
Reducing Repetitions

Peter Leupold1

1Department of Mathematics, Faculty of Science
Kyoto Sangyo University, Japan

Prague Stringology Conference 2009

P. Leupold Reducing Repetitions

Crossing Over

-
�
�
��/ -

δγ
u

v
α β

P. Leupold Reducing Repetitions

Duplication

-
�
�
��/ -

u

u

u1 z u2

u1 z u2

P. Leupold Reducing Repetitions

Graphical Display of Duplication

6

L
L
L
L
L
L
LL

�
�
�
�
�
�
��

� �� �

z

z z

P. Leupold Reducing Repetitions

The Duplication Operation

We formalize this with the duplication relation ♥ defined as

u♥v :⇔ ∃z [z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2].

Note that the contexts u1 and u2 form part of the relation.

We also consider variants with length bounds |z | ≤ k or |z | = k and we
write ♥≤k or ♥k respectively.

P. Leupold Reducing Repetitions

The Duplication Operation

We formalize this with the duplication relation ♥ defined as

u♥v :⇔ ∃z [z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2].

Note that the contexts u1 and u2 form part of the relation.

We also consider variants with length bounds |z | ≤ k or |z | = k and we
write ♥≤k or ♥k respectively.

P. Leupold Reducing Repetitions

The Duplication Operation

We formalize this with the duplication relation ♥ defined as

u♥v :⇔ ∃z [z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2].

Note that the contexts u1 and u2 form part of the relation.

We also consider variants with length bounds |z | ≤ k or |z | = k and we
write ♥≤k or ♥k respectively.

P. Leupold Reducing Repetitions

Duplication – Results and Open Problems

Theorem

♥∗ preserves regularity over two-letter alphabet, but not over three-letter
alphabet.

Theorem

♥≤k∗ preserves context-freeness.

Open Problem

Does ♥∗ preserve context-freeness?

P. Leupold Reducing Repetitions

Duplication – Results and Open Problems

Theorem

♥∗ preserves regularity over two-letter alphabet, but not over three-letter
alphabet.

Theorem

♥≤k∗ preserves context-freeness.

Open Problem

Does ♥∗ preserve context-freeness?

P. Leupold Reducing Repetitions

Duplication – Results and Open Problems

Theorem

♥∗ preserves regularity over two-letter alphabet, but not over three-letter
alphabet.

Theorem

♥≤k∗ preserves context-freeness.

Open Problem

Does ♥∗ preserve context-freeness?

P. Leupold Reducing Repetitions

Duplication Roots

For reducing repetitions we will use the inverse of ♥ denoted by . .

Definition

The duplication root of a non-empty word w is

♥√w := IRR(.) ∩ {u : w . ∗ u}.

As usual, this notion is extended in the canonical way from words to
languages such that

♥√
L :=

⋃
w∈L

♥√w .

The roots ♥≤k
√

w and ♥k
√

w are defined in completely analogous ways

P. Leupold Reducing Repetitions

Duplication Roots

For reducing repetitions we will use the inverse of ♥ denoted by . .

Definition

The duplication root of a non-empty word w is

♥√w := IRR(.) ∩ {u : w . ∗ u}.

As usual, this notion is extended in the canonical way from words to
languages such that

♥√
L :=

⋃
w∈L

♥√w .

The roots ♥≤k
√

w and ♥k
√

w are defined in completely analogous ways

P. Leupold Reducing Repetitions

Duplication Roots – Examples

• All words in a duplication root are square-free, and over an alphabet
of two letters only the seven square-free words
{λ, a, b, ab, ba, aba, bab} exist. They are uniquely determined by their
first letter, the last letter, and the set of letters occurring in them.

• By undoing duplications, i.e., by applying rules from . , we obtain
from the word w = abcbabcbc the words in the set
{abc, abcbc, abcbabc}.
Thus we have the root ♥√abcbabcbc = {abc, abcbabc}

•
♥√

babacabacbcabacb = {bacabacb, bacbcabacb, bacb},

and
♥√

ababcbabcacbabcabacbabcab =

{abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

P. Leupold Reducing Repetitions

Duplication Roots – Examples

• All words in a duplication root are square-free, and over an alphabet
of two letters only the seven square-free words
{λ, a, b, ab, ba, aba, bab} exist. They are uniquely determined by their
first letter, the last letter, and the set of letters occurring in them.

• By undoing duplications, i.e., by applying rules from . , we obtain
from the word w = abcbabcbc the words in the set
{abc, abcbc, abcbabc}.
Thus we have the root ♥√abcbabcbc = {abc, abcbabc}

•
♥√

babacabacbcabacb = {bacabacb, bacbcabacb, bacb},

and
♥√

ababcbabcacbabcabacbabcab =

{abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

P. Leupold Reducing Repetitions

Duplication Roots – Examples

• All words in a duplication root are square-free, and over an alphabet
of two letters only the seven square-free words
{λ, a, b, ab, ba, aba, bab} exist. They are uniquely determined by their
first letter, the last letter, and the set of letters occurring in them.

• By undoing duplications, i.e., by applying rules from . , we obtain
from the word w = abcbabcbc the words in the set
{abc, abcbc, abcbabc}.
Thus we have the root ♥√abcbabcbc = {abc, abcbabc}

•
♥√

babacabacbcabacb = {bacabacb, bacbcabacb, bacb},

and
♥√

ababcbabcacbabcabacbabcab =

{abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

P. Leupold Reducing Repetitions

Duplication Roots and the Chomsky Hierarchy

Theorem

The closure properties of the classes of regular and context-free languages
under the three duplication roots are as follows:

♥k
√

L ♥≤k
√

L ♥√L

REG Y Y N
CF ? ? N

The symbol Y stands for closure, N stands for non-closure, and ? means
that the problem is open.

P. Leupold Reducing Repetitions

Repetition Complexity

In an effort to define a new measure for the complexity of words, Ilie et al.
defined a reduction relation very similar to undoing duplications, which
however remembers the steps it takes.
For the definition let D = {0, 1, . . . 9} be the set of decimal digits, and Σ
be an alphabet disjoint from D. The alphabet for the reduction relation is
T := Σ ∪ D ∪ {〈, 〉,EXP}.
Then the reduction relation ⇒ is defined by u ⇒ v iff u = u1x

nu2,
v = u1 〈x〉EXP〈dec n〉u2 for some u1, u2 ∈ T ∗, x = Σ+, n > 2. Finally,
let h be the morphism erasing all symbols except the letters from Σ.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

Example

For the word ababcbc there are two irreducible forms under ⇒, namely
〈ab〉EXP〈2〉cbc and aba 〈bc〉EXP〈2〉.

Under . , however, the images of both words under h are further reducible
to a common normal form: both ababcbc . abcbc . abc and
ababcbc . ababc . abc are possible reductions leading to abc.

Notice how the brackets block the further reduction of abab in
aba 〈bc〉EXP〈2〉 and of bcbc in 〈ab〉EXP〈2〉cbc.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

Example

For the word ababcbc there are two irreducible forms under ⇒, namely
〈ab〉EXP〈2〉cbc and aba 〈bc〉EXP〈2〉.

Under . , however, the images of both words under h are further reducible
to a common normal form: both ababcbc . abcbc . abc and
ababcbc . ababc . abc are possible reductions leading to abc.

Notice how the brackets block the further reduction of abab in
aba 〈bc〉EXP〈2〉 and of bcbc in 〈ab〉EXP〈2〉cbc.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

Example

For the word ababcbc there are two irreducible forms under ⇒, namely
〈ab〉EXP〈2〉cbc and aba 〈bc〉EXP〈2〉.

Under . , however, the images of both words under h are further reducible
to a common normal form: both ababcbc . abcbc . abc and
ababcbc . ababc . abc are possible reductions leading to abc.

Notice how the brackets block the further reduction of abab in
aba 〈bc〉EXP〈2〉 and of bcbc in 〈ab〉EXP〈2〉cbc.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

There are two main differences between the two relations.

1 A reduction un ⇒ 〈u〉EXP〈n〉 is done in a single step while the
reduction un . ∗ u will always take n − 1 steps.

2 If w ⇒∗ u then w . ∗ h(u), but the reverse does not hold, see the
Example above.

Despite these differences, the similarities are evident, and ⇒∗ can be
embedded in . ∗ . We state a further relation.

Theorem

For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥
√

w | = 1.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

There are two main differences between the two relations.

1 A reduction un ⇒ 〈u〉EXP〈n〉 is done in a single step while the
reduction un . ∗ u will always take n − 1 steps.

2 If w ⇒∗ u then w . ∗ h(u), but the reverse does not hold, see the
Example above.

Despite these differences, the similarities are evident, and ⇒∗ can be
embedded in . ∗ . We state a further relation.

Theorem

For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥
√

w | = 1.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

There are two main differences between the two relations.

1 A reduction un ⇒ 〈u〉EXP〈n〉 is done in a single step while the
reduction un . ∗ u will always take n − 1 steps.

2 If w ⇒∗ u then w . ∗ h(u), but the reverse does not hold, see the
Example above.

Despite these differences, the similarities are evident, and ⇒∗ can be
embedded in . ∗ . We state a further relation.

Theorem

For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥
√

w | = 1.

P. Leupold Reducing Repetitions

Unduplication versus Repetition Complexity

There are two main differences between the two relations.

1 A reduction un ⇒ 〈u〉EXP〈n〉 is done in a single step while the
reduction un . ∗ u will always take n − 1 steps.

2 If w ⇒∗ u then w . ∗ h(u), but the reverse does not hold, see the
Example above.

Despite these differences, the similarities are evident, and ⇒∗ can be
embedded in . ∗ . We state a further relation.

Theorem

For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥
√

w | = 1.

P. Leupold Reducing Repetitions

The Number of Duplication Roots

We have seen from the examples above that the number of possible
duplication roots seems to increase with increasing word length.
Our main interest here is to investigate the behaviour of the function:

duproots(n) := max{| ♥
√

w | : |w | = n}.

Because it has often turned out to be very useful to consider problems
about duplications with a length restriction, we also define the function

bduproots≤ k(n) := max{| ♥≤k
√

w | : |w | = n}.

Notice that we do not bound the alphabet size.

P. Leupold Reducing Repetitions

The Number of Duplication Roots

We have seen from the examples above that the number of possible
duplication roots seems to increase with increasing word length.
Our main interest here is to investigate the behaviour of the function:

duproots(n) := max{| ♥
√

w | : |w | = n}.

Because it has often turned out to be very useful to consider problems
about duplications with a length restriction, we also define the function

bduproots≤ k(n) := max{| ♥≤k
√

w | : |w | = n}.

Notice that we do not bound the alphabet size.

P. Leupold Reducing Repetitions

The Number of Duplication Roots

We have seen from the examples above that the number of possible
duplication roots seems to increase with increasing word length.
Our main interest here is to investigate the behaviour of the function:

duproots(n) := max{| ♥
√

w | : |w | = n}.

Because it has often turned out to be very useful to consider problems
about duplications with a length restriction, we also define the function

bduproots≤ k(n) := max{| ♥≤k
√

w | : |w | = n}.

Notice that we do not bound the alphabet size.

P. Leupold Reducing Repetitions

Bounding from Above

Obviously, rules from . can only be applied on square factors. Thus the
number of squares is the number of possible distinct rule applications in a
string.

However, when we are interested in rule applications with distinct results
and thus with potentially distinct roots, the number of runs captures this
more exactly.

Fact

Let w be a word with period k. Then all applications of rules from . k
will result in the same word, i.e. {u : w . k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with
respect to . is equal to the number of runs in w .

P. Leupold Reducing Repetitions

Bounding from Above

Obviously, rules from . can only be applied on square factors. Thus the
number of squares is the number of possible distinct rule applications in a
string.

However, when we are interested in rule applications with distinct results
and thus with potentially distinct roots, the number of runs captures this
more exactly.

Fact

Let w be a word with period k. Then all applications of rules from . k
will result in the same word, i.e. {u : w . k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with
respect to . is equal to the number of runs in w .

P. Leupold Reducing Repetitions

Bounding from Above

Obviously, rules from . can only be applied on square factors. Thus the
number of squares is the number of possible distinct rule applications in a
string.

However, when we are interested in rule applications with distinct results
and thus with potentially distinct roots, the number of runs captures this
more exactly.

Fact

Let w be a word with period k. Then all applications of rules from . k
will result in the same word, i.e. {u : w . k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with
respect to . is equal to the number of runs in w .

P. Leupold Reducing Repetitions

Bounding from Above

Obviously, rules from . can only be applied on square factors. Thus the
number of squares is the number of possible distinct rule applications in a
string.

However, when we are interested in rule applications with distinct results
and thus with potentially distinct roots, the number of runs captures this
more exactly.

Fact

Let w be a word with period k. Then all applications of rules from . k
will result in the same word, i.e. {u : w . k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with
respect to . is equal to the number of runs in w .

P. Leupold Reducing Repetitions

Bounding from Above

Every reduction via . removes at least one letter, thus there can be at
most n − 1 steps in the reduction of a word of length n. So there are at
most duproots(n) ≤ runs(n)n−3 different reductions.

Lemma

If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also
♥
√

u = ♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form
x2 → x for single letters x . For possible splits to different duplication roots
we can assume that at least two letters are deleted in every step.

This improves our upper bound to runs(n)
n−3

2 .

P. Leupold Reducing Repetitions

Bounding from Above

Every reduction via . removes at least one letter, thus there can be at
most n − 1 steps in the reduction of a word of length n. So there are at
most duproots(n) ≤ runs(n)n−3 different reductions.

Lemma

If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also
♥
√

u = ♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form
x2 → x for single letters x . For possible splits to different duplication roots
we can assume that at least two letters are deleted in every step.

This improves our upper bound to runs(n)
n−3

2 .

P. Leupold Reducing Repetitions

Bounding from Above

Every reduction via . removes at least one letter, thus there can be at
most n − 1 steps in the reduction of a word of length n. So there are at
most duproots(n) ≤ runs(n)n−3 different reductions.

Lemma

If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also
♥
√

u = ♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form
x2 → x for single letters x . For possible splits to different duplication roots
we can assume that at least two letters are deleted in every step.

This improves our upper bound to runs(n)
n−3

2 .

P. Leupold Reducing Repetitions

Bounding from Above

Every reduction via . removes at least one letter, thus there can be at
most n − 1 steps in the reduction of a word of length n. So there are at
most duproots(n) ≤ runs(n)n−3 different reductions.

Lemma

If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also
♥
√

u = ♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form
x2 → x for single letters x . For possible splits to different duplication roots
we can assume that at least two letters are deleted in every step.

This improves our upper bound to runs(n)
n−3

2 .

P. Leupold Reducing Repetitions

One-Letter-Squares First

10 versus 2 paths for the word aabcbabcbbc , by first reducing one-letter
squares from left to right. The direction of reductions is top to bottom.

P. Leupold Reducing Repetitions

Bounding from Below

• We construct an example of a sequence of words wn, which are simply
powers of a word w , namely wn := wn. The number of roots
increases exponentially in n.

• We start from u = abcbabcbc with the two roots u1 = abc and
u2 = abcbabc .

• Let ρ be the morphism, which simply renames letters according to the
scheme a→ b → c → a. Then ρ(u) has the two roots ρ(u1) and
ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

• w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d .

P. Leupold Reducing Repetitions

Bounding from Below

• We construct an example of a sequence of words wn, which are simply
powers of a word w , namely wn := wn. The number of roots
increases exponentially in n.

• We start from u = abcbabcbc with the two roots u1 = abc and
u2 = abcbabc .

• Let ρ be the morphism, which simply renames letters according to the
scheme a→ b → c → a. Then ρ(u) has the two roots ρ(u1) and
ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

• w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d .

P. Leupold Reducing Repetitions

Bounding from Below

• We construct an example of a sequence of words wn, which are simply
powers of a word w , namely wn := wn. The number of roots
increases exponentially in n.

• We start from u = abcbabcbc with the two roots u1 = abc and
u2 = abcbabc .

• Let ρ be the morphism, which simply renames letters according to the
scheme a→ b → c → a. Then ρ(u) has the two roots ρ(u1) and
ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

• w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d .

P. Leupold Reducing Repetitions

Bounding from Below

• We construct an example of a sequence of words wn, which are simply
powers of a word w , namely wn := wn. The number of roots
increases exponentially in n.

• We start from u = abcbabcbc with the two roots u1 = abc and
u2 = abcbabc .

• Let ρ be the morphism, which simply renames letters according to the
scheme a→ b → c → a. Then ρ(u) has the two roots ρ(u1) and
ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

• w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d .

P. Leupold Reducing Repetitions

Bounding from Below

Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d ,

which are square-free.

We now need to recall that a morphism h is called square-free, iff h(v) is
square-free for all square-free words v . Crochemore has shown that a
uniform morphism h is square-free iff it is square-free for all square-free
words of length 3.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}.

P. Leupold Reducing Repetitions

Bounding from Below

Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d ,

which are square-free.

We now need to recall that a morphism h is called square-free, iff h(v) is
square-free for all square-free words v . Crochemore has shown that a
uniform morphism h is square-free iff it is square-free for all square-free
words of length 3.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}.

P. Leupold Reducing Repetitions

Bounding from Below

Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d ,

which are square-free.

We now need to recall that a morphism h is called square-free, iff h(v) is
square-free for all square-free words v . Crochemore has shown that a
uniform morphism h is square-free iff it is square-free for all square-free
words of length 3.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}.

P. Leupold Reducing Repetitions

Checking Square-freeness

ϕ(aba) = abcdbcadcabacabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(abc) = abcdbcadcabacabdabcdbcacbcadcabdabcbabcdbcadcabd
ϕ(aca) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(acb) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(bab) = abcdbcacbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(bac) = abcdbcacbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(bca) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(bcb) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(cac) = abcbabcdbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(cab) = abcbabcdbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(cba) = abcbabcdbcadcabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(cbc) = abcbabcdbcadcabdabcdbcacbcadcabdabcbabcdbcadcabd ,

P. Leupold Reducing Repetitions

Bounding from Below

Now let t be an infinite square-free word over the letters a, b and c . Such
a word exists.

Then all the words in ϕ(pref(t)) are square-free, too. From the
construction of ϕ we know that for any word z of length i we can reach
ϕ(z) from w i by undoing duplications.

Therefore ϕ(pref(t)) ⊆ ♥√
w+. For two distinct square-free words t1 and

t2, also ϕ(t1) 6= ϕ(t2).

Finally, notice that for all positive i ≤ n we have wn . ∗ w i .

P. Leupold Reducing Repetitions

Bounding from Below

Now let t be an infinite square-free word over the letters a, b and c . Such
a word exists.

Then all the words in ϕ(pref(t)) are square-free, too. From the
construction of ϕ we know that for any word z of length i we can reach
ϕ(z) from w i by undoing duplications.

Therefore ϕ(pref(t)) ⊆ ♥√
w+. For two distinct square-free words t1 and

t2, also ϕ(t1) 6= ϕ(t2).

Finally, notice that for all positive i ≤ n we have wn . ∗ w i .

P. Leupold Reducing Repetitions

Bounding from Below

Now let t be an infinite square-free word over the letters a, b and c . Such
a word exists.

Then all the words in ϕ(pref(t)) are square-free, too. From the
construction of ϕ we know that for any word z of length i we can reach
ϕ(z) from w i by undoing duplications.

Therefore ϕ(pref(t)) ⊆ ♥√
w+. For two distinct square-free words t1 and

t2, also ϕ(t1) 6= ϕ(t2).

Finally, notice that for all positive i ≤ n we have wn . ∗ w i .

P. Leupold Reducing Repetitions

Bounding from Below

Now let t be an infinite square-free word over the letters a, b and c . Such
a word exists.

Then all the words in ϕ(pref(t)) are square-free, too. From the
construction of ϕ we know that for any word z of length i we can reach
ϕ(z) from w i by undoing duplications.

Therefore ϕ(pref(t)) ⊆ ♥√
w+. For two distinct square-free words t1 and

t2, also ϕ(t1) 6= ϕ(t2).

Finally, notice that for all positive i ≤ n we have wn . ∗ w i .

P. Leupold Reducing Repetitions

Counting the Roots

We conclude that bduproots≤30 ≤ s, where s(n) is the number of ternary
square-free words of length up to n.

This function’s value is not known, however, it was first bounded to
6 · 1.032n ≤ s(n) ≤ 6 · 1.379n by Brandenburg. A better lower bound was
found by Sun s(n) ≥ 110

n
42 .

w itself is of length 3|u|+ 3 = 30. So we see that
bduproots≤30(n) ≥ 1

30110
n
42 .

P. Leupold Reducing Repetitions

Counting the Roots

We conclude that bduproots≤30 ≤ s, where s(n) is the number of ternary
square-free words of length up to n.

This function’s value is not known, however, it was first bounded to
6 · 1.032n ≤ s(n) ≤ 6 · 1.379n by Brandenburg. A better lower bound was
found by Sun s(n) ≥ 110

n
42 .

w itself is of length 3|u|+ 3 = 30. So we see that
bduproots≤30(n) ≥ 1

30110
n
42 .

P. Leupold Reducing Repetitions

Counting the Roots

We conclude that bduproots≤30 ≤ s, where s(n) is the number of ternary
square-free words of length up to n.

This function’s value is not known, however, it was first bounded to
6 · 1.032n ≤ s(n) ≤ 6 · 1.379n by Brandenburg. A better lower bound was
found by Sun s(n) ≥ 110

n
42 .

w itself is of length 3|u|+ 3 = 30. So we see that
bduproots≤30(n) ≥ 1

30110
n
42 .

P. Leupold Reducing Repetitions

The Bounds

Theorem

1
30110

n
42 ≤ duproots(n) ≤ 2n for all n > 0.

Theorem

1
30110

n
42 ≤ bduproots≤30(n) ≤ max{812

n−3
2 , 2n} for all n > 0.

For ternary alphabet, the upper bound 6 · 1.379n on the number of ternary
words by Brandenburg can replace 2n in both Propositions.

P. Leupold Reducing Repetitions

Open Problems

• In how far does duproots(n) depend on the alphabet size?

• An example for exponential growth with only three letters.

• How complicated is it to compute duproots(n)?

P. Leupold Reducing Repetitions

Open Problems

• In how far does duproots(n) depend on the alphabet size?

• An example for exponential growth with only three letters.

• How complicated is it to compute duproots(n)?

P. Leupold Reducing Repetitions

Open Problems

• In how far does duproots(n) depend on the alphabet size?

• An example for exponential growth with only three letters.

• How complicated is it to compute duproots(n)?

P. Leupold Reducing Repetitions

	Duplication
	The Relation to Repetition Complexity
	The Number of Duplication Roots
	Bounding from Above
	Bounding from Below

	Conclusions

