
An input sensitive online
algorithm for LCS

computation

Heikki Hyyrö

Department of Computer Sciences

University of Tampere, Finland

An input sensitive online algorithm for LCS computation

The basic problem setting:

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m
• The task: compute the length of a longest common

subsequence (LCS) of A and B

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m
• The task: compute the length of a longest common

subsequence (LCS) of A and B

. We denote the length by L

. E.g. if A = “Prague” and B = “charge”

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m
• The task: compute the length of a longest common

subsequence (LCS) of A and B

. We denote the length by L

. E.g. if A = “Prague” and B = “charge”, then

L = LLCS(A,B) = 3

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

The basic problem setting:

• Input: strings A and B from an alphabet of size σ

. The lengths are n and m with n ≥ m
• The task: compute the length of a longest common

subsequence (LCS) of A and B

. We denote the length by L

. E.g. if A = “Prague” and B = “charge”, then

L = LLCS(A,B) = 3

LLCS is a dual of indel edit distance:

• edid(A,B) = n+m− 2LLCS(A,B)

Prague Stringology Conference ’09 1

An input sensitive online algorithm for LCS computation

An online algorithm:

Prague Stringology Conference ’09 2

An input sensitive online algorithm for LCS computation

An online algorithm:

• Preprocesses only A, and can then read B one

character at a time

Prague Stringology Conference ’09 2

An input sensitive online algorithm for LCS computation

An online algorithm:

• Preprocesses only A, and can then read B one

character at a time

• Useful e.g. in one-against-many comparison or

neighborhood generation

Prague Stringology Conference ’09 2

An input sensitive online algorithm for LCS computation

An online algorithm:

• Preprocesses only A, and can then read B one

character at a time

• Useful e.g. in one-against-many comparison or

neighborhood generation

A

A

T C G

G
CT

A T C G A T C G A T C G

Prague Stringology Conference ’09 2

An input sensitive online algorithm for LCS computation

Many input-sensitive algorithms exist

Prague Stringology Conference ’09 3

An input sensitive online algorithm for LCS computation

Many input-sensitive algorithms exist, e.g.:
• O(n log n + nL): Hirschberg: Algorithms for the

Longest Common Subsequence Problem, Journal of
the ACM (1977)

Prague Stringology Conference ’09 3

An input sensitive online algorithm for LCS computation

Many input-sensitive algorithms exist, e.g.:
• O(n log n + nL): Hirschberg: Algorithms for the

Longest Common Subsequence Problem, Journal of
the ACM (1977)

• O(n(m − L)): Nakatsu et al.: A Longest Common

Subsequence Algorithm Suitable for Similar Texts,

Acta Informatica (1982)

Prague Stringology Conference ’09 3

An input sensitive online algorithm for LCS computation

Many input-sensitive algorithms exist, e.g.:
• O(n log n + nL): Hirschberg: Algorithms for the

Longest Common Subsequence Problem, Journal of
the ACM (1977)

• O(n(m − L)): Nakatsu et al.: A Longest Common

Subsequence Algorithm Suitable for Similar Texts,

Acta Informatica (1982)

• O(σn+ min{mL,L(n−L)}): Rick: A New Flexible

Algorithm for the Longest Common Subsequence

Problem, CPM 1995

Prague Stringology Conference ’09 3

An input sensitive online algorithm for LCS computation

Many input-sensitive algorithms exist, e.g.:
• O(n log n + nL): Hirschberg: Algorithms for the

Longest Common Subsequence Problem, Journal of
the ACM (1977)

• O(n(m − L)): Nakatsu et al.: A Longest Common

Subsequence Algorithm Suitable for Similar Texts,

Acta Informatica (1982)

• O(σn+ min{mL,L(n−L)}): Rick: A New Flexible

Algorithm for the Longest Common Subsequence

Problem, CPM 1995
• O(σn+min{mL,L(n−L)}): Goeman & Clausen: A

New Practical Linear Space Algorithm for the Longest

Common Subsequence Problem, Kybernetika (2002)

Prague Stringology Conference ’09 3

An input sensitive online algorithm for LCS computation

Classic solution: O(mn) dynamic programming

Prague Stringology Conference ’09 4

An input sensitive online algorithm for LCS computation

Classic solution: O(mn) dynamic programming

• A table D, where D[i, j] =LLCS(A1..i, B1..j) and

D[i, j] =
1 +D[i-1, j-1], if Ai = Bj,

else max{D[i, j-1], D[i-1, j]}
c h a r g e

0 0 0 0 0 0 0
P 0 0 0 0 0 0 0

r 0 0 0 0 1 1 1

a 0 0 0 1 1 1 1

g 0 0 0 1 1 2 2

u 0 0 0 1 1 2 2

e 0 0 0 1 1 2 3

Prague Stringology Conference ’09 4

An input sensitive online algorithm for LCS computation

Incremental encoding of columns of D

Prague Stringology Conference ’09 5

An input sensitive online algorithm for LCS computation

Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 0 0

C 0 0 0 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|

Prague Stringology Conference ’09 5

An input sensitive online algorithm for LCS computation

Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

T 1 1

A 1

C 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|

• Store only increment points i where ∆[i, j] = 1

Prague Stringology Conference ’09 5

An input sensitive online algorithm for LCS computation

Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

T 1 1

A 1

C 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|

• Store only increment points i where ∆[i, j] = 1 ⇒
each column j takes D[n, j] ≤ L = LLCS(A,B)
space

Prague Stringology Conference ’09 5

An input sensitive online algorithm for LCS computation

Incremental encoding of columns of D

Regular:

A T C

0 0 0 0
T 0 0 1 1

A 0 1 1 1

C 0 1 1 2

Incremental:

A T C

T 1 1

A 1

C 1

• ∆[i, j] = D[i, j]−D[i-1, j]
• D[i, j] = Σi

k=1∆[k, j]
. |{∆[k, j] : 1 ≤ k ≤ j ∧ ∆[k, j] = 1}|

• Store only increment points i where ∆[i, j] = 1 ⇒
each column j takes D[n, j] ≤ L = LLCS(A,B)
space

• let Ix[j] denote the xth increment point in column j

Prague Stringology Conference ’09 5

An input sensitive online algorithm for LCS computation

How to compute increment points for column j?

Prague Stringology Conference ’09 6

An input sensitive online algorithm for LCS computation

How to compute increment points for column j?

j-1

x

x-1

j

x-1

x-1

x-1

x-2

Prague Stringology Conference ’09 6

An input sensitive online algorithm for LCS computation

How to compute increment points for column j?

j-1

x

x-1

j

x-1

x-1

x-1

x-2

j-1

x

x-1

j

x-1

x-1

x-1

x-2

x-1

x

x

x

x

Prague Stringology Conference ’09 6

An input sensitive online algorithm for LCS computation

How to compute increment points for column j?

j-1

x

x-1

j

x-1

x-1

x-1

x-2

j-1

x

x-1

j

x-1

x-1

x-1

x-2

x-1

x

x

x

x

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

Prague Stringology Conference ’09 6

An input sensitive online algorithm for LCS computation

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

Prague Stringology Conference ’09 7

An input sensitive online algorithm for LCS computation

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

How to locate the relevant match Ai = Bj

quickly?

Prague Stringology Conference ’09 7

An input sensitive online algorithm for LCS computation

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

How to locate the relevant match Ai = Bj

quickly?

• Precompute a σ × n table NM , where

NM [λ, k] =
min{i : i > k ∧ (Ai = λ ∨ i = n+ 1)}

j-1

x

x-1

j

x-1

x-1

x-1

x-2

Prague Stringology Conference ’09 7

An input sensitive online algorithm for LCS computation

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

How to locate the relevant match Ai = Bj

quickly?

• Precompute a σ × n table NM , where

NM [λ, k] =
min{i : i > k ∧ (Ai = λ ∨ i = n+ 1)}

j-1

x

x-1

j

x-1

x-1

x-1

x-2

. E.g. if A = “oklahoma”, then NM [‘a’,1] = 4 and

NM [‘h’,5] = 9

Prague Stringology Conference ’09 7

An input sensitive online algorithm for LCS computation

Ix[j] = min{i : i > Ix-1[j-1] ∧ (Ai = Bj ∨ i = Ix[j-1])

How to locate the relevant match Ai = Bj

quickly?

• Precompute a σ × n table NM , where

NM [λ, k] =
min{i : i > k ∧ (Ai = λ ∨ i = n+ 1)}

j-1

x

x-1

j

x-1

x-1

x-1

x-2

. E.g. if A = “oklahoma”, then NM [‘a’,1] = 4 and

NM [‘h’,5] = 9

Resulting time to compute L = LLCS(A,B): O(σn+mL)

Prague Stringology Conference ’09 7

An input sensitive online algorithm for LCS computation

Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments

j-1

x

x+2

j

x+2

x+1

x-1

x-1

⇒

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

Prague Stringology Conference ’09 8

An input sensitive online algorithm for LCS computation

Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments

j-1

x

x+2

j

x+2

x+1

x-1

x-1

⇒

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

A “block” encoding:

Prague Stringology Conference ’09 8

An input sensitive online algorithm for LCS computation

Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments

j-1

x

x+2

j

x+2

x+1

x-1

x-1

⇒

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

A “block” encoding: let Sy[j] and Ey[j] be the positions

of the first and last points in the yth maximal segment of

consecutive increment points

Prague Stringology Conference ’09 8

An input sensitive online algorithm for LCS computation

Consider again the computation of the increment points

• The changes occur only

to the first increment

points among blocks of

consecutive increments

j-1

x

x+2

j

x+2

x+1

x-1

x-1

⇒

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

A “block” encoding: let Sy[j] and Ey[j] be the positions

of the first and last points in the yth maximal segment of

consecutive increment points
• ∆[k, j] = 1 for k = Sy[j]..Ey[j]
• ∆[k, j] 6= 0 for k = Sy[j]-1 and k = Ey[j] + 1

Prague Stringology Conference ’09 8

An input sensitive online algorithm for LCS computation

Create the list of increment blocks for column j

incrementally from column j − 1

Prague Stringology Conference ’09 9

An input sensitive online algorithm for LCS computation

Create the list of increment blocks for column j

incrementally from column j − 1
j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

Prague Stringology Conference ’09 9

An input sensitive online algorithm for LCS computation

Create the list of increment blocks for column j

incrementally from column j − 1
j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] < Sy[j-1]

Prague Stringology Conference ’09 9

An input sensitive online algorithm for LCS computation

Create the list of increment blocks for column j

incrementally from column j − 1
j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1 x

x

x-1

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] < Sy[j-1], add increment

point i and increment block Sy[j-1] + 1..Ey[j-1] to

column j (possibly merging point i into a block)

Prague Stringology Conference ’09 9

An input sensitive online algorithm for LCS computation

j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1

x-1

x-1

x

x+2

x+1

Prague Stringology Conference ’09 10

An input sensitive online algorithm for LCS computation

j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1

x-1

x-1

x

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1]

Prague Stringology Conference ’09 10

An input sensitive online algorithm for LCS computation

j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1

x-1

x-1

x

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1], add increment

block Sy[j-1]..Ey[j-1] as such to column j

Prague Stringology Conference ’09 10

An input sensitive online algorithm for LCS computation

j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1

x-1

x-1

x

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1], add increment

block Sy[j-1]..Ey[j-1] as such to column j

Amount of work

Prague Stringology Conference ’09 10

An input sensitive online algorithm for LCS computation

j-1

x

x+2

j

x+2

x+1

x-1

x-1

j-1

x

x+2

j

x+2

x+1

x-1

x-1

x-1

x-1

x

x+2

x+1

if i = NM [Bj, Ey−1[j-1]] ≥ Sy[j-1], add increment

block Sy[j-1]..Ey[j-1] as such to column j

Amount of work ≈ the number of increment blocks

Prague Stringology Conference ’09 10

An input sensitive online algorithm for LCS computation

Analysis of the encoding

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

. l = 0# + 1#

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

. l = 0# + 1#

• Also let block# be the number of maximal increment

blocks

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

. l = 0# + 1#

• Also let block# be the number of maximal increment

blocks

• Now it holds that

. block# ≤ 1#

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation

Analysis of the encoding

• Consider a column of size l in the table ∆
• Let 0# be the number of non-increment points and

1# the number of increment points

. l = 0# + 1#

• Also let block# be the number of maximal increment

blocks

• Now it holds that

. block# ≤ 1#

. block# ≤ 1 + 0# = l − 1# + 1

Prague Stringology Conference ’09 11

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Consider the figure

Prague Stringology Conference ’09 12

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Consider the figure

• Each of the first z = m − L columns

Prague Stringology Conference ’09 12

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Consider the figure

• Each of the first z = m − L columns has at most z

increment points (because D[n, j] ≤ j)

Prague Stringology Conference ’09 12

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Consider the figure

• Each of the first z = m − L columns has at most z

increment points (because D[n, j] ≤ j)

. Work for this part: O(z2)

Prague Stringology Conference ’09 12

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

• In each column z + i:

Prague Stringology Conference ’09 13

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

• In each column z + i: there are at most z + i

increment points

Prague Stringology Conference ’09 13

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

• In each column z + i: there are at most z + i

increment points and the first n-L+i rows hold at

least i increment points

Prague Stringology Conference ’09 13

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

• In each column z + i: there are at most z + i

increment points and the first n-L+i rows hold at

least i increment points

. block# for first n-L+i rows ≤ n-L+1

Prague Stringology Conference ’09 13

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

• In each column z + i: there are at most z + i

increment points and the first n-L+i rows hold at

least i increment points

. block# for first n-L+i rows ≤ n-L+1

. block# for remaining rows ≤ z+i-i = z

Prague Stringology Conference ’09 13

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L))

Prague Stringology Conference ’09 14

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L)),

and also bounded by O(mL)

Prague Stringology Conference ’09 14

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L)),

and also bounded by O(mL)

Total time complexity O(σn+ min{mL,L(n− L)})

Prague Stringology Conference ’09 14

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L)),

and also bounded by O(mL)

Total time complexity O(σn+ min{mL,L(n− L)})

• If L < m
2 , then O(mL) = O(L(n− L))

Prague Stringology Conference ’09 14

An input sensitive online algorithm for LCS computation
1 2 z...

m-L = z

z+1 ... m

Total work ≈ z2+(m−z)(n−L+z+1) = O(m(n−L)),

and also bounded by O(mL)

Total time complexity O(σn+ min{mL,L(n− L)})

• If L < m
2 , then O(mL) = O(L(n− L))

• If L ≥ m
2 , then O(m(n− L)) = O(L(n− L))

Prague Stringology Conference ’09 14

