# On-line construction of a small automaton for a finite set of words

#### Maxime Chrochemore and Laura Giambruno

Institut Gaspard-Monge, Université Paris-Est Dipartimento di Matematica e Applicazioni, Università di Palermo, Palermo

August 31,2009

## Design a "light" algorithm for the on-line construction of a small automaton recognising a finite set of words in linear time.

- ▶ Finite sets of words *X* on a finite alphabet *A*.
- ▶ the *length n* of *X* is the sum of the lengths of the words in *X*:

$$n = \sum_{i=1}^{m} |u_i|$$

Design a "light" algorithm for the on-line construction of a small automaton recognising a finite set of words in linear time.

- ► Finite sets of words *X* on a finite alphabet *A*.
- ▶ the *length n* of *X* is the sum of the lengths of the words in *X*:

$$n = \sum_{i=1}^{m} |u_i|$$

- Interesting for parsing natural text and for motif detection
- Used in many software like the intensively used BLAST
- Dictionaries used for natural languages can contain a large number of words.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ●

## Automata for finite sets of words: classical construction

- ► represent a list *X* by a trie
- minimise the trie to get the minimal automaton of the finite set of words of the list.

This solution requires a large memory space to store the temporary large data structure.

## Automata for finite sets of words: classical construction

- ► represent a list *X* by a trie
- minimise the trie to get the minimal automaton of the finite set of words of the list.

This solution requires a large memory space to store the temporary large data structure.

- pseudo-minimisation algorithm by Revuz (1991)
- algorithm that constructs a minimal automaton for an ordered set of strings by Daciuk et al. (2000)

- semi-incremental algorithm for constructing minimal acyclic deterministic automata by Watson (2003)
- efficient algorithm to insert a word in a minimal acyclic by Sgarbas et al. (2003)

#### Intermediate solution

to build a rather small automaton with a light algorithm processing the list of words on- line in linear time on the length of the list.

► The aim is not to get the corresponding minimal automaton but just a small enough structure.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

► However, the minimal automaton can be later obtained with Revuz linear algorithm (1992).

#### Intermediate solution

to build a rather small automaton with a light algorithm processing the list of words on- line in linear time on the length of the list.

The aim is not to get the corresponding minimal automaton but just a small enough structure.

<日 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► However, the minimal automaton can be later obtained with Revuz linear algorithm (1992).

#### Intermediate solution

to build a rather small automaton with a light algorithm processing the list of words on- line in linear time on the length of the list.

The aim is not to get the corresponding minimal automaton but just a small enough structure.

<日 > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► However, the minimal automaton can be later obtained with Revuz linear algorithm (1992).

- ► the automaton can possibly be built on demand
- ▶ our solution avoids building a temporary large trie

## Advantages of our algorithm

Simplicity, linear time algorithm, on-line construction and the fact that resulting automaton seems to be really close to minimal.

うして 山口 マイビット ビー うくの

- the automaton can possibly be built on demand
- ▶ our solution avoids building a temporary large trie

#### Advantages of our algorithm

Simplicity, linear time algorithm, on-line construction and the fact that resulting automaton seems to be really close to minimal.

Let *A* be a finite alphabet. For  $X = (x_0, ..., x_m)$  list of words, |X| denotes the cardinality of *X*.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

A deterministic automaton over A is  $\mathcal{A} = (Q, i, T, \delta)$ , where

- ► *Q* is a finite set of *states*
- ► *i* is the initial state
- $T \subseteq Q$  is the subset of *final* states
- $\delta: Q \times A \longrightarrow Q$  is the *transition function*

Let < be an order on the elements in *A* Lexicographic order  $<_{lex}$ : for u, v in  $A^*$  we have that  $u <_{lex} v$  if, and only if

- u is a prefix of v
- u and v have a prefix  $u_0$  in common,  $u = u_0 a u_1$ ,  $v = u_0 b v_1$  and  $a <_{lex} b$

### Hypothesis

We consider a list of words X in  $A^*$  such that the list obtained reversing each word in X is sorted according to the lexicographic order.

#### Example

X = (aaa, ba, aab) satisfies our hypothesis.

## Idea of the construction

- ► We define inductively a sequence of |X| + 1 automata A<sup>0</sup><sub>X</sub>,...,A<sup>|X|</sup><sub>X</sub>.
- For each k, the automaton  $\mathcal{A}_X^k$  recognises the language  $\{x_0, \ldots, x_k\}$ .
- In particular  $\mathcal{A}_X^m$  will recognises X

For each k, there is a unique final state  $q_{fin}$  without any outgoing transitions.

#### Idea

Define  $\mathcal{A}_X^0$  $\mathcal{A}_X^{k-1} \longrightarrow \mathcal{A}_X^k$  by adding a path in  $\mathcal{A}_X^{k-1}$  in order to add  $x_k$  to  $L(\mathcal{A}_X^{k-1})$ .

Let  $\mathcal{A}_X^k$  with set of states  $Q_k$  and

$$H, Deg^{-}(j), PF: Q_k \longrightarrow N$$

such that for  $j \in Q_k$ :

- *Height*: H(j) is the maximal length of paths from *j* to a final state.
- *Indegree*:  $Deg^{-}(j)$  is the number of edges ending at *j*.
- ► Paths toward final states: for j ≠ q<sub>fin</sub>, PF(j) is the number of paths starting at j and ending at final states and PF(q<sub>fin</sub>) = 1.

Example



うしつ 川 ふ う く 川 マ く 見 マ く 日 マ

- ► H(0) = 3, H(1) = 2, H(2) = 1, H(3) = 0
- ▶  $Deg^{-}(0) = 0, Deg^{-}(1) = Deg^{-}(3) = 1, Deg^{-}(2) = 2$
- ▶ PF(0) = 2, PF(1) = PF(2) = PF(3) = 1

Let  $\mathcal{A}_X^k$  with set of states  $Q_k$  and

$$H, Deg^{-}(j), PF: Q_k \longrightarrow N$$

such that for  $j \in Q_k$ :

- *Height*: H(j) is the maximal length of paths from *j* to a final state.
- *Indegree*:  $Deg^{-}(j)$  is the number of edges ending at *j*.
- ► Paths toward final states: for j ≠ q<sub>fin</sub>, PF(j) is the number of paths starting at j and ending at final states and PF(q<sub>fin</sub>) = 1.

Example



うしつ 川 ふ う く 川 マ く 見 マ く 日 マ

- H(0) = 3, H(1) = 2, H(2) = 1, H(3) = 0
- ▶  $Deg^{-}(0) = 0$ ,  $Deg^{-}(1) = Deg^{-}(3) = 1$ ,  $Deg^{-}(2) = 2$

▶ PF(0) = 2, PF(1) = PF(2) = PF(3) = 1

Let  $\mathcal{A}_X^k$  with set of states  $Q_k$  and

$$H, Deg^{-}(j), PF: Q_k \longrightarrow N$$

such that for  $j \in Q_k$ :

- *Height*: H(j) is the maximal length of paths from *j* to a final state.
- *Indegree*:  $Deg^{-}(j)$  is the number of edges ending at *j*.
- ► Paths toward final states: for j ≠ q<sub>fin</sub>, PF(j) is the number of paths starting at j and ending at final states and PF(q<sub>fin</sub>) = 1.

Example



うしつ 川 ふ う く 川 マ く 見 マ く 日 マ

- ► H(0) = 3, H(1) = 2, H(2) = 1, H(3) = 0
- ►  $Deg^{-}(0) = 0$ ,  $Deg^{-}(1) = Deg^{-}(3) = 1$ ,  $Deg^{-}(2) = 2$
- ► PF(0) = 2, PF(1) = PF(2) = PF(3) = 1

## Construction of $\mathcal{A}_X^0$

Let  $\mathcal{A}_X^0 = (Q_0, i_0, T_0, \delta_0)$  be a path with label  $x_0$  from  $i_0 = 0$  to  $|x_0| = q_{fin}$  unique final state.

- The elements in  $Q_0$  are integers
- $i_0 = 0$  and  $T_0 = \{|x_0|\}$
- $\blacktriangleright L(\mathcal{A}^0_X) = \{x_0\}$

### Example

$$X = (aaa, ba, aab)$$



Construction of  $\mathcal{A}_X^k$  from  $\mathcal{A}_X^{k-1}$ 

$$\mathcal{A}_X^{k-1} = (Q_{k-1}, i_{k-1}, T_{k-1}, \delta_{k-1}) \longrightarrow \mathcal{A}_X^k = (Q_k, i_k, T_k, \delta_k)$$

- $i_k = 0$
- $u \longrightarrow$  the longest prefix in common between  $x_k$  and the elements in  $\{x_0, \ldots, x_{k-1}\}$ .
- ▶ *s*  $\longrightarrow$  the longest suffix in common between  $x_k$  and  $x_{k-1}$ .
- ▶ if *s* and *u* overlap we consider as *s* the suffix of  $x_k$  of length  $|x_k| |u| + 1$ .
- $x_k = uws$ , with  $w \neq \varepsilon$ .

For X = (aaa, ba, aab) and for  $x_2 = aab, u$  is aa and s is  $\varepsilon$ .

うして 山口 マイビット ビー うくの

Construction of  $\mathcal{A}_X^k$  from  $\mathcal{A}_X^{k-1}$ 

$$\mathcal{A}_X^{k-1} = (Q_{k-1}, i_{k-1}, T_{k-1}, \delta_{k-1}) \longrightarrow \mathcal{A}_X^k = (Q_k, i_k, T_k, \delta_k)$$

- $\blacktriangleright i_k = 0$
- $u \longrightarrow$  the longest prefix in common between  $x_k$  and the elements in  $\{x_0, \ldots, x_{k-1}\}$ .
- ▶ *s*  $\longrightarrow$  the longest suffix in common between  $x_k$  and  $x_{k-1}$ .
- ► if *s* and *u* overlap we consider as *s* the suffix of  $x_k$  of length  $|x_k| |u| + 1$ .
- $x_k = uws$ , with  $w \neq \varepsilon$ .

For X = (aaa, ba, aab) and for  $x_2 = aab, u$  is aa and s is  $\varepsilon$ .

うして 山口 マイビット ビー うくの

 $p \longrightarrow$  the end state of the path in  $\mathcal{A}_X^{k-1}$  starting at 0 with label u $q \longrightarrow$  the state along the path from 0 with label  $x_{k-1}$  for which the sub-path from q to  $q_{fin}$  has label s

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

#### Example



For  $x_2 = aab$ , *p* is the state 2 and *q* is the state 3.

Construction of  $\mathcal{A}_X^k$  from  $\mathcal{A}_X^{k-1}$ 

#### General idea

The general idea of the construction of  $\mathcal{A}_X^k$  from  $\mathcal{A}_X^{k-1}$  would be to add a path from *p* to *q* with label *w*.



The automaton  $\mathcal{A}_X^1$  is obtained from  $\mathcal{A}_X^0$  by adding the edge (0, b, 2).

#### Attention!

In general we cannot add a path from p to q with label w since we would add words other than  $x_k$ . We have to do some controls.

#### Example

$$X = (aaa, ba, aab)$$



Figure:  $\mathcal{A}_X^1$ , the incorrect construction of  $\mathcal{A}_X^2$ 

Since  $Deg^{-}(2) > 1$ , adding the edge (2, b, 3) leads to an automaton accepting {aaa, ba, aab, bb}.

## Indegree control

Before adding a path from *p* to *q*, we have to do a transformation of the automaton  $\mathcal{A}_X^1 \longrightarrow \mathcal{B}_X^1$ .

#### Example

X = (aaa, ba, aab)



 $\mathcal{B}_X^1$  is obtained from  $\mathcal{A}_X^1$  by doing a copy of the path from 0 to 4 with label aa.

#### Example

X = (aaa, ba, aab)



 $\mathcal{A}_X^2$  is obtained by adding the edge (4, b, 3).

If, in  $\mathcal{A}_X^{k-1}$ , in the path from 0 with label *u* there are states *r* with  $Deg^-(r) > 1$  then

 $\mathcal{A}_X^{k-1} \longrightarrow \mathcal{B}_X^{k-1}$ 

In this case:

- $\mathcal{B}_X^{k-1}$  is obtained by doing a copy of the path from *r* to *p*
- $\mathcal{B}_X^{k-1}$  is equivalent to  $\mathcal{A}_X^{k-1}$
- $p \longrightarrow$  the end state of the path from 0 with label u in  $\mathcal{B}_X^{k-1}$ .

うして 山口 マイビット ビー うくの

► If x<sub>k</sub> is the prefix of a word in {x<sub>0</sub>,..., x<sub>k-1</sub>} then we add p to the set of final states.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □□ · ○ へ ()

• Otherwise we proceed with the following controls.

#### Example

X = (aaa, ba, aab, abb)



Figure:  $\mathcal{A}_X^2$  and the incorrect construction of  $\mathcal{A}_X^3$ 

・ロト ・ 何 ト ・ ヨ ト ・ ヨ

We have PF(4) = 2. Adding the edge (1, b, 4) to  $\mathcal{A}_X^2$  leads to an automaton accepting {aaa, ba, aab, abb, aba}.

## Path toward final states control

Example X = (aaa, ba, aab, abb)



 $\mathcal{A}_X^3$  is obtained by adding the path from 1 to 3 with label bb. The state 3 is the first state q' in the path from 4 = q to 3 with PF[q'] = 1

If PF(q) > 1

- ► consider in the path from q to q<sub>fin</sub> with label s the first state q' such that PF[q'] = 1, if it exists.
- redefine q as q'
- ▶ redefine *w* and *s*
- ▶ If there is no q' with PF[q'] = 1, redefine q as  $q_{fin}$  and w as ws.



Figure:  $\mathcal{A}_X^0$  and the incorrect construction of  $\mathcal{A}_X^1$ 

We have that p = 1 = q have the same *H* Adding the edge (2, b, 1) in  $\mathcal{A}_X^0$  would lead to an automaton accepting the infinite language {aba, a (bb)\*a}.

## Example

X = (aba, abbba)



 $\mathcal{A}_X^1$  is obtained by adding the path from 2 to 3 with label bba. The state 3 is the first state q' in the path from 2 to 3 with H[p] > H[q']

 $\mathrm{If}\, H[p] \leq H[q]$ 

► consider in the path from q to q<sub>fin</sub> with label s the first state q' such that H[p] > H[q].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- redefine q as q'
- ▶ redefine *w* and *s*

## Control on $q_{fin}$



Figure: Incorrect construction of  $\mathcal{A}_X^4$  and the right construction of  $\mathcal{A}_X^4$ 

Adding an edge from p = 3 to  $q_{fin} = 3$  would lead to infinitely many words to the language recognised by the automaton.

If there exists a word in  $\{x_0, \ldots, x_{k-1}\}$  that is a prefix of  $x_k$  then

• if  $p \neq q_{fin}$  we add p to the set of final states and the construction is terminated.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• if  $p = q_{fin}$  then we do a transformation as in the example.

In all cases we add a path from p to q with label w.

If there exists a word in  $\{x_0, \ldots, x_{k-1}\}$  that is a prefix of  $x_k$  then

• if  $p \neq q_{fin}$  we add p to the set of final states and the construction is terminated.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• if  $p = q_{fin}$  then we do a transformation as in the example.

In all cases we add a path from p to q with label w.

#### Theorem

For each  $k \in \{0, ..., m\}$ , the language recognised by the automaton  $\mathcal{A}_X^k$  is  $L(\mathcal{A}_X^k) = \{x_0, ..., x_k\}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

#### Theorem

Let  $X = (x_0, ..., x_m)$  be a list of words in  $A^*$  ordered by right-to-left lexicographic order and let  $\sum_{i=0,m} |x_i| = n$ . There is an algorithm for the construction of the automaton  $\mathcal{A}_X^m$  recognising X in  $\mathcal{O}(n)$ .

うして 山口 マイビット ビー うくの

CONSTRUCTION-
$$\mathcal{A}_X(X)$$
  
1.  $(\mathcal{A}, R) \leftarrow$  CONSTRUCTION- $\mathcal{A}_X^0$   $(X[0])$   
2. for  $k \leftarrow 1$  to  $|X| - 1$  do  
3.  $(\mathcal{A}, R) \leftarrow$  Add-word $(\mathcal{A}, X[k], X[k-1], R)$   
4. Return  $\mathcal{A}$ 

## Non minimality of the automaton



 $\mathcal{A}_X^3$  is not minimal since the states 2 and 4 are equivalent.

## Example X = (aaa, ba, aab, bb)



Figure:  $\mathcal{A}_X^1$ , the incorrect construction of  $\mathcal{A}_X^2$ 

In this example bb is also in X. In this case the indegree control is not necessary.

- Let y in  $A^*$  and S(y) be the set of suffixes of y.
- ► *S*(*y*) sorted by decreasing order on the lengths of the elements in *S*(*y*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- ► denote by A<sub>y</sub> the automaton A<sub>S(y)</sub> and by M<sub>y</sub> the minimal automaton of S(y).
- $\mathcal{A} \longrightarrow \# \mathcal{A}$  the number of states of  $\mathcal{A}$ .

We consider the ratio  $D(y) = \frac{\sharp A_y}{\sharp M_y}$ .

We have done experiments on the set of suffixes of a given word.

•  $D_n^{max} \longrightarrow$  the greatest of D(y) with y of length n.

| n  | $D_n^{max}$ |
|----|-------------|
| 10 | 1.83        |
| 15 | 2.41        |
| 20 | 3.04        |

- $D_n^{max} \le 4$  for words y with  $|y| \le 20$ .
- Bad cases linked with words powers of a short one with great exponent

- $D_n \longrightarrow$  the greatest ratio among the D(y)
- In each column we have  $\mathcal{D}_n$  for a set of generated words which either are not powers of the same word or are powers of a word with an exponent less than a fixed number.

| п   | exp < 3 | exp < 2 | exp < 1 |
|-----|---------|---------|---------|
| 10  | 1.75    | 1.66    | 1.54    |
| 20  | 2.22    | 2.16    | 2.42    |
| 30  | 2.16    | 2.22    | 2.24    |
| 50  | 1.96    | 1.85    | 2.60    |
| 100 | 1.60    | 1.71    | 1.79    |

The experimental results are good in general even if they do not show clearly our conjecture.

- $D_n \longrightarrow$  the greatest ratio among the D(y)
- In each column we have  $\mathcal{D}_n$  for a set of generated words which either are not powers of the same word or are powers of a word with an exponent less than a fixed number.

| n   | exp < 3 | exp < 2 | exp < 1 |
|-----|---------|---------|---------|
| 10  | 1.75    | 1.66    | 1.54    |
| 20  | 2.22    | 2.16    | 2.42    |
| 30  | 2.16    | 2.22    | 2.24    |
| 50  | 1.96    | 1.85    | 2.60    |
| 100 | 1.60    | 1.71    | 1.79    |

The experimental results are good in general even if they do not show clearly our conjecture.

#### PF control and Height control are not necessary in this case.

#### Lemma

Let y in  $A^*$  and  $y_k$  in S(y) such that  $y_k$  is not a prefix of a word in  $\{y_0, \ldots, y_{k-1}\}$ . Then we have that PF(q) = 1.

#### Lemma

Let y in  $A^*$  and  $y_k$  in S(y) such that  $y_k$  is not a prefix of a word in  $\{y_0, \ldots, y_{k-1}\}$ . Then we have that H(p) > H(q).

うして 山口 マイビット ビー うくの

## Set of suffixes of a given word: modified construction

- ► We propose a modified Indegree control in order to avoid equivalent states as in the example.
- ▶ We expect that an improved version of the algorithm actually builds the (minimal) suffix automaton of *y*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □□ · ○ へ ()

#### ► Find a general upper bound for ratios D

Does there exist an on-line construction for the minimal automaton accepting a finite set of words that runs in linear time on each word being inserted in the automaton?

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ →豆 − のへぐ

#### ► Find a general upper bound for ratios *D*

Does there exist an on-line construction for the minimal automaton accepting a finite set of words that runs in linear time on each word being inserted in the automaton?