

Validation and Decomposition of Partially Occluded Images with Holes

Julien Allali¹, Pavlos Antoniou², Costas S. Iliopoulos², Pascal Ferraro¹, Manal Mohamed²

 ¹ LaBRI, University of Bordeaux I, UMR5800, 33405 Talence, France
 ² Dept. of Computer Science, King's College London, London WC2R 2LS, England, UK

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion

- Algorithm Design approaches
- Basic Definitions
- 2 Valid Image Definition
- 3 The algorithm
- 4 Running Time

Partially occluded images

- A partially occluded image consists of a set of objects where some may be partially occluded by others.
- The algorithm presented here validates a one-dimensional image x of length n, over a given set of objects all of equal length and each composed of two parts separated by a transparent hole
- We want to "*cover*" a string using a set of "*objects*". These objects may "*occlude*" each other and may be separated by a hole

- Validating partially occluded images is a classical problem in computer vision and its computational complexity is exponential.
- Iliopoulos and Simpson focused on the theoretical aspect of the problem and produced a sequential on-line algorithm for validating occluded one-dimensional images
- Iliopoulos and Reid provided a linear time solution to the problem in the presence of errors
- They also presented an optimal $O(\log \log n)$ -time algorithm using parallel computation and solved the problem for discrete two-dimensional partially occluded images in linear time

- Based on the above analyses, we extend the previous work by considering the validity of a family of images, that we call *valid images with holes*.
- Given a set of objects s₁,... s_k, each composed of two parts separated by a small transparent hole, an image x of length n is a valid image with hole, if x is iteratively obtained from a string z = #ⁿ by substituting substrings of z by some objects s_i, for some i ∈ {1..k} and a special "background" symbol #.
- We focus on designing an on-line algorithm for testing images in one dimension for validity, with restricted set of objects, e.g., objects of the same length, that are consisting of two parts separated by a hole of small size.

Valid Image over set of Objects:

Definition

Let x be a string of length n over an alphabet Σ and let the dictionary $\mathcal{O} = \{s_1, \ldots, s_m\}$ be a set of strings called the objects also over Σ . Then x is called a valid image if and only if $x = z_i$ for some $i \ge 0$, where

$$z_0 = \#^n$$

$$z_{i+1} = prefix_p(z_i) s_l suffix_q(z_i).$$
(1)

for some $s_l \in \mathcal{O}$ and $p, q \in \{0, \dots, n-1\}$ such that $p + |s_m| + q = n$.

Introduction 0000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Basic Definitions				
Basic Def	finitions			

- Previous equation is called the *substitution rule* and the sequence z_0, z_1, \ldots, z_i is called the *generating sequence* of x
- The number of distinct generating sequences was proved to be exponential

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 0000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Basic Definitions				
Example o	f generating se	quence		

An example of such generating sequences for a specific string is as follows. Let

 $\mathcal{O} = \{s_1 = abc, s_2 = acde, s_3 = ade, s_4 = dc, s_5 = abd\}$. Then x = abababacdedcdcade is a valid image over \mathcal{O} with generating sequence:

$$z_{0} = \#^{17},$$

$$z_{1} = \underline{abc} \#^{14},$$

$$z_{2} = abc \#^{11} \underline{ade},$$

$$z_{3} = ab\underline{abc} \#^{9} \underline{ade},$$

$$z_{4} = abab\underline{abc} \#^{7} \underline{ade},$$

$$z_{5} = abab\underline{abc} \#^{4} \underline{ade},$$

$$z_{6} = abab\underline{abcdedc} \#^{4} \underline{ade},$$

$$z_{7} = abababacdedc \underline{dc} \#^{2} \underline{ade}.$$

Note that the generating sequence of x is not unique. The following sequence:

$$z_0 = \#^{17},$$

$$z_1 = \underline{abd} \#^{14},$$

$$z_2 = ab\underline{abc} \#^{12},$$

$$z_3 = abab\underline{abc} \#^{10},$$

$$z_4 = abababc \#^7 \underline{ade},$$

$$z_5 = abababc \#^3 \underline{dc} \#^2 ade,$$

$$z_6 = abababc \#^3 \underline{dc} \underline{dc} ade,$$

$$z_7 = ababab \underline{acde} \underline{dc} dc ade.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

also generates x as a valid image over \mathcal{O} .

Valid Image over Set of Objects with Hole:

Let x be a string of length n over an alphabet Σ and let the dictionary $\mathcal{O} = \{s_1, \ldots, s_k\}$ be a set of strings called the objects, where each object s_i is composed of two strings s_i^l and s_i^r separated by a hole of length h. Then x is called a valid image if and only if $x = z_i$ for some $0 \le i$, where

$$z_0 = \#^n$$

$$z_{i+1} = \operatorname{prefix}_p(z_i) s_m \operatorname{suffix}_q(z_i). \qquad (2)$$

for some $s_m \in \mathcal{O}$ and $p, q \in \{0, \dots, n-1\}$ such that $p + |s_m| + q = n$.

Figure: Image consisting from objects separated by a hole of same length.

 $Image = prefix(s_2^l) s_1^l suffix(s_3^l) substring(s_4^l) prefix(s_2^r) s_1^r suffix(s_3^r) suffix(s_4^r) = 0$

Left Part, Hole, Right Part

- Each object s_i ∈ O consists of a *left part* (*head*) and a *right* part(*tail*) separated by a transparent hole of length h.
- We denote the left part of s_i as s_i^l and the the right part as s_i^r . For simplicity, we require that $|s_i^l| = |s_i^r|$ and $h \ll |s_i^l|$, for each $s_i \in \mathcal{O}$.

Definition of Valid Image

If x is a valid image over $\mathcal{O} = \{s_1, s_2, \dots, s_k\}$, then for some $i \in \{1,\ldots,k\},\$

> **Fact 1:** there exists a suffix \bar{s}_i^r of s_i^r that is also a suffix of x.

> **Fact 2:** there exists a prefix \hat{s}_i^{\prime} of s_i^{\prime} that is also a prefix of x.

Fact 3: there is no suffix of a left part s'_i that occurs in x ending at position ℓ , where $\ell > n - h - |s_i^r|$.

Fact 4: there is no prefix of a right part s_i^r that occurs in x at position ℓ' , where $\ell' < |s_i'| + h$.

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Binding				

Given a set of objects O, a string *b* of length *h* is a *binding* if it is a concatenation of the following three (possibly empty) parts:

- Part 1: is a sequence of suffixes of left/right parts of objects in O, where the leading (first) suffix is a suffix of a left part of an object.
- **2** Part 2: is a substring of a left/right part of an object.
- Part 3: is a sequence of prefixes of left/right parts of objects in O, where the leading (last) prefix is a prefix of a right part of an object

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion

I heorem

Theorem

The string x is a valid image over \mathcal{O} if and only if

$$x = \hat{s}_i^I y \quad \text{with} \quad i \in \{1..k\}, \tag{3}$$

or

$$x = y\overline{s}_i^r \quad \text{with} \quad i \in \{1..k\}, \tag{4}$$

or

$$x = y\widetilde{s}_i w$$
 with $i \in \{1..k\},$ (5)

or

$$x = y \overline{s}_i^l b \hat{s}_i^r z \quad \text{with} \quad i \in \{1..k\},$$
(6)

where \hat{s}_i^l , \bar{s}_i^r and \tilde{s}_i denote a prefix of the left part s_i^l , suffix of the right part s_i^r and a substring of either parts of s_i respectively, y and w are valid images and b is a satisfied binding.

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Theorem				

- The above theorem provides the main mechanism for validating images over a set of objects with holes and all of equal length
- Based on definitions and theorem we present the algorithm for validating an image over a set of objects with holes and of equal length item The algorithm is also based on the following principles:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (a) The occurrence of a proper prefix of either a left or a right part of an object in a valid image must be followed by a prefix (not necessarily proper) of a left or a right part of an object.
- (b) If the occurrence of a proper prefix of either a left or a right part of an object is followed by an occurrence of a proper suffix of either a left or a right part of an object, then the image is not valid. In a valid image, the occurrence of a proper suffix of an object is always preceded by the suffix of either a left or a right part of an object.
- (c) The occurrence of a suffix of either a left or a right part of an object can be followed by either a prefix or a substring or a suffix.

(d) If an occurrence of a suffix of a left part of an object is not followed by either an occurrence of a prefix of its corresponding right part in a distance h or an occurrence of a prefix of a left part of an object in a distance at most h, then the image is not valid. In both cases a satisfied binding should separate the two parts.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(e) The occurrence of a substring in a valid image may be preceded by and followed by valid images.

- We preprocess the set of objects.
- We compute the suffix tree of the set of the left and right parts of all objects in \mathcal{O} . This data structure will allow us to perform a constant time on-line checks whether a suffix, or a substring of s_i^l/s_i^r occurs in any position of x.
- We will also build the Aho-Corasick automaton for the set of the left and right parts of all objects in \mathcal{O} that will allow us to compute the largest prefixes of s_i^l/s_i^r occurring in x.

00000000		

Let $\hat{s}_j^l = x[\ell..i]$ be the longest prefix of a left part of an object in \mathcal{O} that is also a suffix of x[1..i]. A prefix of a left part of an object is preceded by either a valid image, or a proper prefix of left/right part an object or a substring of an object.

- If $valid[\ell 1]$ is marked *TRUE*, then $x[1..\ell 1]$ is a valid image and position ℓ could be the beginning of a valid sub-image, thus we mark prefix[i] = TRUE, $first-prefix = \ell$ and last-prefix=i.
- If $prefix[\ell 1]$ is marked *TRUE*, then we have a chain of prefixes, thus we mark prefix[i] = TRUE and *last-prefix* = *i*.
- If there is no prefix of a left/right part of an object or a valid image preceding ŝ^l_j, then x[1..i] is valid if and only if x[previous-valid[ℓ 1] + 1..ℓ 1] is a substring of left/right part of an object or x[previous-valid[ℓ 1] + 1..i] is a prefix of a satisfied binding. If x[previous-valid[ℓ 1] + 1..ℓ 1] is a substring then ℓ is the start of a valid image.

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Main Ala	orithm			

Let $\hat{s}_j^r = x[\ell..i]$ be the longest prefix of a right part of an object in \mathcal{O} that is also a suffix of x[1..i]. Similarly, a prefix of an object is preceded by either a proper prefix of left/right part an object or a substring of an object.

- If $prefix[\ell 1]$ is marked TRUE and $first-prefix \le \ell h + |s_j^r|$, then we have a chain of prefixes thus we mark prefix[i] = TRUE and *last-prefix* = *i*. If $\hat{s}_j^r = s_j^r$ (a complete left part), then x[1..i] is a valid image and we mark the relevant array as TRUE.
- If *I-suffix[j]*[*l* − *h* − 1] is marked *TRUE* and *x*[*l* − *h..l* − 1] is a satisfied binding then we have a prefix of a valid image (Eq. (6)), thus we mark *prefix[i]* = *TRUE* and *last-prefix* = *i*. If ŝ^r_j = s^r_j (a complete left part), then *x*[1..*i*] is a valid image and we mark the relevant array as *TRUE*.

Let $\bar{s}_j^l = x[\ell..i]$ be the longest suffix of a left part of an object in \mathcal{O} that is also a suffix of x[1..i]. If $valid[\ell - 1]$ then l-suffix[j][i] is marked TRUE.

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion

Finally, let $\bar{s}_j^r = x[\ell..i]$ be the longest suffix of a right part of an object in \mathcal{O} that is also a suffix of x[1..i]. Note that, in a valid image, a suffix \bar{s}_i^r is always preceded by a valid image.

- If *previous-valid* $[\ell 1] \ge \ell 1$, then x[1..i] is valid.
- If there is no valid image preceding \overline{s}_j^r , then x[1..i] is valid if and only if the length of *i*-previous-valid $[\ell 1] < |s_j|$.

(日) (同) (三) (三) (三) (○) (○)

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Theorem				

Theorem

Algorithm 1 validates an image x over a set \mathcal{O} of objects of equal length and all and each composed of two parts separated by a hole in linear $O(|x| + |\mathcal{O}|)$ time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof

Proof.

The construction of the Aho-Corasick automaton and the suffix tree of the dictionary \mathcal{O} both require $O(|\mathcal{O})|$ time. At Stage *i*, finding the largest suffix that is a prefix of some part of an object requires constant time. At Stage i - 1, we have traced on the Aho-Corasick automaton the largest prefix of a part of an object that is a suffix of x[1..i - 1]; on Stage *i*, we can either extend this prefix with one symbol, x[i], or we can follow the failure link that lead to the largest such prefix.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Conclusio				

CONCLUSION

As future work, the algorithm may be modified in order to deal with a set of objects of different lengths. Another interesting problem is the computation of the depth of an object in an image, *i.e.* the number of rules applied after the placement of an object in an image.

Introduction 00000000	Valid Image Definition	The algorithm	Running Time	Conclusion
Thank voi				

Thank you for your attention.

J

