
Conversion of Finite Tree Automata to Regular

Tree Expressions By State Elimination

Tomáš Pecka⋆, Jan Trávńıček, and Jan Janoušek⋆⋆

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University in Prague
{tomas.pecka,jan.travnicek,jan.janousek}@fit.cvut.cz

Abstract. Regular tree languages can be accepted and described by finite tree au-
tomata and regular tree expressions, respectively. We describe a new algorithm that
converts a finite tree automaton to an equivalent regular tree expression. Our algo-
rithm is analogous to the well-known state elimination method of the conversion of a
string finite automaton to an equivalent string regular expression. We define a gener-
alised finite tree automaton, the transitions of which read the sets of trees described
by regular tree expressions. Our algorithm eliminates states of the generalised finite
tree automaton, which is analogous to the elimination of states in converting the string
finite automaton.

Keywords: regular tree languages, finite tree automata, regular tree expressions, state
elimination method

1 Introduction

The theory of formal tree languages is an important part of computer science and
has been extensively studied and developed since 1960s [5,6]. Trees are natural data
structures for storing hierarchical data. Their applications range from areas such
as natural language processing, interpretation of nonprocedural languages and code
generation to processing markup languages such as XML.

Regular expressions are well-studied structures representing regular (string) lan-
guages in finite space [8,2]. The concept of expressions can be extended to regular tree
languages as well. Regular tree expressions (RTEs) denote regular tree languages [5].

Standard computation models for problems on trees are various kinds of tree
automata. An finite tree automaton (FTA) is an acceptor for the class of regular tree
languages. The Kleene’s theorem for tree languages states that the class of regular
tree languages is equal to the class of languages that can be described by the RTEs [5].
Both formalisms are therefore equally powerful, but sometimes one of them is more
convenient than the other one. For instance, language membership problem is easily
solvable using the automaton. The expressions might be better in describing the
language. Therefore it is suitable to find a way of converting one to another as we do
in the area of strings.

The conversion of an RTE into an FTA was studied by several works. Algorithms
presented in these papers are adaptations of well-known algorithms for the conversion
of regular (string) expressions into finite (string) automata [9,10,3]. Note that there

⋆ This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/208/OHK3/3T/18.

⋆⋆ The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research Center for Informatics”.

Tomáš Pecka, Jan Trávnı́ček, Jan Janoušek: Conversion of Finite Tree Automata to Regular Tree Expressions By State Elimination, pp. 11–22.

Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

12 Proceedings of the Prague Stringology Conference 2020

also exist conversion algorithms for the problem of converting RTEs into pushdown
(string) automata that accept trees in their linearised form [13,12].

The possibility of conversion in the other way, i.e. the conversion of an FTA
to an RTE was introduced in the proof of the Kleene’s theorem in [5]. The proof
proposes a State elimination-like of conversion but it was not put into the algorithm
and it was not discussed much. Recently, Guellouma and Cherroun studied regular
tree equations [7] which they used to construct a regular tree equation system from
an FTA. Solving this equation system yields an RTE describing the same language
that was accepted by the original FTA. Unfortunately, the time complexity of the
algorithm is not stated in the article.

In this paper, we build upon the idea of eliminating states from an FTA presented
in the proof of Kleene’s Theorem [5]. We present a practical algorithm for the prob-
lem of converting FTAs to RTEs that is inspired by the classical State elimination
algorithm for finite (string) automata [8]. We define the notion of generalized finite
tree automaton (GFTA) which differs from the FTA mainly in the transition func-
tion. Instead of the input alphabet symbols, the transitions now involve sets of trees
described by the RTE. We use this model for the process of eliminating states. States
of the GFTA are then eliminated one-by-one and the transitions of the automaton
are modified in such way that the language the automaton accepts does not change.
The transitions to the last remaining final state then define the equivalent RTE to
the original automaton. Such approach can convert an FTA to an equivalent RTE in
O(|Q|2 · (|∆|+ |QF |) time where Q and QF are the sets of all states and final states of
the FTA, respectively, and ∆ is the set of transitions of the FTA. Furthermore, the
implementation of the algorithm is really simple and straightforward.

The following parts of this paper are organised as follows: Section 2 recalls basic
definitions and notations. The new conversion algorithm yielding the RTE is presented
in Section 3. Finally, the achieved results and ideas for future work are presented in
the concluding section.

2 Background

A ranked alphabet Σ is a finite nonempty set of symbols, each of which is assigned
with non-negative integer arity denoted by arity(a). The set Σn denotes the set of
symbols from Σ with arity n. Elements of arity 0, 1, 2, . . . , n are called nullary (also
constants), unary, binary, . . ., n-ary symbols, respectively. We assume that Σ contains
at least one constant. We use numbers at the end of symbols for a short declaration
of arity. For instance, a2 is a short declaration of a binary symbol a.

A labelled, ordered and ranked tree over a ranked alphabet Σ is defined on the
concepts from graph theory [2]. A directed ordered graph G is a pair (N,R) where
N is a set of nodes and R is a list of ordered pairs of edges. Elements of R are in
the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N, n ≥ 0. Such element
denotes n edges leaving f with the first edge entering node g1, the second entering
g2, and so forth. A sequence of nodes (f0, f1, . . . , fn), n ≥ 1 is a path of length n from
node f0 to fn if there is an edge from fi to fi+1 for each 0 ≤ i < n. A cycle is a path
where f0 = fn. An in-degree of a node is a number of incoming edges. An out-degree
is a number of outgoing edges. A node with out-degree 0 is called a leaf.

An ordered directed acyclic graph (DAG) is an ordered directed graph with no
cycle. A rooted DAG is a DAG with a special node r ∈ N called the root. The in-
degree of r is 0, in-degree of every other node is 1 and there is just one path from the

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 13

cons21

int02 cons23

int04 nil05

Figure 1. A directed, rooted, labelled, ranked, and ordered tree over Σ = {nil0, int0, cons2}.

root r to every f ∈ N, f 6= r. A labelled ranked DAG is a DAG where every node is
labelled by a symbol a ∈ Σ and the out-degree of a node a ∈ Σ equals to arity(a).
A directed, ordered, rooted, labelled, and ranked tree is rooted, labelled, and ranked
DAG. All trees in this paper are considered to be directed, ordered, rooted, labelled,
and ranked.

Due to simplicity we often represent trees in the well-known prefix notation (see
Example 1).

Example 1. Let t from Figure 1 be a directed, rooted, labelled, ranked, and ordered
tree with labels from ranked alphabet Σ = {nil0, int0, cons2}. Formally the tree
is a graph t = ({cons21, int02, cons23, int04, nil05}, {(cons21, int02), (cons21, cons23),
(cons23, int04), (cons23, nil05)}). The root of t is a cons21 node with an ordered pair
of children (int02, cons23). The prefix notation of t is cons2(int0, cons2(int0, nil0)).
We omit the subscripted indexes and show the labels from Σ only.

A nondeterministic bottom-up finite tree automaton (FTA) over a ranked alphabet
Σ is a 4−tuple A = (Q,Σ,QF , ∆), where Q is a finite set of states, QF ⊆ Q is a set
of final states, and ∆ is a mapping Σn×Qn 7→ P(Q) (where P denotes the powerset
function), i.e., the transitions are in the form f(q1, q2, . . . , qn) → q where f ∈ Σn,
n ≥ 0, and q, q1, q2, . . . , qn ∈ Q. An FTA is a deterministic FTA if for every left hand
side of the transition there is at most one target state.

The computation of the FTA starts at leaves and moves towards the root. Each
subtree is mapped to a state. A run of an automaton is defined inductively: The
leaves are mapped to states q by the transitions of the form a→ q ∈ ∆, a ∈ Σ0. If a
root of a subtree is labelled with f ∈ Σn, n ≥ 1, and its children are mapped to states
q1, . . . , qn, this subtree is mapped to q, where f(q1, q2, . . . , qn) → q ∈ ∆. Language
of a state q (denoted by L(q)) is a set of subtrees mapped to state q. Obviously,
an FTA accepts such trees that have their roots mapped to any final state, i.e.,
L(A) =

⋃

q∈QF
L(q).

The tree language L(A) recognised by an FTA A is the set of trees accepted by the
FTA A. A tree language is recognisable if it is recognised by some FTA. It is recog-
nisable if and only if it is a regular tree language (see [4,5] for the definition). Every
nondeterministic FTA can be transformed to an equivalent deterministic FTA [5].

The transition function of FTA can be depicted using a diagram in a similar way
as the diagram of a finite automaton. However, transitions of an FTA can have an
arbitrary amount of source states. Therefore a join node of source states is added
into the diagram. The order of source states is specified by a number on edges from
states to join nodes.

Example 2. An example of an FTA is A = ({I, L}, {int0, nil0, cons2}, {L}, ∆), where
∆ consists of the following transitions: int0→ I, nil0→ L, and cons2(I, L)→ L. A

14 Proceedings of the Prague Stringology Conference 2020

accepts the language L(A) = {nil, cons(int, nil), cons(int, cons(int, nil)), . . .}. The
automaton is depicted in Figure 2.

I L
int0 nil01

2

cons2

Figure 2. Visualisation of the FTA A from Example 2.

Regular tree expressions (RTEs) are defined (as in [5]) over two alphabets, F and
K. F is a ranked alphabet of symbols. K is a set of constants (special symbols with
arity 0), K = {�1,�2, . . . ,�n}, n ≥ 0, F ∩ K = ∅. This alphabet is used to indicate
the position where substitution operations take place.

Firstly, the substitution, i.e. replacing occurrences of �i by trees from a tree lan-
guage Lj, is defined. Let K = {�1, . . . ,�n} and t be a tree over F ∪K, and L1, . . . , Ln

be tree languages. Then the tree substitution of �1, . . . ,�n by L1, . . . , Ln in t denoted
by t{�1 ← L1, . . . ,�n ← Ln} is the tree language defined by the following identities:

– �i{�1 ← L1, . . . ,�n ← Ln} = Li, for i = 1, . . . , n,
– a{�1 ← L1, . . . ,�n ← Ln} = {a}, ∀a ∈ F0 ∪ K and a 6= �1, . . . , a 6= �n,
– f(s1, . . . , sn){�1 ← L1, . . . ,�n ← Ln} = {f(t1, . . . , tn) | ti ∈ si{�1 ← L1, . . . ,

�n ← Ln}}.

The tree substitution can be generalized to languages: L{�1 ← L1, . . . ,�n ←
Ln} =

⋃

t∈L t{�1 ← L1, . . . ,�n ← Ln}. The operation alternation of L1 and L2 is
denoted by L1+L2. It results in a set of trees obtained from the union of regular tree
languages L1 and L2, i.e. L1 ∪ L2. The operation concatenation of L2 to L1 through
�, denoted by ·� (L1, L2), is the set of trees obtained by substituting the occurrence
of � in trees of L1 by trees of L2, i.e.

⋃

t∈L1
t{�← L2}. Given a tree language L over

F ∪ K and � ∈ K, the sequence Ln,� is defined by the equalities L0,� = {�} and

Ln+1,� = ·� (L,Ln,�). The operation closure is defined as L∗,� =
⋃

n≥0
Ln,�.

Finally, an RTE over alphabets F and K is defined inductively:

– the empty set (∅) and a constant (a ∈ F0 ∪ K) are RTEs,
– if E1, E2, . . . , En are RTEs, n > 0, f ∈ Fn and � ∈ K, then: E1 +E2, ·� (E1, E2),

E1
∗,�, and f(E1, . . . , En) are RTEs.

RTE E represents a language denoted by L(E) and defined by the following
equalities:

– L(∅) = ∅,
– L(a) = {a} for a ∈ F0 ∪K,
– L(f(E1, . . . , En)) = {f(s1, . . . , sn) | s1 ∈ L(E1), s2 ∈ L(E2), . . . , sn ∈ L(En)},
– L(E1 + E2) = L(E1) ∪ L(E2),
– L(·� (E1, E2)) = L(E1){�← L(E2)},

– L(E∗,�) = L(E)∗,�.

We define the set RTE(F ,K) to be a set of all RTEs over F and K alphabets.
A regular tree language is recognisable if and only if it can be denoted by an RTE [5].
For the sake of simplicity we allow the alternation to act as an n-ary operator (n ≥ 2),
e.g., the RTE (((E1+E2)+E3)+ · · ·+En) can be written as E1+E2+E3+ · · ·+En.

Example 3. Let F = {nil0, int0, cons2} and let K = {�1,�2}. Then the RTE E
from Figure3 denotes the language of lists of integers in LISP. L(E) = {nil0,
cons2(int0, nil0), cons2(int0, cons2(int0, nil0)), . . .}.

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 15

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure 3. An RTE from Example 3 denoting the language of integer lists in LISP.

3 State elimination algorithm

The proof of Kleene’s Theorem in Comon et al. [5] hinted that the conversion of FTAs
to RTEs can be done by elimination of states. However, the algorithm itself is not
presented in the book.

The following approach is inspired by the well-known state elimination algorithm
for finite automata [8]. We eliminate states one by one and all paths that went through
the eliminated state will be replaced by new transitions. Also, the transitions will
now involve sets of trees described by an RTE (in the places where the classical
string version would involve regular expressions) rather than individual symbols of
the alphabet.

3.1 Generalized finite tree automaton

In order to represent a tree automaton whose transitions involve trees rather than
symbols of the input alphabet we define an extension of the FTA called generalized
finite tree automaton (GFTA). The GFTA differs from FTA mainly in the transition
function which is defined over RTEs rather than over the individual symbols of a
ranked alphabet.

Definition 4. Let A′ = (Q,Σ,QF , Γ) be a generalized finite tree automaton (GFTA).
The meaning of Q,Σ and QF sets is the same as in an FTA and Γ is a mapping
RTE(Σ,Q)× P(Q) 7→ Q. The QF set is a singleton.

Transition function Γ of a GFTA is in the form E{q1, . . . , qn} → q where E is an
RTE(Σ,Q) and q, q1, . . . , qn ∈ Q. The substitution symbols of RTEs act as references
to the languages of the corresponding states and the constant alphabet of RTEs is
therefore equal to the set of states, i.e., Q.

The order of transition’s source states is no longer important as it is defined in
the RTE because the children in RTEs are ordered. For this reason, it is no longer
necessary to maintain the vector of source states of a transition ordered, and it can
be converted to a set.

The run of GFTA is defined similarly to the run of FTA. A subtree t is labelled
with the state q only if there exists a transition E{q1 . . . qn} → q and t ∈ L(E). Recall
that the symbols from Q set in the RTE act as the references to the states of the
automaton. A tree t is accepted by GFTA if t is labelled with the final state of the
automaton. Language of a GFTA is the set of trees accepted by the automaton.

16 Proceedings of the Prague Stringology Conference 2020

We use almost the same rules for depicting GFTAs as for FTAs. Only the edges
leading to join nodes are no longer labelled with their position because they are no
longer ordered.

Q
c0

+

a2

b0 Q

a2

Q b0

(a) Example GFTA.

a21

b02 a23

c04 b05

(b) Example
tree.

Figure 4. Example GFTA and a sample tree it accepts.

Example 5. Consider the simple GFTA depicted in Figure 4a and the input tree t from
Figure 4b. Subtree c04 of t is trivially labelled with state Q. Subtrees a23 and a21 are
also labelled with Q state because both subtrees correspond to the RTE leading to
the state Q. Note that the Q symbol in the RTE corresponds to the subtree labelled
with state Q. Subtrees b02 and b05 are not labelled with a state.

Lemma 6. An FTA A = (Q,Σ,QF , ∆) can be converted to an equivalent GFTA
A′ = (Q ∪ qf , Σ, {qf}, Γ), qf /∈ Q.

Proof. Every transition fn(q1, . . . , qn) → q ∈ ∆ is transformed to E{q1, . . . , qn} →
q ∈ Γ where E is an RTE fn(q1, . . . , qn). In order to have only one final state we also
add a new state qf and we create a transition E{q} → qf where E = q from every old
final state q ∈ QF to qf . This is similar to adding ε-transitions in the string variant.
It is easy to see that the languages accepted by A and A′ are equal. ⊓⊔

The transformation of an FTA to a GFTA is obvious from the proof of Lemma 6,
but we still formalise it in Algorithm 1. We also formulate Lemma 8, which states
that every single-state GFTA can be converted to an RTE.

Algorithm 1: FTA to GFTA
input : FTA A = (Q,Σ,QF , ∆)
output : GFTA A′ = (Q′, Σ,Q′

F , Γ) corresponding to A
1 function ExtendFTA(A = (Q,Σ,QF , ∆)):
2 Q′ = Q ∪ {qf} (qf /∈ Q) // new final state

3 Q′

F = {qf}
4 Γ = {E{q1, . . . , qn} → q where E = fn(q1, . . . , qn) | ∀fn(q1, . . . , qn)→ q ∈ ∆}
5 Γ = Γ ∪ {E′{q} → qf where E′ = q | ∀q ∈ QF }
6 return A′ = (Q′, Σ,Q′

F , Γ)

Example 7. Figure 5 shows the tree automaton from Example 2 converted to GFTA
by Algorithm 1.

Lemma 8. Let A = (Q,Σ,QF , Γ) be a GFTA with only 1 state (|Q| = 1) that is
also the final state (Q = QF) and transitions in the form Ei → q. One can generate
an RTE E such that L(E) = L(A).

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 17

I L

qf

int0 nil0

cons2

I L

L

Figure 5. Visualisation of the GFTA created from the FTA from Example 2.

Proof. Multiple transitions of the form E ′
i → q can be transformed into a single

transition in the form E → q where E = E ′
1 + · · · + E ′

n and E ′
i corresponds to the

RTE of the i-th original transition.
Now it is clear that any tree accepted by the automaton must also be in the

language denoted by the RTE corresponding to the only transition of the automaton
and vice versa. Therefore the language denoted by the RTE E is equivalent to the
language of the GFTA. ⊓⊔

3.2 Elimination of a single state

Before we state the full algorithm, we must define the process of eliminating a single
non-final state from a GFTA. The elimination of a single state q, q ∈ Q \QF from a
GFTA modifies the GFTA in such a way that the state q is no longer present. There-
fore the transitions involving the state q are removed as well. However, the language
of the automaton must remain unchanged. To compensate, some new transitions
between the remaining states are added.

With respect to the state q we classify the transitions of the automaton into the
following four groups: A transition is incoming if q is only a target state but not a
source. If q is among the source states of a transition and also a target state, then
the transition is classified as looping. If q is only a source state but not a target,
it is called an outgoing transition. If q has no part in the transition, it is classified
as an other transition. It is obvious that other transitions are left intact when q is
eliminated. Definition 9 formalises the classification.

Definition 9. Function trtype classifies the transition of a GFTA w.r.t. the state
q ∈ Q.

trtype(E{p1, . . . , pn} → p, q) =



















incoming if q /∈ {p1, . . . , pn} ∧ q = p

outgoing if q ∈ {p1, . . . , pn} ∧ q 6= p

looping if q ∈ {p1, . . . , pn} ∧ q = p

other if q /∈ {p1, . . . , pn} ∧ q 6= p

Example 10. Let A = (Q,Σ,QF , Γ) be the GFTA from Figure 5. According to the
Definition 9 the transitions from Γ with respect to state L are classified as follows:
trtype(int0→ I, L) = other, trtype(nil0→ L,L) = incoming, trtype(cons2{I, L} →
L,L) = looping, trtype(L→ qf , L) = looping.

Now consider the fragment of GFTA visualised in Figure 6a. Arbitrary non-final
state q of the GFTA may have incoming transitions (such transitions are labelled in
the picture by the RTEs Einci), looping transitions (Eloopi

) and outgoing transitions
(Eouti). The other transitions are obviously left intact by the process of eliminating q

18 Proceedings of the Prague Stringology Conference 2020

q

r1

rn

...

...

...

...

. . .

. . .

. . .

.

...

Einc1

Eincn

Eloop
1 Eloop

n

Eout1

Eoutn

(a) Before the elimination of state q.

r1

rn

...

...

...

. . .

. . .

.

...

Enew1

Enewn

(b) After the elimination of state q by
Lemma 12.

Figure 6. Fragment of a GFTA before and after the elimination of state q.

·q

∗,q

+

Eloop
1

. . . Eloop
n

+

Einc1 . . . Eincn

Figure 7. RTE equivalent to the language of a state of GFTA.

because q is not involved in those transitions. Let us state the following lemmas that
will define the elimination process.

Lemma 11. The concatenation operation in RTEs is associative, i.e., for RTEs
x, y, z the following holds: ·� (·� (x, y), z) = ·� (x, ·� (y, z)).

Proof. No mater the order of application of the concatenation operation in either
RTEs ·� (·� (x, y), z) and ·� (x, ·� (y, z)), the occurrences of � in the RTE x are the
place of substitution of a language given by RTE y and the occurrences of � in the
RTE y are the place of substitution of a language given by RTE z. ⊓⊔

Lemma 12. Let A = (Q,Σ,QF , Γ) be a GFTA and q ∈ Q\QF . Let Eloop
1
, . . . , Eloopn

be RTEs collected from looping transitions w.r.t. the state q, let Einc1 , . . . , Eincn be
RTEs from incoming transitions w.r.t. the state q and let Eout1 , . . . , Eoutn be RTEs
collected from outgoing transitions w.r.t. the state q. Then the language of state q
can be represented as an RTE Eq = ·q ((Eloop

1
+ · · ·+ Eloopn

)∗,q, (Einc1 + · · ·+Eincn))
(for clarity, the RTE fragment is visualised in Figure 7). Then the references to q in
Eouti can be replaced (using the concatenation operation) with an RTE denoting the
language of state q. The Eouti transition then becomes Enewi

= ·q (Eouti , Eq). Note
that empty alternation equals to ∅.

Proof. The proof is essentially the same as the proof of Kleene’s Theorem in [5, Prop.
2.2.7]. We only use different RTE fragment for the Enewi

because we find it more intu-
itive. The fragment proposed in [5], i.e., Enewi

= ·q (·q (Eouti , (Eloop
1
+ · · ·+ Eloopn

)∗,q),
(Einc1 + · · ·+ Eincn)), is equivalent as follows from Lemma 11. ⊓⊔

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 19

Lemma 13. After eliminating state q ∈ Q, all occurrences of symbol q in the au-
tomaton’s transition function are bounded by some concatenations over q.

Proof. References to state q can appear either at outgoing and looping transitions
of state q or at incoming and looping transitions of a state p ∈ Q, p 6= q of the
automaton. Firstly, by eliminating the state q the references at outgoing and looping
transitions are surely bounded under concatenation nodes (by Lemma 12). Now for
the state p. If q appears at a incoming or a looping transition of the state p then (by
Definition 9) the transition is also an outgoing transition of state q. Therefore the
reference is properly bounded by eliminating state q. ⊓⊔

The state elimination algorithm is intentionally designed not to replace the ref-
erences inside the RTE but rather to utilize the concatenation operation. Using this
approach, there is no need to traverse the RTEs to replace all the occurrences. Fur-
thermore, when multiple references are present, the replacement is not copied to
multiple places. This approach is formalised in Algorithm 2. Function Alternate is
used in Algorithm 2. For a set of transitions of labelled with RTEs Ei the function
returns an alternation of those, i.e., an RTE E1 + · · ·+ En.

Algorithm 2: Elimination of a single state in a GFTA
input : GFTA A = (Q,Σ,QF , Γ), q ∈ Q
output : GFTA A′ = (Q \ {q}, Σ,QF , Γ

′), i.e., A without state q and L(A) = L(A′)
1 function EliminateState(A = (Q,Σ,QF , Γ), q):
2 incoming, looping, sources, Γ ′ = ∅, ∅, ∅, ∅
3 foreach E{q1, . . . , qn} → r ∈ Γ do

4 if trtype(E{q1, . . . , qn} → r, q) = incoming then

5 incoming = incoming ∪ {E{q1, . . . , qn} → r}
6 sources = sources ∪ {q1, . . . , qn}

7 else if trtype(E{q1, . . . , qn} → r, q) = looping then

8 looping = looping ∪ {E{q1, . . . , qn} → r}
9 sources = sources ∪ {q1, . . . , qn}

10 else if trtype(E{q1, . . . , qn} → r, q) = other then
11 Γ ′ = Γ ′ ∪ {E{q1, . . . , qn} → r} // not involved

12 foreach E{q1, . . . , qn} → r ∈ outgoing do

13 Enew = ·q (E, (·q (Alternate(looping)
∗,q

,Alternate(incoming)))) // Lemma 12

14 Γ ′ = Γ ′ ∪ {Enew{sources \ {q} ∪ {q1, . . . , qn}} → r}

15 return A′ = (Q \ {q}, Σ,QF , Γ
′)

Lemma 14. Applying Algorithm 2 to a GFTA A = (Q,Σ,QF , Γ) does not increase
the cardinality of Γ .

Proof. The claim follows directly from Algorithm 2. For every other and outgoing
transition one transition is added to Γ ′. For every incoming and looping transition
no new transitions are added. Therefore it always holds that |Γ ′| ≤ |Γ |. ⊓⊔

Lemma 15. Algorithm 2 runs in O(|Q|·|Γ |) time for input GFTA A = (Q,Σ,QF , Γ).

Proof. Both for loops obviously iterates over at most |Γ | elements and also require
some work for merging two sets of size at most Q. Therefore, the upper bound of
running time is O(|Q| · |Γ |). ⊓⊔

20 Proceedings of the Prague Stringology Conference 2020

3.3 State elimination algorithm

The previous subsection stated an algorithm for the elimination of a single non-final
state from a GFTA. This process can be repeated (in arbitrary order of states) until
we obtain a single-state automaton with such transitions that allow us to directly
apply Lemma 8. Algorithm 3 formalises this simple process.

Algorithm 3: State elimination of a GFTA
input : FTA A = (Q,Σ,QF , ∆)
output : RTE E such that L(A) = L(E)

1 function StateElimination(A = (Q,Σ,QF , ∆)):
2 GFTA A′ = (Q′, Σ′, {qf}, Γ) = ExtendFTA(A) // Algorithm 1

3 foreach q ∈ Q′ \ {qf} do
4 A′ = EliminateState(A′, q) // Algorithm 2

5 return Alternate({Ei | ∀Ei{q1, . . . , qn} → qf} ∈ Γ) // remaining transitions

Theorem 16. Algorithm 3 converts an FTA A = (Q,Σ,QF , ∆) to an RTE E such
that L(A) = L(E).

Proof. The algorithm creates a single-state GFTA. Therefore the claim immediately
follows from Lemmas 8, 12 and 13.

Theorem 17. The total running time of Algorithm 3 is O(|Q|2 · (|∆|+ |QF |)) time.

Proof. The running time consists of converting the original FTA to GFTA and |Q|
invocations of Algorithm 2. The largest value for |Γ | parameter of Algorithm 2 is in
the first iteration where |Γ | = |∆|+ |QF | (Lemma 6). After the elimination of a single
state, the number of transitions can only decrease or remain the same (Lemmas 12
and 14). Using time complexity of Algorithm 2 stated in Lemma 15, the total upper
bound on the complexity of Algorithm 3 is O(|Q| · |Q| · (|∆|+ |QF |)). ⊓⊔

Example 18. Let A be the GFTA from Figure 2. The trace run of the algorithm is
shown in Figure 8. The states of A are eliminated in lexicographical order, i.e., I, L.

4 Conclusion

We presented a simple full algorithm for the construction of a regular tree expression
(RTE) equivalent to given finite tree automaton (FTA) by eliminating states. Both
the idea and implementation are also very similar to the original State elimination for
finite (string) automata and regular expressions [8]. This construction was originally
hinted in [5] to prove the Kleene Theorem, i.e., the equivalence between languages of
RTEs and FTAs. We showed that the idea of eliminating states one by one from an
FTA forms an easy and intuitive algorithm that can be easily implemented.

The presented algorithm runs in O(|Q|2 · (|∆|+ |QF |)) time, i.e., it is proportional
to the number of states and the size of the transition function of the converted
automaton. Also, different order of elimination may create different RTE but all
of them denote the same language. However, this also holds for the original string
algorithm [8,11].

Future work may focus on the Algorithm 2. Better data structures may help in
improving the time complexity upper bound. Another interesting problem is finding

T.Pecka et al.: Conversion of Finite Tree Automata to Regular Tree Expressions. . . 21

I L

F

int0 nil0

cons2

I L

L

(a) Generalized FTA with new final state

F

·L

L ·L

∗L

·I

cons2

I L

·I

∗I

∅

int0

nil0

(c) After elimination of
state L

L

F

nil0

·I

cons2

I L

·I

∗I

∅

int0

L

(b) After elimination of state I

Figure 8. Example run of the algorithm on the FTA from Figure 2.

the best elimination order. Different orderings give different resulting RTEs and some
of them are smaller than others. Similar experimental research was done in the string
elimination method [11].

You can find the C++ implementation of the presented algorithm in the latest
versions of Algorithms Library Toolkit project [1]. We also tested the implementation
by converting various random FTAs to RTEs using this algorithm and then back using
the algorithm from [12] adapted to FTAs.

References

1. Algorithms Library Toolkit: https://alt.fit.cvut.cz.
2. A. V. Aho and J. D. Ullman: The theory of parsing, translation, and compiling. 1: Parsing,

Prentice-Hall, 1972.
3. A. Belabbaci, H. Cherroun, L. Cleophas, and D. Ziadi: Tree pattern matching from

regular tree expressions. Kybernetika, 54(2) 2018, pp. 221–242.
4. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Department of

Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Apr. 2008.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi: Tree automata techniques and applications, 2007, Release October 2007.
6. F. Gécseg and M. Steinby: Tree Languages, vol. 3 of Handbook of Formal Languages,

Springer, 1997, pp. 1–68.
7. Y. Guellouma and H. Cherroun: From tree automata to rational tree expressions. Int. J.

Found. Comput. Sci., 29(6) 2018, pp. 1045–1062.
8. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to automata theory, lan-

guages, and computation (2. ed), Addison-Wesley, 2003.
9. D. Kuske and I. Meinecke: Construction of tree automata from regular expressions, in

Developments in Language Theory, 12th International Conference, DLT 2008, Kyoto, Japan,
September 16-19, 2008. Proceedings, 2008, pp. 491–503.

10. É. Laugerotte, N. O. Sebti, and D. Ziadi: From regular tree expression to position tree
automaton, in Language and Automata Theory and Applications - 7th International Conference,
LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceedings, 2013, pp. 395–406.

11. N. Moreira, D. Nabais, and R. Reis: State elimination ordering strategies: Some experi-
mental results, vol. 31, 08 2010, pp. 139–148.

https://alt.fit.cvut.cz

22 Proceedings of the Prague Stringology Conference 2020

12. T. Pecka, J. Trávńıček, R. Polách, and J. Janoušek: Construction of a pushdown
automaton accepting a postfix notation of a tree language given by a regular tree expression.
2018, pp. 6:1–6:12.

13. R. Polách, J. Janoušek, and B. Melichar: Regular tree expressions and deterministic
pushdown automata, in Proceedings of the 7th Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science, 2011, pp. 70–77.

