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repeating substring/repeat/NE repeat

A repeating substring u in a string x is a substring of x that
occurs more than once.
A repeat (p; i1, i2, . . . , ik ), k ≥ 2, is a set of repeating substrings
of period (length) p that occur at positions i1, i2, . . . , ik in x —
complete if it includes all occurrences in x .
A repeat is left-extendible (LE) if

x [i1−1] = x [i2−1] = · · · = x [ik−1],

right-extendible (RE) if

x [i1+p] = x [i2+p] = · · · = x [ik +p],

nonextendible (NE) if neither LE nor RE (both NLE and NRE).
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supernonextendible

A repeat is supernonextendible (SNE) if it is NE and its
repeating substring u is not a substring of any other repeating
substring of x .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = a b a a b a b a a b a a b $

(3; 1, 4, 6, 9) (that is, aba) is NE;
(5; 1, 6, 9) (that is, abaab) is SNE.
Requiring that repeats be NE/SNE avoids redundant output.
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Our Algorithms

Given a string x and a positive integer pmin, we present two
algorithms:

PSY1 computes all the complete NE repeats of period
p ≥ pmin;
PSY2 computes all the complete SNE repeats of period
p ≥ pmin.

Both of these algorithms execute in time linear in string length
independent of alphabet size; both of them require computation
of SA (suffix array) and LCP (longest common prefix array) for
x ; both of them output triples (p; i , j), where i ..j is a range of
positions in SA.
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Applications

NE/SNE repeats are useful in various contexts:
phrase selection in off-line data compression
[AL00, LM00, TS02];
duplicate text/document detection [BZ06];
genome analysis and sequence alignment
[B99, SK05, BIMSTTT07, ISY08].
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NE pairs of repeats

Given a string x = x [1..n] on an alphabet of size α, some
algorithms compute NE pairs of repeats:

Gusfield [G97] uses suffix trees, requires O(αn+q) time,
where q is the number of outputs;
Brodal et al. [BLPS00] use similar methods and introduce
bounds on the “gaps” between repeating substrings;
Abouelhoda et al. [AKO04] use suffix arrays and also
require O(αn+q) time.

All of these algorithms require O(n2) time in the worst case (for
α ∈ Θ(n)).
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complete NE/SNE repeats

Two recent algorithms [FST03, NIBT07] use suffix arrays to
compute all complete NE repeats in x in O(n) time and space
independent of α. In practice PSY1 uses substantially less time
and space than either of them.
For all complete SNE repeats:

Gusfield [G97] uses suffix trees and O(n log α) time;
Abouelhoda et al. [AKO04] use suffix arrays and O(n+α2)
time.

PSY2 requires O(n+rα) time, where r is the number of SNRE
repeats and rα < n.
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preprocessing-1

Both PSY1 (complete NE repeats) and PSY2 (complete SNE
repeats) need to compute SA and LCP. In addition, PSY1
requires BWT [BW94], where for SA[j] > 1,
BWT[j] = x

[
SA[j]−1], while for j such that SA[j] = 1,

BWT[j] = $, a sentinel.

1 2 3 4 5 6 7 8 9

x = a b a a b a b a $
SA = 8 3 6 1 4 7 2 5

LCP = -1 1 1 3 3 0 2 2 -1
BWT = b b b $ a a a a

SA and LCP are arrays of integers (4n bytes), BWT of letters (n
bytes).
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preprocessing-2

All of these data structures can be computed in O(n) time: for
SA see [KA03, KS03], for LCP see [KLAAP01, M04].
However, for SA, the fastest (and most space-efficient: ≤ 6n
bytes) algorithms are supralinear in the worst case
[PST07, MF04, MP06].
In terms of time, SA construction is the main obstacle; in terms
of space, LCP construction (13n bytes for [KLAAP01], 9n bytes
for the slightly slower Manzini variant) is the problem.

Instead of BWT, PSY2 requires an array LAST = LAST[1..n] of
byte (explained later).
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PSY1-1

PSY1 uses only LCP and BWT (5n bytes) for its execution. It
performs a single left-to-right scan of LCP, looking for the left
boundary lb of a range of high LCP value. If
lcp = LCP[lb+1] > LCP[lb], then a triple (lcp, lb, bwt) is pushed
onto a stack LB, where bwt = $ if BWT[lb] 6= BWT [lb+1],
otherwise equals BWT[lb].
Thus the stack entry specifies the left boundary lb of a repeat of
period lcp that is certainly NLE if bwt = $.
Pops of LB occur at positions j where LCP decreases:
LCP[j+1] < top(LB).lcp. Then j is the right boundary of the
repeat. Furthermore, the repeat is NRE: if the same letter
followed each occurrence of the repeating substring, the LCP
value for all of them would be greater by at least one.
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PSY1-2

So every pop identifies an NRE repeat — if in addition it is NLE
(bwt = $), we should output the NE repeat (lcp, lb, j).
To ensure that the bwt value on the stack is correct, we update
it according to BWT[j+1] at each position j such that the LCP
value does not decrease. This simple approach works because
of a basic property of LCP arrays:

Two ranges of repeats are either disjoint (empty common
prefix) or else one range contains the other (common
prefix over the longer range).

Thus the range currently popped is always the one of greater
LCP (the one most recently placed on the stack).
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PSY2-1

In PSY2 we look first for the left boundary i of a repeat whose
minimum LCP value p is locally greatest; the right boundary is
determined at the first subsequent position j for which
LCP[j+1] > LCP[j]. The repeat (p; i , j) is NRE. It is SNLE if and
only if for every h ∈ i ..j every left extension BWT[h] is distinct.
This condition can hold only if j−i+1 ≤ α.
To test efficiently for this condition we introduce an array
LAST = LAST[1..n] of byte, where for every j ∈ 1..n, LAST[j] is
the offset between the letter BWT[j] and the rightmost prior
occurrence of BWT[j] in SA; if there is no such occurrence, or if
the offset ≥ α, then LAST[j]← α−1.
LAST can be computed in Θ(n) time by a simple left-to-right
scan of SA.
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PSY2-2

Using LAST, the pseudocode for PSY2 is straightforward:
— Preprocessing: compute SA, LAST & LCP. j ← 0; p ← −1; q ← 0

while j < n do
high← 0
repeat

j ← j+1; p ← q; q ← LCP[j+1]
if q > p then high← q; i ← j

until p > q
if high > 0 and SNLE(i, j, LAST) then

output (p; i, j)

function SNLE(start , end , LAST)
k ← end−start+1
if k > α then return FALSE
else

for h← start+1 to end do
if h−LAST[h] > start then return FALSE

return TRUE

Figure: Algorithm PSY2 with a simplified SNLE function using LAST
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PSY1

Both PSY1 and its preprocessing require Θ(n) time
independent of alphabet size.
Because PSY1’s output is compact (ranges (p; i , j) in the suffix
array), it requires only 5n bytes of storage for its execution, plus
storage for the stack LB (9-byte entries). Expected stack depth
is 2 logα n entries [KGOTK83], thus altogether an additional
18 logα n bytes (for α = 2, n = 220, 360 bytes).
Preprocessing for PSY1 can be as little as 9n bytes (Manzini’s
LCP calculation). If PSY1 were required to output positions in x
rather than SA, the processing could be handled as
postprocessing: either input SA to overwrite LCP (much extra
time but no extra storage), or store SA throughout (little extra
time but overall 9n bytes of storage).
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PSY2

Preprocessing for PSY2 (SA,LCP,LAST) has space and time
requirements identical to those for PSY1 (SA,LCP,BWT). PSY2
itself uses 5n bytes with no stack and requires O(n+rα) time,
rα < n.
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testbed

Tests were conducted using a 2.6GHz Opteron 885 processor
(64-bit architecture) with 2GB main memory available, under
Red Hat Linux 4.1.2–14. The compiler was gcc with the -O3
option. The run times used were the minima over four runs, not
including input/output.
For SA construction the linear time algorithm of
Kärkkäinen/Sanders [KS03] was used; on most inputs, the
worst-case supralinear algorithm of Maniscalco/Puglisi [MP06]
is probably about five times faster, while using half the space
(5.2n bytes).
For LCP calculation, the algorithm of [KLAAP01] was used;
Manzini’s variant is probably 5–10% slower.
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files

File Type Name No. Bytes Description
highly periodic fibo35 9,227,465 Fibonacci

fibo36 14,930,352 Fibonacci
fss9 2,851,443 run-rich [FSS03]
fss10 12,078,908 run-rich [FSS03]

random rand2 8,388,608 α = 2
rand21 8,388,608 α = 21

DNA ecoli 4,638,690 escherichia coli genome
chr22 34,553,758 human chromosome 22
chr19 63,811,651 human chromosome 19

Genbank protein database prot-a 16,777,216 sample
prot-b 33,554,432 sample

English bible 4,047,392 King James version
howto 39,422,105 Linux howto files
mozilla 51,220,480 Mozilla source code

Table: Files used for testing.
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results

File SA LCP BWT LAST PSY1 [NIBT07] PSY2
fibo35 0.898 0.169 0.025 0.031 0.012 0.448 0.009
fibo36 0.886 0.170 0.027 0.033 0.012 0.475 0.007
fss9 0.826 0.154 0.026 0.031 0.014 0.330 0.007
fss10 0.958 0.177 0.025 0.032 0.013 0.469 0.008
periodic AVG 0.892 0.168 0.026 0.032 0.013 0.430 0.008
rand2 0.947 0.188 0.026 0.031 0.017 0.215 0.012
rand21 1.135 0.199 0.025 0.031 0.012 0.122 0.012
random AVG 1.041 0.193 0.025 0.031 0.015 0.169 0.012
ecoli 1.413 0.175 0.025 0.031 0.015 0.155 0.011
chr22 1.635 0.285 0.035 0.040 0.016 0.278 0.012
chr19 1.873 0.333 0.044 0.053 0.016 0.242 0.012
DNA AVG 1.754 0.309 0.035 0.041 0.016 0.225 0.012
prot-a 1.778 0.222 0.027 0.032 0.013 0.211 0.012
prot-b 1.971 0.277 0.034 0.039 0.013 0.247 0.012
protein AVG 1.874 0.249 0.030 0.036 0.013 0.229 0.012
bible 1.417 0.151 0.024 0.030 0.015 0.168 0.012
howto 1.912 0.214 0.035 0.039 0.016 0.219 0.012
mozilla 1.815 0.187 0.032 0.036 0.013 0.139 0.011
English AVG 1.417 0.151 0.024 0.035 0.014 0.175 0.012
AVERAGE 1.390 0.207 0.029 0.035 0.014 0.266 0.011

Table: Microseconds per letter used by each run.
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conclusions

We have described algorithms PSY1 and PSY2 that are more
space- and time-efficient, both in theory and practice, than
algorithms previously proposed. Moreover, both have very
stable execution times, dependent primarily on string length
rather than string structure or alphabet size.
We note that the output of PSY1 can be efficiently
postprocessed to yield NE pairs of repeat, if required.
We would like to have

an SA construction algorithm that is linear, lightweight and
fast;
a fast and lightweight LCP algorithm.
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