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Abstract

In this article we present two efficient variants of the BOM string matching
algorithm which are more efficient and flexible than the original algorithm.
We also present bit-parallel versions of them obtaining an efficient variant of the
BNDM algorithm. Then we compare the newly presented algorithms with some
of the most recent and effective string matching algorithms. It turns out that the
new proposed variants are very flexible and achieve very good results, especially
in the case of large alphabets.
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The String Matching Problem

Given a text t of length n and a pattern p of length m over some alphabet X of
size 0, the string matching problem consists in finding all occurrences of the
pattern p in the text t
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The String Matching Problem

Given a text t of length n and a pattern p of length m over some alphabet X of
size 0, the string matching problem consists in finding all occurrences of the

pattern p in the text t
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Automata

Automata based solutions have been also developed to design algorithms which
have optimal sublinear performance on average. This is done by using factor
automata, data structures which identify all factors of a word.

* BOM (Backward Oracle Matching) algorithm [2] is the most efficient,
especially for long patterns.

« BNDM (Backward Nondeterministic Dawg Match) algorithm [3], is very
efficient for short patterns.

[2] C. Allauzen, M. Crochemore, andM. Raffinot. Factor oracle: a new structure for pattern matching. In J. Pavelka,
G. Tel, and M. Bartosek, editors, SOFSEM’99, Theory and Practice of Informatics, number 1725 in Lecture Notes in
Computer Science, pages 291-306, Milovy, Czech Republic, 1999. Springer-Verlag, Berlin.

[3] G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast extended string matching. In M.

Farach-Colton, editor, Proceedings of the 9th Annual Symposium on Combinatorial Pattern Matching, number
1448, pages 14-33, Piscataway, NJ, 1998. Springer-Verlag, Berlin.
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Factor Automaton

The factor automaton of a pattern p, Aut(p), is also called the factor DAWG of p
(for Directed Acyclic Word Graph). Such an automaton recognizes all the factors
of p. Formally the language recognized by Aut(p) is defined as follows

LIAut(p)) ={u e X" : exists v, w € X" such that p = vuw!}.
\ P . I
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The factor automaton of the pattern p = abbbaab
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Factor Oracle

The factor oracle of a pattern p, Oracle(p), is a very compact automaton which
recognizes at least all the factors of p and slightly more other words. Formally
Oracle(p) is an automaton {Q,m,Q,2,8} such that

1. Q contains exactly m + 1 states, say Q=1{0, 1,2, 3, ... ,m}

2. m is the initial state

3. all states are final

4. the language accepted by Oracle(p) is such that L(Aut(p)) & L(Oracle(p))
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The factor oracle of a pattern p, Oracle(p), is a very compact automaton which
recognizes at least all the factors of p and slightly more other words. Formally
Oracle(p) is an automaton {Q,m,Q,2,8} such that

1. Q contains exactly m + 1 states, say Q=1{0, 1,2, 3, ... ,m}

2. m is the initial state

3. all states are final

4. the language accepted by Oracle(p) is such that L(Aut(p)) & L(Oracle(p))

The factor automaton of the pattern p = abbbaab

4]
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Bacward Oracle Matching

The basic idea of the BDM and BOM algorithms is that if its backward search
failed on a letter c after the reading of a word u then cu is not a factor of p and
moving the beginning of the window just after c is secure. If a factor of length m
is recognized then we have found an occurrence of the pattern.

t 'la c/c'a a a b b aa b/ b/b a a c¢c bjla a b/ c a alc
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Extending BOM

Now we present an extension of the BOM algorithm by introducing a fast-loop
with the aim of obtaining better results on the average. We discuss the
application of different variations of the fast-loop and present experimental
results in order to identify the best choice.
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The classical fast-loop

The classical fast-loop has first introduced in the Tuned-Boyer-Moore algorithm
[4] and later largely used in almost all variations of the Boyer-Moore algorithm.

Generally a fast-loop is implemented by iterating the bad (A)
character heuristic in a checkless cycle, in order to quickly

. - belt
locate an occurrence of the rightmost character of the k = be(ty)

pattern while (k # 0) do
| j=j+k
‘ ) < : : k = be(t;)
be(c) =min({0 <k <m|pm—1—Fk]=c}U{m})

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.
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Efficient Variants of the BOM Algorithm — Simone Faro and Thierry Lecroq — PSC 2008

The classical fast-loop

The classical fast-loop has first introduced in the Tuned-Boyer-Moore algorithm
[4] and later largely used in almost all variations of the Boyer-Moore algorithm.

t 'a/c cl ala a b/b a a b c bjla a c (A)
/ k= be(t;)
p 'a bjlalc c while (k£ # 0) do
j=J+k

k = be(ty)

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.



Efficient Variants of the BOM Algorithm — Simone Faro and Thierry Lecroq — PSC 2008

The classical fast-loop

The classical fast-loop has first introduced in the Tuned-Boyer-Moore algorithm
[4] and later largely used in almost all variations of the Boyer-Moore algorithm.

t 'a/c cl ala a b/b a a b c bjla a c (A)
i k= be(t;)
p a bla c c while (k£ # 0) do
j=J+k

k = be(ty)

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.



Efficient Variants of the BOM Algorithm — Simone Faro and Thierry Lecroq — PSC 2008

The classical fast-loop

The classical fast-loop has first introduced in the Tuned-Boyer-Moore algorithm
[4] and later largely used in almost all variations of the Boyer-Moore algorithm.

t 'a/c cl a/a alb/b a a b c bjla a c (A)
/ k= be(t;)
p al'lb a c c while (k£ # 0) do
j=J+k

k = be(ty)

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.



Efficient Variants of the BOM Algorithm — Simone Faro and Thierry Lecroq — PSC 2008

The classical fast-loop
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b a a b c b aja c (A)

k= be(t;)

a c c while (k£ # 0) do
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o <€ T

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.
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The classical fast-loop

The classical fast-loop has first introduced in the Tuned-Boyer-Moore algorithm
[4] and later largely used in almost all variations of the Boyer-Moore algorithm.

Experimental results with o = 8 Experimental results with o« = 16
m BOM (A) m BOM (A)
4 157.62 0595 4 103.28  66.81
8 85.48  58.66 8 71.59  38.72
16 43.04  43.36 16 30.61  26.57 (A)
32 26.63  35.00 a2 18.68  21.80
64 17.39 28,05 64 12.67 20,09
128 15.28  23.68 128 14.22  19.38 . N
256 | 10.79  19.86 256 | 8.81  10.05 k= E}EL_IL'J'J |
512 [ 618 14.29 512 | 462  17.73 while (k£ # 0) do
1024] 329 820 1024 235  11.49 = j+k
— %
Experimental results with o = 32 Experimental results with o = 64 k = hrLf jj
m BOM (A) m BOM (A)
4 T8.T6  h5H.23 4 64.84  50.93
fa 51.68  30.37 5 3035  27.44
16 35.40 10,92 16 26.09  17.12
32 20,62  16.12 32 19.45 14.049
G4 12,11 14.84 G4 13.15  13.58
128 12.60 15.63 128 13.11 17.67
256 7.58 16.73 256 G.25 18.04
512 4.29 17.90 512 2.91 18.00
1024 287 14.19 1024 2.71 16.59

[4] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221-1248, 1991.
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A fast-loop over transitions

We can translate the idea of the fast-loop over automaton transitions. This
consists in shifting the pattern along the text with no more check until a non-
undefined transition is found with the rightmost character of the current
window of the text.

(B)

q=o(m,t;)

while (¢ ==1) do
J=J+m
q =0o(m,t;)
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A fast-loop over transitions

We can translate the idea of the fast-loop over automaton transitions. This
consists in shifting the pattern along the text with no more check until a non-
undefined transition is found with the rightmost character of the current
window of the text.

B
taccaaa.baabcbaac (B)
q=o(m,t;)
p b a a b b b a while (¢ ==1) do

jg=7J+m
q =0o(m,t;)
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A fast-loop over transitions

We can translate the idea of the fast-loop over automaton transitions. This
consists in shifting the pattern along the text with no more check until a non-
undefined transition is found with the rightmost character of the current
window of the text.

Experimental results with o = 8 Experimental results with « = 16

m BOM (A) (B) m BOM (A) (B) (B)

4 157.62 95495 135.95 4 103.28  66.81 56.28

8 25,48 BRE.66 0 TH.TO 8 71.59 3872 6027

16 43.04 4336 43.00 16 30.61 26.57  35.70 = )

32 | 26.63 3500 28.20 32 18.68 21.80 18.82 q=o(m.t;)

64 17.30  28.05 17.13 64 12,67  20.09 12.55 while (q ==1) do

128 15.28  23.68 15.75 128 14.22 19,35 14.14 . .

256 | 10.79 10.86  9.60 256 | 881  10.05 8.12 J=J3+tm

512 G6.15 14.29  6.11 512 4.62 17.73  4.62 q = 5('??? 1 )

1024 329 820 3.45 1024 235 1149 2.66 J
Experimental results with o = 32 Experimental results with « = 64

m BOM  (A) (B) m BOM (A) (B)

4 T8.T6 55,23 5HT.T5 4 64.84 50,93 42,34

! 51.68 3037 4203 = 3035  27.44 2029

16 3540 1992  30.18 16 26.00 17.12 22,03

32 20062 16.12  19.34 a2 19.45 14.09 17.11

G 12,11 14.84 11.55 64 13.15 13,58 12.28

128 12.60 1563 11.26 128 13.11 17.67  10.86

256 7.58 16.73 6.32 256 6.25 18.04 5.79

512 4.29 17.90 3.73 512 2.91 18.00  3.12

1024 287 14.19  2.67 1024 2.T1 16.80 253
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

(C)

q=0o(m,t;)

if ¢ #* 1 then
p=o(q.tj-1)

while (p ==_1) do
j=j+m—1
q=0d(m,t;)
if ¢ # 1 then

p=0(q.tj-1)
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

(C)

t accaa.abaababaac q=0(m,t;)

if ¢ #* 1 then
p=o(q.tj-1)

while (p ==1) do
j=j+m—1
q=0d(m,t;)
if ¢ # 1 then

p=0(q.t;—1)
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

(C)

t 'ajlc cla a c a bjaj/a b a b a ac q=0(m,t;)
if ¢ #* 1 then
D b alab b bla P =0lg.t5-1)
while (p ==1) do
j=j+m—1
q=0d(m,t;)
if ¢ # 1 then
p=0(q.t;—1)
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

(C)

t 'ajlc cla a c a bjaj/a b ab a ac q=0(m,t;)
if ¢ #* 1 then
D b alab b bla P =0lg.t5-1)
while (p ==1) do
j=j+m—1
q=0d(m,t;)
if ¢ # 1 then
p=0(q.t;—1)
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

(C)

t 'ajlc cla a c a bjajabla b a ac q=0(m,t;)
if ¢ #* 1 then
D b alab b bla P =0lg.t5-1)
while (p ==1) do
j=j+m—1
q=0d(m,t;)
if ¢ # 1 then
p=0(q.t;—1)
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A fast-loop over two transitions

The variation of the algorithm we propose tries two subsequent transitions for
each iteration of the fast-loop with the aim to find with higher probability an
undefined transition.

Experimental results with & = 8 Experimental results with & = 16 (C)

w1 BOM (A (B () m | BOM (A (B ()
4 157.62 05.95 135.95 109.03 4 103.28  66.81 86.28 03.53 . :
8 85.48 58.66 T78.70  58.63 8 71.50  38.72 60.27 44.02 q = dL-m t;)
16 43.04 4336 43.00 37.15 16 39.61 26.57 3570 23.65 lf q J_ t]:l‘EIl
32 26.63 35,00 25.29 25.93 32 1868  21.80 1882 15.7: .
64 | 17.30 2805 1713  17.00 64 | 1267 20.00 1255 12.73 p=0(q,t;—1)
lzh 15.%-2:4 2:_“:--2:* lE.TE l'“‘r:\'.r_ 12-2? 1'-1-.'.2.2 :l!.l.l_iti 1'-1-..1'-1- 1'_2.:_?5 “’lllle L N —— ) (10
256 10,79  19.86  9.60 9.76 256 =.581 19.05  8.12 7.83
512 | 618 1420 611 576 s12 | 462 1773 462 453 j=j+m-—1

il = S - — o ar 1140 osen o
1024 320 820 345 335 124 235 1140 266  2.80 g = o(m.t;)

Experimental results with & = 32 Experimental results with & = 64 if q # | then

w1 BOM (A B (O | BOM (A (B (O - ~
1 78.76  5b.23  b1.7b  88.57 1 61.81 50.03 42.31 88.02 P = M‘?*f‘j—lj
o) 51.68 3037 42.03 39,84 ba) 39.35 2744 2020 3884
16 3540 1992  30.18 20.34 16 26.009 17.12 22,03 20.07
32 2062 16.12 1934 12.20 32 19.45 14.09  17.11 11.81
64 12,11  14.84 11.55 10.63 G4 13.15 13.58 12.28 10.37
128 12.60 1563 11.26 10.01 128 13.11 17.67 1086  9.76
256 T.58 16.73 G.32 5.90 256 G6.25 18.04 5.79 5.55
512 4.29 17.90 3.73 3.83 512 2.91 18.00 3.12 5.32

1024 2,87 14.19 2,67 2.79 1024 2.71 16.89 258 2.42
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

{J_ if 0(m,a) = 1 (D)

0(d(m,a),b)  otherwise.

Aa,b) =

q = /\(fjjj—lj

while (¢ ==1) do
j=73+m-—1
q = Altj,tj-1)
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

Aa,b) =

0(d(m,a),b)  otherwise.

{J_ if 0(m,a)= 1L

a
1
2

1

(D)

q = /\(fjjj—lj

while (¢ ==1) do
j=73+m-—1
q = Altj,tj-1)
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

Na.b) — {J_ if 6(m,a) = L D)

0(d(m,a),b)  otherwise.

q = /\(f‘j*f‘j—lj

while (¢ ==1) do
t 'la c/ c aj/a/ c a b a a b a b aja c j=j4+m—-1
q= Alts,tj-1)

)\ a b c
a 1 5 1
b 2 4 1
c 1L L L
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

Na.b) — {J_ if 6(m,a) = L D)

0(d(m,a),b)  otherwise.

q = /\(f‘j*f‘j—lj

while (¢ ==1) do
t 'la c/ c aj/alc a/b a a b a b a a c j=j4+m—-1
q= Alts,tj-1)

)\ a b c
a 1 5|4
b 2 4 1
c 1L L L
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

Na.b) — {J_ if 6(m,a) = L D)

0(d(m,a),b)  otherwise.

q = /\(f‘j*f‘j—lj

while (¢ ==1) do
t 'la c/ c aj/a/ c a b a a b a b aja c j=j4+m—-1
q= Alts,tj-1)

)\ a b c
a 1 5 1
b 2 4 1
c 1L L L
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

Na.b) — {J_ if 6(m,a) = L D)

0(d(m,a),b)  otherwise.

q = /\(f‘j*f‘j—lj

while (¢ ==1) do
t 'la c c aj/a/ c a b a a b a b a a c j=j4+m—-1
q= Alts,tj-1)

)\ a b c
a 1 5 1
bl2]4 L
c 1L L L
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A fast-loop over two transitions

We could encapsulate the two first transitions of the oracle in the function

1 if 0(m,a) = 1 D
1 f p— . ' L ( )
Aa, b) do(m,a),b) otherwise.

q = /\(Tj. f-j—lj

Experimental results with & = 8 Experimental results with & = 16 . _ _
- BOM __ (A) (B ™ = BOM (&) (B) (O (D) while (¢ ==1) do
4 157.62 95495 13595 109.03 55.35 4 103.28 66.81 86.28 0353 40.63 j — j + m — J_
8 85.48 5H8.66 TR.T0 5863 34.16] |8 T1.50 3872  60.27 44.02 21.73 _
16 43.04  43.36  43.00 37.15 26.82 16 29.61 26.57 3570 2368  14.91 q — /\(fff . fj—l J
32 26.63  35.00 28,29 2593 21.25] |32 18.68  21.80 1882 1571 12.73
64 17.30  28.06 17.13 17.00 14.42| |64 12.67 20,09 1255 1273 12.49
128 15.28 23.68 15.75 15.87 12.87 128 14.22  19.38  14.14 12,35 10.38
256 10,79  19.86 9.60 0.76 =.53 256 =51 19.05 =12 7.83 6.5

512 6.18 14.29  6.11 5.76 4.76 512 4.62 17.73  4.62 4.53 3.60
1024  3.29 5.20 3.45 3.35 2.64 1024 2.35 11.49  2.66 2.89 2.67

Experimental results with o = 32 Experimental results with & = 64
m BOM (A} (B) (C) (D) m BOM (A) (B) (C) (D)
4 T8.76 55,23  LHT.TH  BEBAT  3T.44 4 64.84 50,93 42,34 85,52 37.04
! h1.68 30.37 4203 39.84 18.59 bt 3935 27.44 2920 3584  17.99
16 35.40 1992  30.18 2034 12.29 16 26.00 17.12 22,03 20,07 11.57
32 20062 16.12 1934 12,20 11.58 32 19.45 14.09  17.11 11.81 10.76
64 12,11 14.84 11.55 1063  11.10 G4 13.15 13,58 12,28 10.37 10.70

128 12.60 1563 11.26 10.01 T.46 128 13.11 17.67  10.86  9.76 G.35
256 T.58 16.73  6.32 5.90 3.79 256 6.25 18.04 5.79 5.55 3.60
512 4.29 17.90  3.73 3.83 3.20 512 2.91 1500 3,12 5.32 1.98
10241 2.87 14.19  2.67 2.79 2.01 1024 2.71 16,89  2.58 2.42 1.57
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EXTENDED-BOM (p, m, t, n)

1. 0 «+— precompute-factor-oracle(p)
2. for a € 2 do
3. q — o(m,a)
4. for b € X do
5. if ¢g= 1 then A(a,b) — L
6. else \(a, b) — (g, b)
7. tln.n+m—1] «—p
. 7 +—m—1
9. while 7 < n do
10, g — A(t[j], t[j — 1)
11. while ¢ = 1 do
12. J—J3+m—1
13, a — At 1l — 1))
14. 14— 33— 2
15. while g # | do
16. q — 0(q,t[i])
17. 1+—1—1
18. if e <j3—m+1 then
19. output(y)
20. 1—1+4+1

21. j—7+1+m
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EXTENDED-BOM (p, m, t, n)

1. 0 «— precompute-factor-oracle(p)
2. for a € X' do
3. q «— o(m,a) Preprocessing of lambda
4. for b € X do
5. if ¢g= 1 then A(a,b) — L
6. else \(a, b) — (g, b)
7. th.n+m—1] —p
. 7 «—m — 1
9. while 7 < n do
10, g — A(t[j], tlj — 1))
11. while ¢ = 1 do
12. J—J3+m—1
13, 7 — At — 1))
14. 14— 33— 2
15. while ¢ # L do Searching phase
16. q — 0(q,t[i])
17. 1+—1—1
18. if e <j3—m+1 then
19. output(y)
20. 1—1+4+1
21. j—7+1+m
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EXTENDED-BOM (p, m, t, n)

1. 0 «— precompute-factor-oracle(p)
2. for a € X' do
3. q «— o(m,a) Preprocessing of lambda
4. for b € 3 do
5. if ¢g= 1 then A(a,b) — L
6. else \(a, b) — (g, b)
7. th.n+m—1] —p
. 7 «—m — 1
9. while 7 <n do
10, q — (), — 1)
11, while ¢ = | do fast-loop
12. J—J3+m—1
13, 7 — At — 1))
14. =2
15. while ¢ # L do Searching phase
16. q — 0(q,t[i])
17. 1+—1—1
18. if e <j3—m+1 then
19. output(y)
20. 1 —1+1
21. j—7+1+m
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Looking for the forward character

The idea of looking for the forward character for shifting has been originally
introduced by Sunday in the Quick-Search algorithm [5] and then efficiently
implemented in the Forward-Fast-Search algorithm [6] and in the Shift-And-
Sunday algorithm [7].

[5] D. M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132-142, 1990.
[6] D. Cantone and S. Faro. Fast-Search Algorithms: New Efficient Variants of the Boyer-Moore Pattern-Matching

Algorithm. J. Autom. Lang. Comb., 10(5/6):589-608, 2005.
[7] W. F. Smith, S. Wang and M. Yu. An Adaptative Hybrid Pattern-Matching Algorithm on Indeterminate Strings.

Prague Stringology Conference 2008
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Looking for the forward character

The idea of looking for the forward character for shifting has been originally
introduced by Sunday in the Quick-Search algorithm [5] and then efficiently
implemented in the Forward-Fast-Search algorithm [6] and in the Shift-And-

Sunday algorithm [7]. *

[5] D. M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132-142, 1990.
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The Forward-Factor-Oracle

The forward factor oracle of a word p, FOracle(p), is an automaton which
recognizes at least all the factors of p, eventually preceded by a word x € 2 U {e}.
More formally the language recognized by FOracle(p) is defined by

L(FOracle(p)) ={azw | x € Y U{e} and w € L(Oracle(p))}
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The Forward-Factor-Oracle

Suppose Oracle(p) = {Q,m,Q,d,%}, for a pattern p of length m.
FOracle(p) is an automaton {Q/, (m + 1),Q,X,8'}, where
1.Q=QU {(m+ 1)}
2. (m + 1) is the initial state
3. all states are final
4.8'(q,c)=06(q,c) forallce X, ifq#(m + 1)
5.8(m+1, ¢)={m, 6(m, ¢)} forall c €X
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The Forward-Factor-Oracle

Suppose Oracle(p) = {Q,m,Q,d,%}, for a pattern p of length m.
FOracle(p) is an automaton {Q/, (m + 1),Q,X,8'}, where
1.Q=QU {(m+ 1)}
2. (m + 1) is the initial state
3. all states are final
4.8'(q,c)=06(q,c) forallce X, ifq#(m + 1)
5.8(m+1, ¢)={m, 6(m, ¢)} forall c €X
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The Forward-BOM algorithm

The simulation of the forward factor oracle can be done by simply changing the
computation of the table in the following way

0(6(m,a),b) otherwise

AMa,b) =

{5(7?1, b) if 6(m,a)=1 VvV b=pm—1]



Efficient Variants of the BOM Algorithm — Simone Faro and Thierry Lecroq — PSC 2008

The Forward-BOM algorithm

The simulation of the forward factor oracle can be done by simply changing the
computation of the table in the following way

)\(a h) _ 5(_'”?4 b) 1f (5(_'???-, ri;!-_) =1 V b= p[-}rn. — 1]
77 1 6(0(m, a), b) otherwise

NN N P
|_|-l>U10"
HFiElE oo
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FORWARD-BOM (p, m, t, n)

1. 0 «— precompute-factor-oracle(p)
2. for a € X' do
3. g — 0(m, a)
4. for b € X do
5. if ¢g= 1 then \(a,b) — L
6. else A(a,b) — d(q, b)
7. q— o(m, plm —1])
8. for a € X do A(a,p/m — 1]) «— ¢
9. tln.n+m—1] —p

10. j—m-—1

11. while j < n do

12 g — A(t[j + 1], 4[]

13. while ¢ = | do

14. j—7+m

15 g — A + 1], 4[]

16. 1 — 73 —1

17. while ¢ # | do

18. q — d(q, t[i])

19. 1 +—1—1

20. if 1 <j—m+1 then

21. output(j)

22. i —1+41

23. j—J+1+m
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FORWARD-BOM (p, m, t, n)

1. 0 « precompute-factor-oracle(p)
2. for a € X do
3. g — d(m, a) Preprocessing of lambda
4. for b € X do
5. if ¢g= 1 then \(a,b) — L
6. else A(a,b) — d(q, b)
7. q— oun, pe — 1)
8. for a € X do A(a,p/m — 1]) «— ¢
9. tln.n+m—1] —p
10. 7 —m—1
11. while j < n do
12, ¢ = A1l + 1],1[5))
13. while ¢ = | do
14. j—7+m
15 2 < Al + 10, 103])
16. ie—7j—1
17. while ¢ # | do Searching phase
18. q — d(q, t[i])
19. 1 —1—1
20. if 1 <j—m+1 then
21. output(j)
22. i —1+1
23. j—j+i+m
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FORWARD-BOM (p, m, t, n)

1. 0 « precompute-factor-oracle(p)
2. for a € X do
3. g — d(m, a) Preprocessing of lambda
4. for b € X do
5. if ¢g= 1 then \(a,b) — L
6. else A(a,b) — d(q, b)
7. q— oun, pe — 1)
8. for a € X do A(a,p/m — 1]) «— ¢
9. tln.n+m—1] —p
10. 7 —m—1
11. while 7 <n do
12. g — Mt[7 + 1], t[5]) fast-loop
13. while ¢ = | do
14. j—7+m
15. g = A(t[7 + 1] t[5])
16. ie—7j—1
17. while ¢ # | do Searching phase
18. q — d(q, t[i])
19. 1 —1—1
20. if 1 <j—m+1 then
21. output(j)
22. i —1+1
23. j—j+i+m
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Experimental Results

* Extended-BOM algorithm (EBOM)

* Forward-BOM algorihtm (FBOM)

* Forward-SBNDM algorithm (FSBNDM)

* Fast-Search algorithm (FS)

* Forward-Fast-Search algorithm (FFS)

* BOM algorithm (BOM)

* g-Hash algorithms with q=3,5,8 (3-HASH, 5-HASH, 8-HASH)

* SBNDM algorihtm (SBNDM)
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Experimental Results

e All algorithms have been implemented in the C programming language and
were used to search for the same strings in large fixed text buffers

* The algorithms have been tested
* on seven Rando problems, for o = 2, 4, 8, 16, 32, 64;
* on a genome sequence (Escherichia Coli);
* on a protein sequence (from human genome);

* Searching have been performed for patterns of length m = 2, 4, 8, 16, 32, 64,
128, 256, 512, and 1024.

* In the following tables, running times are expressed in hundredths of seconds.
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Experimental Results

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 153.52 129.07) 209.07 169.22 177.31 162.98 - - 155.38 145.47
8 115.44 04.42 133.73  105.08  114.17 77.03 67.91 - 87.42 80,72
16 83.60 63.05 71.75 58.91 63.23 51.65 25.27 34.33 44,87 41.31
32 61.96 43.40 38.55 30.58 33.24 45.38 14.85 13.50 23.88 20,77
64 48.16 32.69 21.24 17.43 17.91 44.65 11.53 7.42 - -
128 39.55 24.90 11.91 11.73 15.63 44.02 10.09 8.34 - -
256 32.80 21.14 8.45 8.43 10.00 44.92 11.02 6.86 - -
512 28.07 17.27 6.36 4.87 5.87 45.65 10.04 6.21 - -
1024 23.39 15.47 4.00 2.79 3.95 44.72 10.59 Hh.14 - -
Running times for a Rand2 problem

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 82.12 78.03| 111.55  58.93 84.93 117.82 - - 60.57 T4.73
8 60.00  54.02 61.31 43.57 51.38 43.77 56.23 - 40.46 40.79
16 49.05  39.49 35.58 20.11 31.66 22.40 20.54 33.98 23.49 23.15
32 41.72  30.56 19.98 16.88 18.13 16.27 10.60 12.70 12.97 12.48
64 37.11 23.71 11.63 9.79 11.11 13.53 7.05 7.11 - -
128 32.02 18.43 8.30 7.56 10.20 12.17 7.05 8.12 - -
256 28.54  15.T: 6.27 5.72 6.16 12.25 6.97 6.99 - -
512 26.07 14.13 3.52 3.31 3.67 12.10 7.46 h.7T1 - -
1024 2214 12.97 1.83 2.25 2.78 11.46 8.02 4.76 - -

Running times for a Rand4 problem
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Experimental Results

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 46.34 44.32] 78,94  26.81 49.87 105.12 - - 33.82 40.05
8 20.61  27.46] 43.23 16.85 30.11 37.30 54.47 - 18.70 23.09
16 22.46  20.67| 21.72 13.34 19.01 18.07 18.90 33.90 12.81 14.71
32 19.97 16.91] 13.70 10.15 12.29 10.89 9.92 13.14 0.92 9.73
64 1893 14.14 8.70 7.07 7.95 8.71 7.87 7.09 - -
128 17.85  12.10 6.99 6.66 7.85 7.11 7.81 7.98 - -
256 17.15 11.13 5.26 3.56 4.70 7.68 6.48 7.43 - -
512 16.02  11.29 3.25 2.61 2.38 7.75 6.53 6.03 - -
1024| 15.35 0.63 1.88 1.55 1.61 6.91 6.56 5.57 - -
Running times for a Rand8 problem

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 33.17 32.13| 52.02 20.09 39.26 102.31 - - 28.16 27.98
8 18.52 18.91] 35.48 10.73 21.87 34.74 54.09 - 14.04 15.22
16 13.48 13.01] 19.61 6.98 13.76 16.33 18.71 33.78 7.66 9.18
32 11.41 10.83 9.33 6.36 8.29 0.46 8.64 13.35 6.80 6.43
64 10.54 0.57 6.74 5.58 7.12 6.79 6.21 7.29 - -
128 10.39 0.14 7.58 5.05 9.99 6.25 8.52 7.93 - -
256 9.88 9.08 5.00 3.16 4.45 6.84 6.98 7.07 - -
512 10.23 0.10 2.55 2.18 2.61 6.22 5.90 6.44 - -
1024| 10.14 8.55 1.57 1.18 1.45 6.33 5.40 5.62 - -

Running times for a Rand16 problem
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Experimental Results

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 28.04 2691 35.98 19.03 35.98 100.51 - - 26.88 23.75
8 15.51  15.23] 24.54 8.98 20.74 34.34 53.71 - 12.28 12.54
16 0.78 9.44 17.46 6.18 11.56 15.44 18.36 34.14 6.95 7.46
32 8.29 7.98 10.26 5.46 7.11 8.36 0.02 13.16 5.59 5.75
64 7.50 7.35 5.78 5.58 6.37 6.37 6.22 7.07 - -
128 7.38 7.70 6.21 3.36 10.62 7.58 8.21 8.32 - -
256 7.59 8.33 3.62 2.38 5.94 6.73 6.95 6.75 - -
512 7.89 8.91 1.96 1.41 3.28 6.28 5.78 6.40 - -
1024 7.84 7.73 1.57 1.45 1.39 5.91 5.31 5.83 - -
Running times for a Rand32 problem

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM  FSBNDM
4 23.55  27.38| 29.10 18.79 35.38 07.23 - - 25.05 23.67
8 13.48  13.82| 18.51 8.76 19.41 33.79 53.80 - 12.15 11.37
16 8.06 8.44 12.64 5.69 11.35 15.07 18.56 33.32 6.72 6.72
32 7.04 6.47 9.33 5.14 7.20 8.09 9.00 13.15 5.55 5.25
64 6.44 6.68 6.34 5.16 6.52 6.13 6.09 7.23 - -
128 8.41 8.24 6.05 3.84 9.85 8.51 7.72 8.45 - -
256 B.82 8.49 3.19 1.96 5.59 7.08 6.52 7.21 - -
512 8.52 9.14 1.99 1.28 3.21 6.05 5.79 6.07 - -
1024 8.60 8.36 2.41 1.33 1.64 6.25 4.10 5.67 - -

Running times for a Rand64 problem
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Experimental Results

m FS FFS BOM EBOM FBOM| 3-HASH 5-HASH 8-HASH| SBNDM FSBNDM
4 18.64 16.91] 23.25 12.65 19.09 25.48 - - 12.96 17.30
8 13.85  11.63| 13.04 10.27 11.40 9.90 12.34 - 8.73 9.01
16 11.48 8.47 7.73 6.77 6.47 4.76 4.39 7.74 5.28 5.50
32 9.58 6.44 4.53 3.52 4.07 3.20 2.77 2.85 3.04 2.62
64 8.56 4.92 2.50 1.95 2.42 2.65 1.60 1.84 - -
128 7.05 4.01 1.74 1.73 1.91 2.42 1.84 2.08 - -
256 6.41 3.35 1.33 1.32 1.33 2.90 1.60 1.41 - -
512 5.66 3.20 0.94 0.82 0.78 2.39 1.60 1.61 - -
1024| 5.97 2.19 0.98 0.66 0.51 2.50 1.21 1.21 - -
Running times for a genome sequence (o0 = 4)

m FS FFS| BOM EBOM  FBOM| 3-HASH 5-HASH 8-HASH| SBNDM  FSBNDM
4 4.33 2.93 8.30 2.14 5.51 14.49 - - 5.19 3.59
8 1.68 2.64 4.21 2.27 3.58 4.38 8.09 - 2.31 1.85
16 1.71 1.57 2.66 1.05 1.92 2.50 2.58 4.54 1.25 1.05
32 1.41 1.47 1.62 0.87 1.27 1.30 1.37 1.64 0.89 0.89
64 1.21 1.02 1.10 0.63 1.18 0.85 0.82 1.25 - -
128 1.09  1.33 1.13 0.67 1.51 0.98 1.14 1.22 - -
256 1.37 1.44 0.59 0.51 0.47 0.90 0.90 0.82 - -
512 1.20 1.56 0.50 0.27 0.30 0.77 0.90 0.88 - -
1024 1.25 1.64 0.39 0.35 0.27 0.87 0.70 0.74 - -

Running times for a protein sequence (o = 22)
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Conclusions

We presented two efficient variants of the Backward Oracle Matching algorithm
which is considered one of the most effective algorithm for exact string
matching.

The first variation, called Extended-BOM, introduces an efficient fast-loop over
transitions of the oracle by reading two consecutive characters for each iteration.
The second variation, called Forward-BOM, extends the previous one by using a
look-ahead character at the beginning of transitions in order to obtain larger
shift advancements.

It turns out from experimental results that the new proposed variations are very
fast in practice and obtain the best results in most cases, especially for long
patterns and alphabets of medium dimension.



