
Introduction Valid Image Definition The algorithm Running Time Conclusion

Validation and Decomposition of Partially
Occluded Images with Holes

Julien Allali1, Pavlos Antoniou2, Costas S. Iliopoulos2, Pascal
Ferraro1, Manal Mohamed2

1 LaBRI, University of Bordeaux I, UMR5800, 33405 Talence, France
2 Dept. of Computer Science, King’s College London, London WC2R 2LS,

England, UK

Introduction Valid Image Definition The algorithm Running Time Conclusion

1 Introduction
Algorithm Design approaches
Basic Definitions

2 Valid Image Definition

3 The algorithm

4 Running Time

5 Conclusion

Introduction Valid Image Definition The algorithm Running Time Conclusion

Partially occluded images

A partially occluded image consists of a set of objects where
some may be partially occluded by others.

The algorithm presented here validates a one-dimensional
image x of length n, over a given set of objects all of equal
length and each composed of two parts separated by a
transparent hole

We want to “cover” a string using a set of “objects”.These
objects may “occlude” each other and may be separated by a
hole

Introduction Valid Image Definition The algorithm Running Time Conclusion

Algorithm Design approaches

Well studied problem

Validating partially occluded images is a classical problem in
computer vision and its computational complexity is
exponential.

Iliopoulos and Simpson focused on the theoretical aspect of
the problem and produced a sequential on-line algorithm for
validating occluded one-dimensional images

Iliopoulos and Reid provided a linear time solution to the
problem in the presence of errors

They also presented an optimal O(log log n)-time algorithm
using parallel computation and solved the problem for discrete
two-dimensional partially occluded images in linear time

Introduction Valid Image Definition The algorithm Running Time Conclusion

Algorithm Design approaches

Contribution of this work

Based on the above analyses, we extend the previous work by
considering the validity of a family of images, that we call
valid images with holes.

Given a set of objects s1, . . . sk , each composed of two parts
separated by a small transparent hole, an image x of length n
is a valid image with hole, if x is iteratively obtained from a
string z = #n by substituting substrings of z by some objects
si , for some i ∈ {1..k} and a special “background” symbol #.

We focus on designing an on-line algorithm for testing images
in one dimension for validity, with restricted set of objects,
e.g., objects of the same length, that are consisting of two
parts separated by a hole of small size.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Basic Definitions

Valid Image over set of Objects:

Definition

Let x be a string of length n over an alphabet Σ and let the
dictionary O = {s1, . . . , sm} be a set of strings called the objects
also over Σ. Then x is called a valid image if and only if x = zi for
some i ≥ 0, where

z0 = #n

zi+1 = prefixp(zi) sl suffixq(zi) . (1)

for some sl ∈ O and p, q ∈ {0, . . . , n − 1} such that
p + |sm|+ q = n.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Basic Definitions

Previous equation is called the substitution rule and the
sequence z0, z1, . . .,zi is called the generating sequence of x

The number of distinct generating sequences was proved to be
exponential

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Example of generating sequence

An example of such generating sequences for a specific string is as
follows. Let
O = {s1 = abc, s2 = acde, s3 = ade, s4 = dc , s5 = abd}. Then
x = abababacdedcdcade is a valid image over O with generating
sequence:

z0 = #17,

z1 = abc#14,

z2 = abc#11ade,

z3 = ababc#9ade,

z4 = abababc#7ade,

z5 = abababacde#4ade,

z6 = abababacdedc#2ade,

z7 = abababacdedcdcade.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Not Uique

Note that the generating sequence of x is not unique. The
following sequence:

z0 = #17,

z1 = abd#14,

z2 = ababc#12,

z3 = abababc#10,

z4 = abababc#7ade,

z5 = abababc#3dc#2ade,

z6 = abababc#3dcdcade,

z7 = abababacdedcdcade.

also generates x as a valid image over O.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Valid Image with Hole

Valid Image over Set of Objects with Hole:
Let x be a string of length n over an alphabet Σ and let the
dictionary O = {s1, . . . , sk} be a set of strings called the objects,
where each object si is composed of two strings s l

i and sr
i

separated by a hole of length h. Then x is called a valid image if
and only if x = zi for some 0 ≤ i , where

z0 = #n

zi+1 = prefixp(zi) sm suffixq(zi) . (2)

for some sm ∈ O and p, q ∈ {0, . . . , n − 1} such that
p + |sm|+ q = n.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Basic Definitions

Example of Image with objects with hole

image x

s l
1 sr

1

s l
2 sr

2

s l
3 sr

3

s l
4 sr

4

Figure: Image consisting from objects separated by a hole of same length.

Image =
prefix(s l

2) s l
1 suffix(s l

3) substring(s l
4) prefix(sr

2) sr
1 suffix(sr

3) suffix(sr
4)

Introduction Valid Image Definition The algorithm Running Time Conclusion

Left Part, Hole, Right Part

Each object si ∈ O consists of a left part (head) and a right
part(tail) separated by a transparent hole of length h.

We denote the left part of si as s l
i and the the right part as

sr
i . For simplicity, we require that |s l

i | = |sr
i | and h� |s l

i |, for
each si ∈ O.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Definition of Valid Image

If x is a valid image over O = {s1, s2, . . . , sk}, then for some
i ∈ {1, . . . , k},

Fact 1: there exists a suffix s̄r
i of sr

i that is also a
suffix of x .

Fact 2: there exists a prefix ŝ l
i of s l

i that is also a
prefix of x .

Fact 3: there is no suffix of a left part s l
i that occurs

in x ending at position `, where ` > n − h − |sr
i |.

Fact 4: there is no prefix of a right part sr
i that

occurs in x at position `′, where `′ < |s l
i |+ h.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Binding

Given a set of objects O, a string b of length h is a binding if it is
a concatenation of the following three (possibly empty) parts:

1 Part 1: is a sequence of suffixes of left/right parts of objects
in O,where the leading (first) suffix is a suffix of a left part of
an object.

2 Part 2: is a substring of a left/right part of an object.

3 Part 3: is a sequence of prefixes of left/right parts of objects
in O,where the leading (last) prefix is a prefix of a right part
of an object

Introduction Valid Image Definition The algorithm Running Time Conclusion

Theorem

Theorem

The string x is a valid image over O if and only if

x = ŝ l
i y with i ∈ {1..k}, (3)

or
x = y s̄r

i with i ∈ {1..k}, (4)

or
x = y s̃iw with i ∈ {1..k}, (5)

or
x = y s̄ l

i bŝr
i z with i ∈ {1..k}, (6)

where ŝ l
i , s̄r

i and s̃i denote a prefix of the left part s l
i , suffix of the

right part sr
i and a substring of either parts of si respectively, y

and w are valid images and b is a satisfied binding.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Theorem

The above theorem provides the main mechanism for
validating images over a set of objects with holes and all of
equal length

Based on definitions and theorem we present the algorithm for
validating an image over a set of objects with holes and of
equal length item The algorithm is also based on the following
principles:

Introduction Valid Image Definition The algorithm Running Time Conclusion

On Line Algorithm

(a) The occurrence of a proper prefix of either a left or a right
part of an object in a valid image must be followed by a prefix
(not necessarily proper) of a left or a right part of an object.

(b) If the occurrence of a proper prefix of either a left or a right
part of an object is followed by an occurrence of a proper
suffix of either a left or a right part of an object, then the
image is not valid. In a valid image, the occurrence of a
proper suffix of an object is always preceded by the suffix of
either a left or a right part of an object.

(c) The occurrence of a suffix of either a left or a right part of an
object can be followed by either a prefix or a substring or a
suffix.

Introduction Valid Image Definition The algorithm Running Time Conclusion

On Line Algorithm

(d) If an occurrence of a suffix of a left part of an object is not
followed by either an occurrence of a prefix of its
corresponding right part in a distance h or an occurrence of a
prefix of a left part of an object in a distance at most h, then
the image is not valid. In both cases a satisfied binding should
separate the two parts.

(e) The occurrence of a substring in a valid image may be
preceded by and followed by valid images.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Preprocessing stage

1 We preprocess the set of objects.

2 We compute the suffix tree of the set of the left and right
parts of all objects in O. This data structure will allow us to
perform a constant time on-line checks whether a suffix, or a
substring of s l

j /sr
j occurs in any position of x .

3 We will also build the Aho-Corasick automaton for the set of
the left and right parts of all objects in O that will allow us to
compute the largest prefixes of s l

j /sr
j occurring in x .

Introduction Valid Image Definition The algorithm Running Time Conclusion

Main Algorithm

Let ŝ l
j = x [`..i] be the longest prefix of a left part of an object in O

that is also a suffix of x [1..i]. A prefix of a left part of an object is
preceded by either a valid image, or a proper prefix of left/right
part an object or a substring of an object.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Main Algorithm

- If valid[`− 1] is marked TRUE, then x [1..`− 1] is a valid
image and position ` could be the beginning of a valid
sub-image, thus we mark prefix[i] = TRUE, first-prefix = `
and last-prefix= i .

- If prefix[`− 1] is marked TRUE, then we have a chain of
prefixes, thus we mark prefix[i] = TRUE and last-prefix = i .

- If there is no prefix of a left/right part of an object or a valid
image preceding ŝ l

j , then x [1..i] is valid if and only if
x [previous-valid[`− 1] + 1..`− 1] is a substring of left/right
part of an object or x [previous-valid[`− 1] + 1..i] is a prefix of
a satisfied binding. If x [previous-valid[`− 1] + 1..`− 1] is a
substring then ` is the start of a valid image.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Main Algorithm

Let ŝr
j = x [`..i] be the longest prefix of a right part of an object in

O that is also a suffix of x [1..i]. Similarly, a prefix of an object is
preceded by either a proper prefix of left/right part an object or a
substring of an object.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Main Algorithm

- If prefix[`− 1] is marked TRUE and first-prefix ≤ `− h + |sr
j | ,

then we have a chain of prefixes thus we mark prefix[i] =
TRUE and last-prefix = i . If ŝr

j = sr
j (a complete left part),

then x [1..i] is a valid image and we mark the relevant array as
TRUE.

- If l-suffix[j][`− h− 1] is marked TRUE and x [`− h..`− 1] is a
satisfied binding then we have a prefix of a valid image (Eq.
(6)), thus we mark prefix[i] = TRUE and last-prefix = i . If
ŝr
j = sr

j (a complete left part), then x [1..i] is a valid image
and we mark the relevant array as TRUE.

Let s̄ l
j = x [`..i] be the longest suffix of a left part of an object in O

that is also a suffix of x [1..i]. If valid[`− 1] then l-suffix[j][i] is
marked TRUE.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Finally, let s̄r
j = x [`..i] be the longest suffix of a right part of an

object in O that is also a suffix of x [1..i]. Note that, in a valid
image, a suffix s̄r

j is always preceded by a valid image.

- If previous-valid[`− 1] ≥ `− 1, then x [1..i] is valid.

- If there is no valid image preceding s̄r
j , then x [1..i] is valid if

and only if the length of i−previous-valid[`− 1] < |sj |.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Theorem

Theorem

Algorithm 1 validates an image x over a set O of objects of equal
length and all and each composed of two parts separated by a hole
in linear O(|x |+ |O|) time.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Proof

Proof.

The construction of the Aho-Corasick automaton and the suffix
tree of the dictionary O both require O(|O)| time.
At Stage i , finding the largest suffix that is a prefix of some part of
an object requires constant time. At Stage i − 1, we have traced
on the Aho-Corasick automaton the largest prefix of a part of an
object that is a suffix of x [1..i − 1]; on Stage i , we can either
extend this prefix with one symbol, x [i], or we can follow the
failure link that lead to the largest such prefix.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Conclusion

As future work, the algorithm may be modified in order to deal
with a set of objects of different lengths. Another interesting
problem is the computation of the depth of an object in an image,
i.e. the number of rules applied after the placement of an object in
an image.

Introduction Valid Image Definition The algorithm Running Time Conclusion

Thank you

Thank you for your attention.

	Introduction
	Algorithm Design approaches
	Basic Definitions

	Valid Image Definition
	The algorithm
	Running Time
	Conclusion

