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@ Sturmian words

© Subword graphs

© Number of subwords

@ Structure of occurreces of subwords

@ Critical factorization and maximal suffixes

@ Relation to dual Ostrovski numeration system
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Sturmian words

Definition

Example

@ Alphabet: ¥ = {a, b}
@ Directive sequence: v = (0,71, -+ Yn),
where 79 > 0 and v1,...,7, > 0

@ Recurrence:
o X_1 = b
e xp=a
o Xk = (Xk—1)" ! - Xk—2

@ Word(yo,71,---,7n) = Xn+1
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Sturmian words

Definition

Example

Sturmian word example

o v=(1,2,1,3,1)

@ x_1=0>b

@ xp=a

o x;=(x)-x1=a-b

o xo=(x1)?-xg=ab-ab-a

o x3 = (x2)! - x; = ababa - ab

o x4 = (x3)3 - xo = ababaab - ababaab - ababaab - ababa

o x5 = (x4)! - x3 = ababaabababaabababaabababa - ababaab

e Word(1,2,1,3,1) = ababaabababaabababaabababaababaab



Subword graphs

Subwords of Sturmian words
DAWG and CDAWG
Compacted subword graphs structure

@ w — prefix of w of size 2

@ yi — (basic subword) reverse of some x

Example:
Xo = a4a Yo—=2a
X1 = ab 1= ba
Xo = ababa yo = ababa
x3 = ababaab y3 = baababa
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Subword graphs

Subwords of Sturmian words
DAWG and CDAWG
Compacted subword graphs structure

DAWG

The Direct Acyclic Subword Graph of the word w is the minimal
deterministic automaton (not necessarily complete) that accepts all
suffixes of w.

CDAWG

The Compacted Subword Graph results from the subword graph
by removing all nodes of out-degree one and replacing each chain
by a single edge with the label representing the path label of this
chain (except the node creating last edge labelled " ab" or " ba").

| A

v
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Subword graphs Subwords of Sturmia

DAWG and CDAWG

Compacted subword graphs structure

Example:
Subword graph and its compacted version for Word(1,2,1,3,1).

/\‘abamaabababaabababaababaab

N

Y3
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Subword graphs

Subwords of Sturmian words
DAWG and CDAWG
Compacted subword graphs structure

Theorem

Compacted subword graph of Word(vo,71, - --,7a) has the
following structure:

2 Y3

Yo A Y,
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Number of subwords

Definition

Let G be a compacted subword graph and v a vertex in G.
Define:

e mult(v) — multiplicity of vertex v — number of paths leading
from source node to v

@ edges(v) — sum of weight of all edges outgoing from v

Lemma
Let w = Word(~0, 71, -.-,7n) and G be CDAWG of w. Then

)Subwords(w)‘ = Y mult(v) - edges(v)
veG
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Number of subwords

Let xp+1 = Word(y0, 71, -+, ¥n). Then

‘Subwords(x,,ﬂ)‘ = |Xn| - [Xn—1] + 2 x| — 1
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Number of subwords

Example:
x5 = Word(1,2,1,3,1)
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Number of subwords

Example:
x5 = Word(1,2,1,3,1)
Number of subwords:

Q X, mult(v)-edges(v) = 3+7+14+24+45+ 63463+ 14 = 233
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Number of subwords

Example:
x5 = Word(1,2,1,3,1)
Number of subwords:
Q >, .cmult(v)-edges(v) = 3+T7+414+244-45+63+463+14 = 233

Q |Subwords(xs)| = |xa| - |x3| + 2 |xa] —1=26-74+2-26—1=233
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Right special factor
Structure of occurreces of subwords Final positions of occurrences of subw

Definition

A right special factor of the word w is any word z such that za
and zb are subwords of w.

Example:
w=ababaabababaabababaabababaababaab
za b

z = baba is a right special factor of w.
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Right special factor

Structure of occurreces of subwords Final positions of occurrences of sub

Example:
Path in DAWG of Word(1,2,1,3,1) corresponding to right special

factor yoys.
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Right special factor
Structure of occurreces of subwords Final positions of occurrences of subwords

Theorem

Let w = Word(~0, 71, - --,7Vn) be a standard Sturmian word.
© For each k > 0 there is at most one right special factor of
length k of w.
@ Every right special factor of w has the form:

Z = yla’ o yﬁi'{l e y’(ji‘;k
where 0 < aj <yj for j<n—1and 0 <o <7 —1 for
j=n-—1.
© For a given k > 0 the right special factor of w of length k has
grammar-representation of size O(n) that can be computed in
O(n) time.
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Right special factor

Structure of occurreces of subwords Final positions of occurrences of subwords

Example:
Right special factors of Word(1,2,1,3,1) with their lengths.
Special prefixes are marked.

1 yo 11 yiys 18 yivi
12 Y2y 19 Vay3

2 v 6 Yoy2 13 Yoy2¥3 20 Yoyayi
3 yoy1 7 yiye 14 y1iy2y3 21 YiY2Y3
8 yoyiye 15 yoy1yoys 22 yoy1yoy3

4 y2 9 yiy 16 yivoys 23 yiveyi
5 yoy: 10 yoyly> 17 yoyiyays 24 yoyiyay3
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Right special factor
Structure of occurreces of subwords Final positions of occurrences of subwords

Definition

FIN(k,w) — set of the last positions of the first occurrences of all
subwords of length k in word w.

Example:
F/N(3,Word(1, 2,1,3, 1)) = {3,4,6,7}

vy VY
ababaabababaabababaabababaababaab

aba
bab
baa
aab
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Right sp: | factor

Structure of occurreces of subwords Final positions of occurrences of subwords

Example: Structure of sets FIN(k, w) for w = Word(1,2,1,3,1).

b b
/a\b‘abamaabababaabababaababaab

a
g a

a a
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Right special factor

Structure of occurreces of subwords Final positions of occurrences of subwords

Theorem

Let w = Word (90,71, --,7n) be a standard Sturmian word.

@ The set FIN(k,w) consists of a single interval or of two
disjoint intervals.

@ For a given k we can compute the intervals representing
FIN(k, w) in O(n) time.
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Minimal local period
factorization point
e phically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Definition

Minimal local period in a word w at position k is a positive
integer p such that w[i — p] = w[i] for every k < i < k + p, where
w(i] and w[i — p] are defined.

Example:
Minimal local period in w = Word(1,2,1,3,1) at position k =9
equals 2 and at position k = 27 equals 5.

w=ababaabab abaabababaabababaa babaab
N~ —_—

2 2 5 5
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Minimal local period
Critical factorization point
Lexicographically maximal suffixes

Critical factorization and maximal suffixes Conclusions

Definition

Critical factorization point in a word w is a position k in w
for which minimal local period at k equals (global) minimal
period of w.
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e phically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Example:
Minimal local periods of Word(1,2,1,3,1).
Critical factorization point is marked.

i 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 -----.
a b a b a a b a b a b a a b a b a .-

~~~~~~ baababab|aababaab
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Minimal local period

Critical factorization point

Lexicographically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Fact (M. Crochemore, D. Perrin 1991)

The critical factorization point of word w is given as the starting
position of a lexicographically maximal suffix, maximized over all
possible orders of alphabet.
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Minimal local period

Critical factorization point

Lexicographically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Definition
For a word w define two paths in DAWG of w:

@ m,(w) — starts in root, ends in sink and uses letter a whenever
it is possible.

@ 7p(w) — starts in root, ends in sink and uses letter b whenever
it is possible.

Similarly m,(w) and mp(w) are defined in CDAWG of w.
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period
Critical factorization point
Lexicographically maximal suffixes

Critical factorization and maximal suffixes Conclusions

Observation

© Label of the path 7,(w) is lexicographically maximal suffix
of w with respect to the letter ordering "a > b".

@ Label of the path mp(w) is lexicographically maximal suffix
of w with respect to the letter ordering "a < b".
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od
| orization point

Lexicographically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Example:
T (Word(l, 2,1,3, 1)) — yoy» ab.

Y3
Y1
"o —~0 -0
Yo\ Y1 \ N1 Y2
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od
| orization point

Lexicographically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Example:
T (Word(l, 2,1,3, 1)) — y2y3 ab.

Y3
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Minimal local period
Critical factorization point

Lexicographically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Let w = Word (70,71, --,7Vn) be a standard Sturmian word.

Then:
Ta(w) = ¥3° ¥ Yo Pt
(W) = ¥y yan It

I
—
S
M)

N

| S

where k = |51 | and |/
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graphically maximal suffixes
Critical factorization and maximal suffixes Conclusions

Theorem

Let w = Word(+0,71,- - -,7n) be a standard Sturmian word.
@ The critical factorization point of w is at position

k= |w| — min{ |Ta(w)|, |mp(w)] }

@ The lexicographically maximal suffix of w has grammar-based
representation of size O(n).

© The compressed representation of the lexicographically
maximal suffix of w and its critical factorization point can be
computed in time O(n).
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phically maximal suffixes

Critical factorization and maximal suffixes Conclusions

Example:
e w = Word(1,2,1,3,1)
o ma(w)=yoy2ab
o mp(w) = y{ y3 ab
@ critical factorization point at position:

k=|w|—|yoy2ab| =33 -8=25

Th

w=ababaabababaabababaabababaababaab
—_—

Ta
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Definition

For infinite directive sequence v = (70,71, . . .) define base
sequence g as:

q=(q0,q1,---) = (%l bal, ..

and

val,(ag,a1,...,0p) =g qo+01-q1+ ...+ - qp

Note:
Base sequence can be defined directly:

g-1=qo =1, gi+1=Gi-vi+qi-1 fori>0
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Dual Ostrovski numeration system
Relation to paths in compacted subwol
Ostrovski automata

Relation to dual Ostrovski numeration system

Definition

For 0 </ < |xp| the representation of / in the dual Ostrovski
numeration system is defined as: [i], = (a0, a1, ..., an), where:

Q val, (o, 1,...,00) =1
(2] v0<j<n Qj <
(3] (aj<’yjand3;>ja,->0) :>Oéj+1>0
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Example:
o directive sequence: v = (1,2,1,3,1,...).
@ base sequence: q = (|xol, |x1],...) = (1,2,5,7,26,33,...)

° [2A9]7 =(1,1,1,3), because

29=1-14+1-241-543.7

o [58], = (0,2,0,3,0,1), because

58 = 0:-1+2-240-54+3-74+0-26+4+1-33
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Goo — infinite compacted subword graph of Word(~o, 71, - - .)

Go Yo Y0 Yo Yo
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Goo — infinite compacted subword graph of Word(~o, 71, - - .)

Go Yo Y0 Yo Yo

o ml=1-qo+4-g1+3-q2+2-q3
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Goo — infinite compacted subword graph of Word(~o, 71, - - .)

Go Yo Y0 Yo Yo

o m|=1-go+4-q1+3-q2+2-q3
o [Inl] = (1,4,3,2)
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Theorem

Let G be the infinite compacted subword graph corresponding to
directive sequence v = (70, 71, - - -)-
© Let 7w be a path from the root to another node of G. Let
rep(m) = (ho, hi,...), where h; is the number of edges of
weight g; on the path 7. Then rep(w) is the representation of
the length |7| of this path in the dual Ostrovski numeration
system corresponding to the directive sequence of G...

@ For each k > 1 there is exactly one path of length k in G.
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Dual Ostrovski numeration system
Relation to paths in compacted subword graphs
Ostrovski automata

Relation to dual Ostrovski numeration system

Definition

For directive sequence v = (Y0, 71, - - - » 7n) define SD(7), the set of
representations in dual Ostrovski numeration system of all numbers not
exceeding [Xn41| + |Xa| — 2.

Definition
The minimal deterministic finite automaton accepting language
Loy ={abal-+al ¢ (ovit, - in) € SD()}

for alphabet ¥ = {ag, a1,...,a,} is called Ostrovski automaton and
denoted OA(7).

Remark: a° = ¢ for any letter a.
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Dual Ostrovski numeration syst
Relation to paths in compacted su
Ostrovski automata

Relation to dual Ostrovski numeration system

Example:
Minimal deterministic automaton OA(1,2,1,3,1) accepting

L(1,2,1,3,1) = {a af a} a5 aff : (io, v, o, i3, ) € SD(1,2,1,3,1)}
a; as

)
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Dual Ostrovski numeration system
Relation to paths in compacted subwol
Ostrovski automata

Relation to dual Ostrovski numeration system

The minimal Ostrovski automaton, without the dead state, for
directive sequence (70,71, - --,Yn) is isomorphic as a graph to the
compact directed acyclic subword graph of Word(~o, 71, -, Vn)-
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