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An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m
• The task: compute the length of a longest common

subsequence (LCS) of A and B

. We denote the length by L

. E.g. if A = “Prague” and B = “charge”, then

L = LLCS(A,B) = 3

LLCS is a dual of indel edit distance:

• edid(A,B) = n+m− 2LLCS(A,B)
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Acta Informatica (1982)

• O(σn+ min{mL,L(n−L)}): Rick: A New Flexible

Algorithm for the Longest Common Subsequence

Problem, CPM 1995
• O(σn+min{mL,L(n−L)}): Goeman & Clausen: A

New Practical Linear Space Algorithm for the Longest

Common Subsequence Problem, Kybernetika (2002)
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Classic solution: O(mn) dynamic programming

• A table D, where D[i, j] =LLCS(A1..i, B1..j) and

D[i, j] =
1 +D[i-1, j-1], if Ai = Bj,

else max{D[i, j-1], D[i-1, j]}
c h a r g e

0 0 0 0 0 0 0
P 0 0 0 0 0 0 0

r 0 0 0 0 1 1 1

a 0 0 0 1 1 1 1

g 0 0 0 1 1 2 2

u 0 0 0 1 1 2 2

e 0 0 0 1 1 2 3
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Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 0 0

C 0 0 0 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|
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Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

T 1 1

A 1

C 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|

• Store only increment points i where ∆[i, j] = 1 ⇒
each column j takes D[n, j] ≤ L = LLCS(A,B)
space

• let Ix[j] denote the xth increment point in column j
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How to compute increment points for column j?
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Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])
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Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

How to locate the relevant match Ai = Bj

quickly?

• Precompute a σ × n table NM , where

NM [λ, k] =
min{i : i > k ∧ (Ai = λ ∨ i = n+ 1)}

j-1

x

x-1

j

x-1

x-1

x-1

x-2

. E.g. if A = “oklahoma”, then NM [‘a’,1] = 4 and

NM [‘h’,5] = 9

Resulting time to compute L = LLCS(A,B): O(σn+mL)
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Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments
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Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments
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x-1

⇒

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

A “block” encoding: let Sy[j] and Ey[j] be the positions

of the first and last points in the yth maximal segment of

consecutive increment points
• ∆[k, j] = 1 for k = Sy[j]..Ey[j]
• ∆[k, j] 6= 0 for k = Sy[j]-1 and k = Ey[j] + 1
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if i = NM [Bj, Ey−1[j-1]] < Sy[j-1]
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Create the list of increment blocks for column j

incrementally from column j − 1
j-1

x

x+2
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x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] < Sy[j-1], add increment

point i and increment block Sy[j-1] + 1..Ey[j-1] to

column j (possibly merging point i into a block)
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if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1], add increment
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Amount of work
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if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1], add increment

block Sy[j-1]..Ey[j-1] as such to column j

Amount of work ≈ the number of increment blocks
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Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

. l = 0# + 1#

• Also let block# be the number of maximal increment

blocks

• Now it holds that

. block# ≤ 1#

. block# ≤ 1 + 0# = l − 1# + 1
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1 2 z...

m-L = z

z+1 ... m

Consider the figure

• Each of the first z = m − L columns has at most z

increment points (because D[n, j] ≤ j)

. Work for this part: O(z2)
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1 2 z...

m-L = z

z+1 ... m

• In each column z + i: there are at most z + i

increment points and the first n-L+i rows hold at

least i increment points

. block# for first n-L+i rows ≤ n-L+1

. block# for remaining rows ≤ z+i-i = z
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m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L))
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1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L)),

and also bounded by O(mL)

Total time complexity O(σn+ min{mL,L(n− L)})

• If L < m
2 , then O(mL) = O(L(n− L))

• If L ≥ m
2 , then O(m(n− L)) = O(L(n− L))
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