finding all covers requires
O(n2 log n) in the worst case.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

It follows from above that our algorithm for finding all the
covers of an indeterminate string of length n runs in O(n)
time on the average.
The worst case complexity of our algorithm is O(nm), i.e.,
O(n2).
Which is also an improvement since the current best
known algorithm [2] for finding all covers requires
O(n2 log n) in the worst case.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

The Second Step: Running Time Analysis

It follows from above that our algorithm for finding all the
covers of an indeterminate string of length n runs in O(n)
time on the average.
The worst case complexity of our algorithm is O(nm), i.e.,
O(n2).
Which is also an improvement since the current best
known algorithm [2] for finding all covers requires
O(n2 log n) in the worst case.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Definition of the The Second Problem

We start with a formal definition of the second problem we
handle in this paper.

Problem
Computing the Cover array of an Indeterminate String over a
fixed alphabet.
Input: We are given an indeterminate string x, of length n on a
fixed alphabet Σ.
Output: We need to compute the cover array of x.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Algorithm for Computing the Cover Array

Here we only need the length of the largest border of each
prefix of x . This information is stored in the first entry of
each βi of the border array.
Let us assume that βi [1] denotes the first entry of the list βi
that is βi [1] is the length of the largest border of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Algorithm for Computing the Cover Array

Here we only need the length of the largest border of each
prefix of x . This information is stored in the first entry of
each βi of the border array.
Let us assume that βi [1] denotes the first entry of the list βi
that is βi [1] is the length of the largest border of x [1 . . . i].

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Algorithm for Computing the Cover Array

1: γ[i]← 0 ∀ i ε {1 . . . n}
2: for i ← 1 to n do
3: if isCover(x , x [1 . . . βi[1]]) = true then
4: γ[i]← βi[1]

5: end if
6: end for

Algorithm 3: Computing cover array γ of x

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Main Results
Our Algorithm

Running Time Analysis

As the worst case running time of the isCover(x , c)
function is O(n) and the algorithm iterates over the n lists
of the border array β, the running time of Algorithm 3 is
O(n2).

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Summary

In this paper we have presented an average case O(n)
time and space complex algorithm for computing all the
covers of a given indeterminate string x of length n.
We have also presented an algorithm for computing the
cover array γ of an indeterminate string. This algorithm
requires O(n2) time and O(n) space in the worst case.
Both of these algorithms are improvement over existing
algorithms.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Introduction
Our Contributions

Summary

Thank You

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Appendix References

References I

P. ANTONIOU, M. CROCHEMORE, C. S. ILIOPOULOS,
I. JAYASEKERA, AND G. M. LANDAU:
Conservative string covering of indeterminate strings.
Proceedings of the Prague Stringology Conference 2008,
2008, pp. 108–115.

P. ANTONIOU, C. S. ILIOPOULOS, I. JAYASEKERA, AND

W. RYTTER:
Computing repetitive structures in indeterminate strings.
Proceedings of the 3rd IAPR International Conference on
Pattern Recognition in Bioinformatics (PRIB 2008), 2008.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

Appendix References

References II

J. HOLUB AND W. F. SMYTH:
Algorithms on indeterminate strings.
Miller, M., Park, K. (eds.): Proceedings of the 14th
Australasian Workshop on Combinatorial Algorithms
AWOCA’03, 2003, pp. 36–45.

Faiz, Sohel, Rifat Finding icovers in O(n) time on average

	Introduction
	Definitions
	The Problems That We Studied
	Previous Works

	Our Contributions
	Main Results
	Our Algorithm

	Summary
	Appendix
	Appendix
	

