
Generating Tree Permutations

Constant-memory Iterative Generation of

Special Strings Representing Binary Trees

Sebastian Smyczy«ski

Faculty of Mathematics and Computer Science,

Nicolaus Copernicus University, Toru«, Poland

Sebastian Smyczy«ski Generating Tree Permutations

Interesting combinatorical problem

Enumerate all possible shapes of binary trees with the given

number of nodes.

Sebastian Smyczy«ski Generating Tree Permutations

Natural order

Natural order of binary trees

The natural order of binary trees follows the recursive de�nition:

We say that T1 ≺ T2 if:

|T1|< |T2|, or
|T1|= |T2| and left(T1)≺ left(T2), lub

|T1|= |T2| and left(T1) = left(T2) and right(T1)≺ right(T2),

The size matters - the smaller trees precedes the larger ones.

It is de�ned in natural for binary trees recursive way.

Sebastian Smyczy«ski Generating Tree Permutations

Natural order

Natural order of binary trees

The natural order of binary trees follows the recursive de�nition:

We say that T1 ≺ T2 if:

|T1|< |T2|, or
|T1|= |T2| and left(T1)≺ left(T2), lub

|T1|= |T2| and left(T1) = left(T2) and right(T1)≺ right(T2),

The size matters - the smaller trees precedes the larger ones.

It is de�ned in natural for binary trees recursive way.

Sebastian Smyczy«ski Generating Tree Permutations

Natural order

Natural order of binary trees

The natural order of binary trees follows the recursive de�nition:

We say that T1 ≺ T2 if:

|T1|< |T2|, or
|T1|= |T2| and left(T1)≺ left(T2), lub

|T1|= |T2| and left(T1) = left(T2) and right(T1)≺ right(T2),

The size matters - the smaller trees precedes the larger ones.

It is de�ned in natural for binary trees recursive way.

Sebastian Smyczy«ski Generating Tree Permutations

Natural order

Figure: All shapes of binary trees with 4 nodes listed in their natural order

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations

We can represent the tree T with n nodes

uniquely as a sequence of the integer numbers

1,2, . . . ,n,

�rst labeling the nodes with their position's

number as they appear in the preorder

travelsal of the tree,

then listing those labels as they appear in the

preorder traversal of the tree.

We shall call the resulting permutation

p = p1,p2, . . . ,pn tree permutation of the T .

5

2

1 3

4

7

6

5 2 1 3 4 7 6

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations

We can represent the tree T with n nodes

uniquely as a sequence of the integer numbers

1,2, . . . ,n,

�rst labeling the nodes with their position's

number as they appear in the preorder

travelsal of the tree,

then listing those labels as they appear in the

preorder traversal of the tree.

We shall call the resulting permutation

p = p1,p2, . . . ,pn tree permutation of the T .

5

2

1 3

4

7

6

5 2 1 3 4 7 6

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations

We can represent the tree T with n nodes

uniquely as a sequence of the integer numbers

1,2, . . . ,n,

�rst labeling the nodes with their position's

number as they appear in the preorder

travelsal of the tree,

then listing those labels as they appear in the

preorder traversal of the tree.

We shall call the resulting permutation

p = p1,p2, . . . ,pn tree permutation of the T .

5

2

1 3

4

7

6

5 2 1 3 4 7 6

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations

We can represent the tree T with n nodes

uniquely as a sequence of the integer numbers

1,2, . . . ,n,

�rst labeling the nodes with their position's

number as they appear in the preorder

travelsal of the tree,

then listing those labels as they appear in the

preorder traversal of the tree.

We shall call the resulting permutation

p = p1,p2, . . . ,pn tree permutation of the T .

5

2

1 3

4

7

6

5 2 1 3 4 7 6

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations

We can represent the tree T with n nodes

uniquely as a sequence of the integer numbers

1,2, . . . ,n,

�rst labeling the nodes with their position's

number as they appear in the preorder

travelsal of the tree,

then listing those labels as they appear in the

preorder traversal of the tree.

We shall call the resulting permutation

p = p1,p2, . . . ,pn tree permutation of the T .

5

2

1 3

4

7

6

5 2 1 3 4 7 6

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations and the natural order

1

2

3

4

1 2 3 4

1

2

4

3

1 2 4 3

1

3

2 4

1 3 2 4

1

4

2

3

1 4 2 3

1

4

3

2

1 4 3 2

2

1 3

4

2 1 3 4

2

1 4

3

2 1 4 3

3

1

2

4

3 1 2 4

3

2

1

4

3 2 1 4

4

1

2

3

4 1 2 3

4

1

3

2

4 1 3 2

4

2

1 3

4 2 1 3

4

3

1

2

4 3 1 2

4

3

2

1

4 3 2 1

1234

1243

1234

1243

1324

1423

1432

2134

2143

3124

3214

4123

4132

4213

4312

4321

Figure: All shapes of binary trees with 4 nodes listed in their natural order

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations and the natural order

1

2

3

4

1 2 3 4

1

2

4

3

1 2 4 3

1

3

2 4

1 3 2 4

1

4

2

3

1 4 2 3

1

4

3

2

1 4 3 2

2

1 3

4

2 1 3 4

2

1 4

3

2 1 4 3

3

1

2

4

3 1 2 4

3

2

1

4

3 2 1 4

4

1

2

3

4 1 2 3

4

1

3

2

4 1 3 2

4

2

1 3

4 2 1 3

4

3

1

2

4 3 1 2

4

3

2

1

4 3 2 1

1234

1243

1234

1243

1324

1423

1432

2134

2143

3124

3214

4123

4132

4213

4312

4321

Figure: All shapes of binary trees with 4 nodes listed in their natural order

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations and the natural order

1

2

3

4

1 2 3 4

1

2

4

3

1 2 4 3

1

3

2 4

1 3 2 4

1

4

2

3

1 4 2 3

1

4

3

2

1 4 3 2

2

1 3

4

2 1 3 4

2

1 4

3

2 1 4 3

3

1

2

4

3 1 2 4

3

2

1

4

3 2 1 4

4

1

2

3

4 1 2 3

4

1

3

2

4 1 3 2

4

2

1 3

4 2 1 3

4

3

1

2

4 3 1 2

4

3

2

1

4 3 2 1

1234

1243

1234

1243

1324

1423

1432

2134

2143

3124

3214

4123

4132

4213

4312

4321

Figure: All shapes of binary trees with 4 nodes listed in their natural order

Sebastian Smyczy«ski Generating Tree Permutations

Tree permutations and the natural order

1

2

3

4

1 2 3 4

1

2

4

3

1 2 4 3

1

3

2 4

1 3 2 4

1

4

2

3

1 4 2 3

1

4

3

2

1 4 3 2

2

1 3

4

2 1 3 4

2

1 4

3

2 1 4 3

3

1

2

4

3 1 2 4

3

2

1

4

3 2 1 4

4

1

2

3

4 1 2 3

4

1

3

2

4 1 3 2

4

2

1 3

4 2 1 3

4

3

1

2

4 3 1 2

4

3

2

1

4 3 2 1

1234

1243

1234

1243

1324

1423

1432

2134

2143

3124

3214

4123

4132

4213

4312

4321

Figure: All shapes of binary trees with 4 nodes listed in their natural order

Sebastian Smyczy«ski Generating Tree Permutations

Recursive property of the tree permutations

∀p ∈Tn ∃p′ ∈Tp1−1 ∃p′′ ∈Tn−p1
p = p1 p′ (p′′⊕p1)

p = 8

p′︷ ︸︸ ︷
4 1 3 2 6 5 7

p
′′︷ ︸︸ ︷

4 3 1 2⊕8︷ ︸︸ ︷
12 11 9 10

Sebastian Smyczy«ski Generating Tree Permutations

Climbing property of tree permutations

Lemma

A permutation p = p1,p2, . . . ,pn of the integer numbers 1,2, . . . ,n is

a tree permutation i� it is 231-avoiding - there are no such indices

i < j < k such that pk < pi < pj .

1

2

3

pi

pj

pk

5

15

7

10
9

14

12

Sebastian Smyczy«ski Generating Tree Permutations

Climbing property of tree permutations

Lemma

A permutation p = p1,p2, . . . ,pn of the integer numbers 1,2, . . . ,n is

a tree permutation i� it is 231-avoiding - there are no such indices

i < j < k such that pk < pi < pj .

1

2

3

pi

pj

pk

5

15

7

10
9

14

12

Sebastian Smyczy«ski Generating Tree Permutations

Climbing property of tree permutations

Lemma

A permutation p = p1,p2, . . . ,pn of the integer numbers 1,2, . . . ,n is

a tree permutation i� it is 231-avoiding - there are no such indices

i < j < k such that pk < pi < pj .

1

2

3

pi

pj

pk

5

15

7

10
9

14

12

Sebastian Smyczy«ski Generating Tree Permutations

Climbing property of tree permutations

Lemma

A permutation p = p1,p2, . . . ,pn of the integer numbers 1,2, . . . ,n is

a tree permutation i� it is 231-avoiding - there are no such indices

i < j < k such that pk < pi < pj .

1

2

3

pi

pj

pk

5

15

7

10
9

14

12

Sebastian Smyczy«ski Generating Tree Permutations

Working su�x properties

De�nition

Let p = p1,p2, . . . ,pn be a tree

permutation. The su�x of p which

makes p di�erent from its successor in

the lexicographic order is called working

su�x.

Lemma

Let p be a tree permutation and let i be

the index of the �rst position of its

working su�x. If tree permutation q is

the successor of p in the lexicographic

order, then qi = pi +1.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

Working su�x properties

De�nition

Let p = p1,p2, . . . ,pn be a tree

permutation. The su�x of p which

makes p di�erent from its successor in

the lexicographic order is called working

su�x.

Lemma

Let p be a tree permutation and let i be

the index of the �rst position of its

working su�x. If tree permutation q is

the successor of p in the lexicographic

order, then qi = pi +1.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

Working su�x properties

Lemma

Let p be a tree permutation and

let i be the index of the �rst

position of its working su�x, then

there exist no such indices j , k

such that i < j < k and

pk = pj +1.

Lemma

Let p = p1,p2, . . . ,pn be a tree

permutation and i be the starting

index of its working su�x. For

any index i ≤ k < n, pk > pk +1

implies that pk = pk +1+1.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 4 2

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 4 2

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 3

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 4 3 1

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 4 3 1

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

The algorithm

Generating tree permutations in

lexicographic order:

Start with permutation 1 2 . . . n.

Find the �rst pair of indices i < j

starting from the end of the

permutation such that pj = pi +1.

Swap the elements at found

positions.

Sort all but the �rst elements of the

working su�x in ascending order.

1 2 3 4

1 2 4 3

1 3 2 4

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

3 1 2 4

3 2 1 4

4 1 2 3

4 1 3 2

4 2 1 3

4 3 1 2

4 3 2 1

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the searching step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,13,12,16,15,14,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the searching step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,13,12,16,15,14,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the searching step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,13,12,16,15,14,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the searching step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,13,12,16,15,14,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the sorting step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,13,12,16,15,14,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the sorting step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,14,12,16,15,13,18,21,20,25,24,23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Optimalization of the sorting step

9,6,3,2,1,5,4,7,8,11,10,22,19,17,14,12,13,15,16,18,20,21,23,24,25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sebastian Smyczy«ski Generating Tree Permutations

Time Complexity

Knowing that the number of binary trees with n nodes is is given by

the Catalan number

Cn =

(
2n

n

)
/(n+1).

and using the recursive property of tree permutations we can give

the formula for the summarized length of all working su�xes of tree

permutations for given number of nodes n

Wn =
n

∑
i=1

(
Ci−1Wn−i +Wi−1 +(n− i)(Ci−1−1)

)
+n(n−1).

Solving this recurrence we obtain Wn = Cn+1−n−1.

Since Cn+1 = 2(2n+1)
n+2

Cn, therefore the average-case

time-complexity of the algorithm is constant O(Wn

Cn
) = O(1).

Sebastian Smyczy«ski Generating Tree Permutations

Thank you!

Binary origami tree

http://www.tsg.ne.jp/TT/origami/gallery.html

Sebastian Smyczy«ski Generating Tree Permutations

