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Introduction

Definition

For a strings x = uwv :

|x | is the length of x

ǫ is the empty string

x [i ] is the i-th symbol of x

w is a substring of x and x is a superstring of w

u(v) is a prefix (suffix) of x

x [i . . . j] denotes the substring of x starting at position i and
ending at j
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Definition

For strings x = x [1 . . . n] and y = y [1 . . . m]:

xy denotes the concatenation of strings x and y .

xk denotes the concatenation of k copies of x .

If x [n − i + 1 . . . n] = y [1 . . . i ] for some i ≥ 1, the string
x [1 . . . n]y [i + 1 . . . m] is a superposition of x and y . We also
say that x overlaps y .
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Definition

Indeterminate Strings and Conservative Indeterminate Strings

An indeterminate string is a sequence
T = T [1]T [2] . . . T [n], where T [i ] ⊆ Σ for each i and Σ is
the alphabet.

If at any position in an indeterminate string, |T [i ]| = 1, we
call this a solid symbol. However, when |T [i ]| > 1, we call
this a non-solid symbol.

A conservative indeterminate string is an indeterminate
string where its number of non-solid symbols if bounded by a
constant k.



Conservative String Covering of Indeterminate Strings

Introduction

Definition

Covers and Conservative Covers

A substring w of x is called a cover os x , if x can be
constructed by concatenating or overlapping copies of w . We
also say that w covers x .

For example, if x = ababaaba, then aba and x are covers of x .

A conservative cover is a cover with less indeterminate
symbols than a given constant c .

Conservative covers avoid results of covers of length one
(T [1] = Σ).
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Finding constrained pattern p in indeterminate string x

As a building step we explain the constrained pattern matching
problem in indeterminate strings, which can be defined as follows:

Definition

INPUT: A pattern, p, of length m, with at most κ non-solid
symbols, where κ is constant and a text, t, of length n.

QUERY: Find all occurrences of pattern, p, in text, t.
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Example

We consider a pattern, p = A[CG ]TA[AG ] and text,
t = GA[CG ][CT ]AG [AT ]A[AG ][CT ][AT ]AG . It can be seen from
the figure below that p occurs in t starting at positions 2, 5, 8 and
9.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
t G A [CG] [CT] A G [AT] A [AG] [CT] [AT] A G

A [CG] T A [AG]
A [CG] T A [AG]

A [CG] T A [AG]
A [CG] T A [AG]
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Finding constrained pattern p in indeterminate string x

The algorithm works in two steps:

STEP 1:

Let the pattern p be p = P1P2 . . . Pm. We build the
Aho-Corasick automaton for the dictionary of the prefixes of
the pattern

D = {π1π2 . . . πm,∀πi ∈ Pi , 1 ≤ i ≤ m}

Note that |D| =

m∏

i=1

|Pi | < 2κ as there are at most κ non-solid

symbols.
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Aho-Corasick automaton for p = A[CG ]TA[AG ]:

11

10

7

6

983

2 4 510
A C T A G

A

G

A

ATG

i 0 1 2 3 4 5 6 7 8 9 10 11

f(i) 0 0 0 0 0 1 3 1 0 1 3 1
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Finding constrained pattern p in indeterminate string x

STEP 2:

Assume that we have processed T [1 . . . i ].

We will now perform iteration i + 1.

For each symbol τ occurring at T [i + 1], we try to extend
each prefix in P by that symbol τ , or we follow its failure link
provided by the Aho-Corasick automaton.

i 0 1 2 3 4 5 6

t G A [CG] [CT] A G [AT] . . .

P 0 {1} {2,3} {4,8} {5,9} {6, 10} {8} . . .

Note that |P| is bounded by the maximum number of possible prefixes,

which in turn is bounded by the size of the automaton, therefore this is

constant. Thus, this method is linear.
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Computing λ-conservative covers of indeterminate strings

The λ-conservative cover problem is defined as follows:

Definition

INPUT: A conservative indeterminate text, t, of length n, a
constant κ (which is the maximum number of non-solid symbols
allowed in a cover) and an integer λ (which is the length of the
cover).

QUERY: Is there a conservative cover of, c , of t, of length λ?

We now present a two step algorithm to this problem.
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Computing λ-conservative covers of indeterminate strings

STEP 1:

We consider the prefix, T̂ , of t of length λ,

T̂ = T1 . . . Tλ

and the suffix, T̃ of t of length λ,

T̃ = Tn−λ+1, . . . Tn

t

T̂ T̃
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Computing λ-conservative covers of indeterminate strings

The cover, c , covers the beginning and the end of T . Thus T̂

and T̃ provide the set of potential candidates.

We build the Aho-Corasick automaton for the dictionary

D = {t1 . . . tλ | ∀ ti ∈ Ti ∩ Ti+n−λ, 1 ≤ i ≤ λ}
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Computing λ-conservative covers of indeterminate strings

STEP 2:

For each d ∈ D we find all of its occurrences in T , parsing the
text T through the Aho-Corasick Automaton built in Step 1.

If a word d occurs at position i then we set a flag L(i) = true.

If the distance |i − j | of any two consecutive flags is less than
λ, then we have a cover

C1C2 . . . Cλ,where

Ci = {di , is the i − th letter of every word in D, 1 ≤ i ≤ λ}

The overall complexity of the above two steps is linear.
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Computing λ-conservative seeds of indeterminate strings

The λ-conservative seed problem is defined as follows:

Definition

INPUT: An indeterminate text t, of length n, a constant κ (which
is the maximum number of non-solid symbols allowed in a seed)
and an integer λ (which is the length of the seed).

QUERY: Is there a conservative seed, s, of t, of length λ?

Again, we present a two step algorithm to solve this problem.
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Computing λ-conservative seeds of indeterminate strings

STEP 1:

The first occurrence of the seed can be in any of the positions
{1 . . . λ}. Thus we consider the following strings of length λ :

L1 = {T [1..λ],T [2..λ + 1], . . . T [λ..2λ]}

and all the suffixes of string t of length λ :

L2 = {T [n − λ..n],T [n − λ − 1..n − 1] . . . T [n − 2λ]}

t

L1 L2
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We build the Aho-Corasick automaton for the dictionary

D = {ti1 . . . tiλ | ∀tij , where tij is the j − th symbol of T ∈ L1 ∪ L2}.
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Computing λ-conservative seeds of indeterminate strings

STEP 2:

For each d ∈ D we find all of its occurrences in T , parsing the
text T through the Aho-Corasick Automaton built in Step 1.

If a word d occurs at position i then we set a flag
Ld(i) = true.

If the distance |i − j | of any two consecutive flags in Ld is less
than λ, then d is a candidate for a seed.

Let i1 and i2 be the first and last occurrences of d in T . We
check if T [1, i1] is a suffix of d and if T [i2, n] is a prefix of d ,
if that is the case then d is a suffix.

The overall complexity is O(λn).
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