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Abstract. Processing tree data structures usually requires a pushdown automaton as
a model of computation. Therefore, it is interesting that a finite automaton can be used
to solve the constrained approximate subtree pattern matching problem. A systematic
approach to the construction of such matcher by finite automaton, which reads input
trees in prefix bar notation, is presented. Given a tree pattern and an input tree with
m and n nodes, respectively, the nondeterministic finite automaton for the pattern is
constructed and it is able to find all occurrences of the pattern to subtrees of the input
tree with maximum given distance k. The distance between the pattern and subtrees of
an input tree is measured by minimal number of restricted tree edit operations, called
leaf nodes edit operations. The corresponding deterministic finite automaton finds all
occurrences in time O(n) and has O(|A|kmk+1) states, where A is an alphabet contain-
ing all possible node labels. Note that the size is not exponential in the number of nodes
of the tree pattern but only in the number of errors. In practise, the number of errors
is expected to be a small constant that is much smaller than the size of the pattern. To
achieve better space complexity, it is also shown how dynamic programming approach
can be used to simulate the nondeterministic automaton. The space complexity of this
approach is O(m), while the time complexity is O(mn).

Keywords: finite automaton, approximate tree pattern matching, subtree matching,
constrained tree edit distance, dynamic programming

1 Introduction

Exact tree pattern matching, the process of finding all matches of a tree pattern in
an input tree, is an analogous problem to the string pattern matching. One of the
approaches used for string pattern matching is to construct a finite automaton for
the pattern [3,13]. The automata approach for solving exact tree pattern matching
problem has also been studied in [5,9] using pushdown automaton as a model of
computation. For other methods used to solve exact tree pattern matching problem
see [6,7] and [2].

Approximate tree pattern matching problem is an extension of both exact tree
pattern matching and approximate string pattern matching. The goal of the approx-
imate string pattern matching problem is to find a substring in an input text with the
minimal distance (string-to-string correction problem) to a given pattern. Similarly,
as for the exact string matching problem, the automata approach can be used again
to solve the approximate string pattern matching problem as well, see [12,13].

The goal of the approximate tree pattern matching problem is to find all occur-
rences of a given tree pattern in an input tree with the minimal distance. Similarly,
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Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic



80 Proceedings of the Prague Stringology Conference 2018

approximate subtree pattern matching is the process of finding all occurrences of a
tree pattern to subtrees of an input tree with the minimal distance. To measure the
distance between two trees (tree-to-tree correction problem [17]), a tree edit distance
is used. Common operations used are node rename, node insertion and node deletion,
proposed in [10]. The recent algorithm proposed in [4] computes the tree edit distance
between two rooted ordered trees with m and n nodes in O(n3) time and O(n2) space,
where m ≤ n.

Several authors also proposed restricted forms of tree-to-tree correction problem
where only a limited set of edit operations is allowed. For example, Selkow in [14]
introduced a constrained tree edit distance, sometimes referred to as 1-degree edit
distance, where delete and insert operations are restricted to leaf nodes of a tree.
Selkow’s approach is recursive, so the distance between two trees can always be com-
puted. For more details on the tree edit distance survey see [1,8].

Both tree-to-tree correction and approximate tree pattern matching problems have
applications is several areas such as genetics, XML processing and databases, compiler
optimization or natural language processing. Therefore, many solutions exist. For
example, see [14,16,17,18] and [1,6,11]. However, most of them lack clear references
to a systematic approach of the standard theory of formal languages and automata.

This paper shows that finite automata can be used to solve approximate subtree
pattern matching problem with a constrained set of tree edit operations allowed. This
is quite interesting since processing tree data structures usually requires a pushdown
automaton as a model of computation. However, using only a special restricted set of
tree edit operations allows a finite automaton to be the sufficient model of computa-
tion. The proposed method defines leaf nodes edit operations involving only simple
tasks, such as node rename, leaf insertion and leaf deletion. However, it is not allowed
to use these operations repeatedly such as Selkow [14]. In other words, it is not al-
lowed to use operations leaf node insertion and leaf node deletion recursively to insert
or delete a subtree of an arbitrary size. Therefore, the distance between two trees can
be unknown, if the trees cannot be transformed to each other using only leaf nodes
edit operations.

First of all, the proposed method forms linear notations for a given tree pattern
and an input tree by traversing their tree structures in a sequential way. After that,
a finite automaton for constrained approximate subtree matching, which is directly
analogous to approximate string matching automata, is constructed. The proposed
automaton is built over a tree pattern P based on a maximum distance (number of
errors) k desired and is able to find all occurrences of subtree P within a given input
tree T in time linear to the number of nodes of T .

The major issue in automata theory is often the size of the deterministic automa-
ton, which can be exponential in the number of nodes of the tree pattern. However,
the size of the automaton in this case is O(|A|kmk+1), where m is the number of
nodes of the tree pattern P , k is the maximum number of errors and A is an alphabet
containing all possible node labels. In practise the number of errors is expected to be
a small constant, that is much smaller than the size of the pattern. The paper also
presents how dynamic programming can be used to simulate the nondeterministic
finite automaton. This approach comes with the O(m) space complexity and O(mn)
time complexity.

The rest of this paper is organised as follows. Basic definitions are given in Sec-
tion 2. The problem definition is presented in Section 3. Section 4 introduces the
nondeterministic finite automaton for the constrained approximate subtree pattern
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matching. Following Section 5 deals with the dynamic programming approach used
to simulate the nondeterministic automaton. Section 6 discusses the corresponding
deterministic finite automaton and finally, Section 7 is the conclusion and future work
discussion.

2 Basic Notions

An alphabet A is a finite non-empty set whose elements are called symbols. A non-

deterministic finite automaton (NFA) is a 5-tuple M = (Q,A, δ, q0, F ), where Q is a
finite set of states, A is an alphabet, δ is a state transition function from Q × A to
the power set of Q, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states. A finite
automaton is deterministic (DFA) if ∀a ∈ A, q ∈ Q : |δ(q, a)| ≤ 1.

A rooted and directed tree T is an acyclic connected directed graph T = (N,E),
where N is a set of nodes and E is a set of ordered pairs of nodes called directed
edges. A root is a special node r ∈ N with in-degree 0. All other nodes of a tree T

have in-degree 1. There is just one path from the root r to every node n ∈ N , where
n 6= r. A node n1 is a direct descendant of a node n2 if a pair (n2, n1) ∈ E.

T is called a labelled tree if there is a symbol from a finite alphabet A assigned to
each node. T is called an ordered tree if a left-to-right sibling ordering in T is given. A
subtree of a tree T = (N,E) rooted at node n ∈ N is a tree Tn = (Nn, En), such that
n is the root of Tn and Nn, En is the greatest possible subset of N,E, respectively.

The size of a tree T = (N,E) denoted as |T | is the cardinality of N . Any node of
a tree with out-degree 0 is called a leaf. Leaves(T ) stands for a set of all leaf nodes
of the tree T . In the following, P and T will be used to denote rooted, ordered and
labelled trees called a tree pattern and an input tree, respectively.

3 Problem Statement

A special type of the approximate tree pattern matching problem called approximate
subtree matching is considered, where the goal is to find all occurrences of a tree
pattern P to subtrees of an input tree T with maximum of k errors. Formally, the
approximate subtree pattern matching problem for a maximum given distance is
defined in the following way:

Definition 1 (Approximate subtree pattern matching with maximum of k
errors). A tree pattern P matches an input tree T = (N,E) in a node n ∈ N if

the distance D between the pattern P and the subtree of T rooted at n is less than or

equal to k, i.e., D(P, Tn) ≤ k.

The distance between a tree pattern and subtrees of an input tree is measured by
minimal number of simple operations, called leaf nodes edit operations, applied to
the tree pattern. Formal definitions of the leaf nodes edit distance and leaf nodes edit
operations follows.

Definition 2 (Leaf nodes edit distance). Let T1 and T2 be two rooted, ordered

and labelled trees. The leaf nodes edit distance between T1 and T2, noted as DL(T1, T2),
is the minimal number of leaf nodes edit operations needed to transform T1 to T2. The

distance DL is unknown if T1 cannot be transformed to T2 by using only leaf nodes

edit operations.
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Definition 3 (Leaf nodes edit operations). Let T = (N,E) be a rooted, ordered

and labelled tree and S1, S2, S3 be sets such that S1 = N , S2 = Leaves(T ), S3 = N .

Then leaf nodes edit operations for T are defined as follows:

1. node rename: change the label of a node n ∈ S1 and assign S1 = S1 \ {n},
2. leaf node deletion: delete a non-root leaf node n ∈ S2 and assign S2 = S2 \ {n},
3. leaf node insertion: insert a leaf node n1 as a child of a node n2 ∈ S3. Do not

update any set.

In other words, it is not allowed to use operations node rename, leaf node insertion
and leaf node deletion recursively to insert or delete a subtree of an arbitrary size.

Example 4. Let P and T be a tree pattern and an input tree as depicted in Figure 1a
and Figure 1b, respectively. Having only leaf nodes edit operations allowed the tree
pattern P can be modified as follows: (1) rename the root node a or the leaf node b,
(2) delete the leaf node b, (3) add leaf nodes as children of the node b or as left or
right siblings of the node b.

a

b

(a) Tree pattern P

b

b

b a

b

a

a b

a

1 3

2

7

4 6

5

(b) Input tree T

Figure 1: Graphical representation of the approximate subtree matching problem us-
ing leaf nodes edit distance k = 2

Thus, there are seven occurrences of the tree pattern P in the input tree T with
maximum of k = 2 errors as shown in Figure 1b. These occurrences are marked with
dashed lines and have numbers 1–7 assigned. Starting from the left, there are following
errors in the occurrences of the tree pattern P to subtrees of the input tree T :

(1.match) 2 errors: rename the node a to b, delete the node b,
(2.match) 2 errors: rename the node a to b, delete the node b,
(3.match) exact match, 0 errors,
(4.match) 1 error: delete the node b,
(5.match) 1 error: delete the node b,
(6.match) 2 errors: rename the node a to b, rename the node b to a,
(7.match) 2 errors: add a leaf a as a child and as a left sibling of the node b.
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Every sequential algorithm traverses a processed tree structure in a sequential order
of nodes, which forms a corresponding linear notation of the tree structure. The
proposed method uses the following linear notation of trees called the prefix bar
notation which was introduced by Stoklasa, Janoušek and Melichar in [15].

Definition 5 (Prefix bar notation). The prefix bar notation pref bar(T ) of a tree

T is defined as follows:

1. pref bar(a) = a | if a is both the root and a leaf,

2. pref bar(T ) = a pref bar(b1) pref bar(b2) · · · pref bar(bn) | if a is the root of the

tree T and b1, b2, . . . , bn are direct descendants of a.

Example 6. Let P and T be a tree pattern and an input tree as depicted in Figure 1a
and Figure 1b, respectively. The prefix bar notations of P and T are described as
follows: pref bar(P ) = a b | | and pref bar(T ) = b b b | a b | | | a a | b a | | | |.

4 Nondeterministic Finite Automaton for Constrained
Approximate Subtree Matching

This section deals with the constrained approximate subtree pattern matching by
a nondeterministic finite automaton, which reads an input tree T in the prefix bar
notation. The finite automaton is able to find all approximate occurrences of a tree
pattern P with maximum of k errors to subtrees of an input tree T using leaf nodes
edit distance.

The method is analogous to the construction of approximate string pattern match-
ing automata. The NFA is built for the tree pattern P to recognize a language
A∗X(P, k), where A is an alphabet containing all possible node labels that may occur
in both the tree pattern and the input tree. The alphabet also includes a special
symbol called bar (noted as |), introduced in the definition of the prefix bar nota-
tion. X(P, k) is a finite language generated for the number of allowed errors k ≥ 1
from a given tree pattern P using leaf nodes edit operations, formally defined as
X(P, k) = {pref bar(S) : pref bar(S) ∈ A∗, DL(P, S) ≤ k}. Thus, the proposed au-
tomaton can find all occurrences of x ∈ X(P, k) in a given prefix bar notation of an
input tree. The construction of the NFA is described by Algorithm 1 in detail.

Example 7. Let P be a tree pattern as shown in Figure 1a with its prefix bar notation
pref bar(P ) = a b | |. The transition diagram of the NFA constructed for the tree
pattern P and maximum number of errors k = 2 by Algorithm 1 is shown in Figure 2.

The NFA has a regular structure. State qij is at depth i (a position in the pattern)
and on level j (number of errors). States qi′j′ are assistant nodes used for insert
leaf operations allowing inserting bars. Insert leaf operations are represented by two
subsequent “vertical” transitions. The first transitions are labelled by all symbols of
the alphabet A (except |) and they are followed by second transitions labelled by |.
Rename node operations are represented by “diagonal” transitions labelled by those
symbols of the alphabet A (except |) for which no direct transition to the next state
exists. “Diagonal” ε-transitions represent delete leaf operations.
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Input: A tree pattern P (|P | = m) and its prefix bar notation pref bar(P ) = p1p2 · · · p2m,
maximum number k of errors allowed.

Output: NFA M accepting language A∗X(P, k).
1. Let M ′ = ({q0, q1, . . . , q2m}, A, δ, q0, {q2m}) be an exact pattern matching automaton, where

(1) ∀i, 0 ≤ i < 2m : qi+1 ∈ δ(qi, pi+1),
(2) ∀a ∈ A : q0 ∈ δ(q0, a).

2. Create a sequence of k + 1 instances of M ′ such that: M ′

j = (Qj , A, δj , q0j , Fj),
j = 0, 1, 2, . . . , k. Qj = {q0j , q1j , . . . , q2mj}, Fj = {q2mj}.

3. Construct the automaton M = (Q,A, δ, q0, F ) as follows:

(a) Q =
k⋃

j=0

Qj , q0 = q00, F =
k⋃

j=0

Fj

(b) (copy) ∀q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , k do δ(q, a) = δj(q, a),
(rename) ∀i = 0, 1, . . . , 2m− 1, j = 0, 1, . . . , k − 1, a ∈ A \ {pi+1, |} do

if (pi+1 6= |) then qi+1,j+1 ∈ δ(qij , a),
(delete) ∀i = 0, 1, . . . , 2m− 2, j = 0, 1, . . . , k − 1 do

if ((pi+1 6= |) ∧ (pi+2 = |)) then qi+2,j+1 ∈ δ(qij , ε)
(insert) ∀i = 1, 2, . . . , 2m− 1, j = 0, 1, . . . , k − 1, a ∈ A \ {|} do

Q = Q ∪ {qi′j′}, qi′j′ ∈ δ(qij , a), qi,j+1 ∈ δ(qi′j′ , |).
4. Remove all states inaccessible from state q0 in M .

Algorithm 1: Construction of NFA that finds all approximate occurrences of a
tree pattern P to subtrees of an input tree using leaf nodes edit distance.

00start 10 20 30 40

1′0′ 2′0′ 3′0′

11 21 31 41

1′1′ 2′1′ 3′1′

12 22 32 42

a

a, b, |

b

b

a, b
a

ε

|

a, b

|

a, b

b

a, b
a

ε

|

a, b

|

a, b

b | |

| | |

| | |

Figure 2: Transition diagram of NFA from Example 7 accepting all approximate oc-
currences of a tree pattern P in prefix bar notation pref bar(P ) = a b | | in an input
tree using leaf nodes edit operations with maximum of k = 2 errors
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5 Simulation of the Nondeterministic Finite Automaton for
Constrained Approximate Subtree Matching

This section describes how the dynamic programming approach can be used to sim-
ulate the nondeterministic finite automaton for constrained approximate subreee
matching. Given a tree pattern P with m nodes and an input tree T with n nodes,
the algorithm computes a matrix D of size (2m+ 1)× (2n+ 1). Each element of the
matrix di,j (0 ≤ i ≤ 2m, 0 ≤ j ≤ 2n) contains the constrained distance between the
partial trees represented by prefix bar notations of the tree pattern of length i and
the input tree of length j. Elements of the matrix D are computed as follows:

di,0 = k + 1 0 < i ≤ 2m

d0,j = 0 0 ≤ j ≤ 2n

di,j = min







if (pi = tj) then di−1,j−1 (match)

if (pi 6= tj ∧ pi, tj 6= |) then di−1,j−1 + 1, (rename)

if (i > 1 ∧ pi = | ∧ pi−1 6= |) then di−2,j + 1, (delete)

if (j > 1 ∧ tj = | ∧ tj−1 6= |) then di,j−2 + 1, (insert)

k + 1 (otherwise)

0 < i ≤ 2m, 0 < j ≤ 2n

This formula represents the simulation of the nondeterministic finite automaton in-
troduced in the previous section. If d2m,j ≤ k then the tree pattern occurs in the input
tree T with d2m,j errors ending at position j in the pref bar(T ). Note, that all values
di,j > k in the matrix D can be replaced by the value k + 1 representing number of
errors higher than k.

Example 8. Let P be a tree pattern (pref bar(P ) = a b | |) and T be an input tree
(pref bar(T ) = b b b | a b | | | a a | b a | | | |) as shown in Figure 1a and Figure 1b, respec-
tively. The matrix D computed for the tree pattern P and the input tree T with
maximum number of errors k = 2 is shown in Table 1. The occurrences of the tree
pattern P in the input tree T are marked with bold. All errors higher than 2 are in
the matrix represented by number 3.

D - b b b | a b | | | a a | b a | | | |
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 3 1 1 1 2 0 1 1 3 3 0 0 1 1 0 2 3 3 3
b 3 3 1 1 2 3 0 3 3 3 3 1 3 1 2 2 3 3 3
| 3 2 2 2 1 1 2 0 3 3 1 1 1 2 1 2 2 3 3
| 3 3 3 3 2 3 3 2 0 3 3 3 1 3 3 1 2 2 3

Table 1: Matrix D for a tree pattern P , input tree T and k = 2, where pref bar(P ) =
a b | | and pref bar(T ) = b b b | a b | | | a a | b a | | | |

Theorem 9. The dynamic programming approach described by the formula can be

used to simulate a run of the NFA for constrained approximate subtree matching

using leaf nodes edit operations.
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Proof. The NFA has a regular structure. It consists of depths i (0 ≤ i ≤ 2m) and
levels j (0 ≤ j ≤ 2n). A depth represents a position in the pattern, while a level
stands for the number of existing errors. Therefore, state qij is at depth i and on level
j. In the matrix D, each row i represents the depth i and each column j corresponds
to a j-th step of a run of the NFA (i.e., j symbols of pref bar(T ) read).

Every value di,j of the matrix D stands for a level number (number of errors) of
the topmost active state in i-th depth of the NFA and j-th step of the run of the NFA.
If the value di,j > k it simply means that there is no active state for the particular
depth and step of the NFA.

At the beginning only the initial state is active, which is in the formula represented
by setting d0,0 = 0 and di,0 = k + 1 (0 < i ≤ 2m). The second part of the formula
d0,j = 0 (0 ≤ j ≤ 2n) simulates the self loop in the initial state. Third part of the
formula describes the individual operations. The term di−1,j−1 simulates a matching
transition – the value is copied to di,j as the level has not changed and depth and step
of the NFA is increased by 1. Term di−1,j−1 + 1 corresponds to a rename transition –
the level, depth and step are all increased by 1. Delete transition is represented by
term di−2,j + 1, level is increased by 1, depth (position in the pattern) is increased
by 2, but position in the text is not changed. The term di,j−2 + 1 simulates insert
transitions – level is again increased by 1, position in the text is increased by 2, but
the depth is not increased. The last term sets di,j to k + 1, which means there is no
possible transition.

Therefore, all transitions of the NFA are considered. If d2m,j ≤ k then a final state
q2m,d2m,j

is active and the match is reported. The tree pattern occurs in the input tree
T with d2m,j errors ending at position j in the pref bar(T ).
Possibly, there can exist more ways in the nondeterministic automaton leading to an
accepting state. To ensure that values d2m,j are minimal possible, the third part of the
formula contains minimum function min. Example 10 supports this statement. ⊓⊔

Example 10. Let P be a tree pattern and T be an input tree as shown in Figure 3a and
Figure 3b, respectively, where pref bar(P ) = c b | a | |, pref bar(T ) = c b | |. Obviously,
the pattern P occurs in the tree T just once with 1 error (delete leaf node a). However,
the pattern P also occurs in T with 2 errors (delete leaf node b, rename a to b).
Without minimum function in the dynamic programming formula, the second match
would be reported instead the first one.

c

b a

(a) Tree pattern P

c

b

(b) Input tree T

Figure 3: Graphical representation of Example 10

Theorem 11. The simulation of the NFA for constrained approximate subtree match-

ing using leaf nodes edit operations by dynamic programming has time complexity

(2m+ 1)× (2n+ 1) = O(mn) and space complexity 4m = O(m).

Proof. The dynamic programming approach builds a matrix D of size (2m + 1) ×
(2n + 1). All operations introduced in the formula can be done in constant time,
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hence the time complexity of the simulation is O(mn). In the matrix D every column
is computed using just two previous columns. Therefore, only 4m space is needed in
order to compute all values and the space complexity results in O(m).

6 Deterministic Finite Automaton for Constrained
Approximate Subtree Matching

To achieve better time complexity, the NFA can be turned into the DFA by using
the standard determinisation algorithm (see [13], Algorithm 1.40). To compute the
positions of all occurrences of the tree pattern P in the input tree T , the DFA is
simply run on the prefix bar notation of the input tree T . The DFA reports a match
every time it goes through a final state. All occurrences are located in time linear to
the number of nodes of T .

Theorem 12. Given an input tree T (|T | = n) and a tree pattern P (|P | = m),
the deterministic automaton for approximate subtree matching that is obtained using

standard determinisation algorithm over the NFA constructed by Algorithm 1 finds

all approximate occurrences of the subtree P in the input tree T using leaf nodes edit

distance in time 2n = O(n).

Proof. The prefix bar notation of the input tree T is in the searching phase read
exactly once, symbol by symbol from left to right. The appropriate transition is
taken each time a symbol is read, resulting in exactly 2n transitions. Approximate
occurrences of the tree pattern P are reported each time that DFA goes through a
final state.

In order to prove the upper bound of the state complexity of the deterministic
finite automaton that finds all approximate occurrences of subtree P in an input
tree T using leaf nodes edit distance, some of the results of the previous research
concerning the dictionary matching problem will be used. The goal of the dictionary
matching problem is to preprocess the dictionary, a finite set of words X, in order to
locate words of X that occur in any given input word.

Crochemore at al. in [3] propose an algorithm for a direct construction of the
deterministic dictionary matching automaton that recognizes a language A∗X and
thus it can find all occurrences of words x ∈ X in a given text. They have proven the
automaton has O(

∑

x∈X |x|) states.
Later in [13], Melichar showed the equivalence of Crochemore’s automaton to a

finite automaton, that is created from a nondeterministic one, using standard deter-
minisation algorithm based on a subset construction. The nondeterministic automa-
ton has a tree-like structure with the self loop in the initial state for all symbols of
the alphabet.

Moreover, it was shown that any acyclic automaton accepting language X can
be transformed into a deterministic dictionary matching automaton accepting lan-
guage A∗X by just adding the self loop in the initial state and using standard deter-
minisation algorithm. It has been proven that the number of states of such created
automaton in not greater than O(

∑

x∈X |x|).
The proposed nondeterministic automaton that finds all approximate occurrences

of a tree pattern P to subtrees of an input tree T using leaf nodes edit distance
can be viewed as a nondeterministic dictionary matching automaton for a dictionary
X(P, k). The finite language X(P, k) was defined in the previous section as follows:



88 Proceedings of the Prague Stringology Conference 2018

X(P, k) = {pref bar(S) : pref bar(S) ∈ A∗, DL(P, S) ≤ k}.

Therefore, the deterministic automaton M accepting language A∗X(P, k), noted
as M(A∗X(P, k)), has maximum of O(

∑

x∈X(P,k) |x|) states. Hence, the goal is to

determine the size of the language X(P, k) by finding the number of strings that
represent prefix bar notations of trees created from the tree pattern P by using leaf
nodes edit operations.

Theorem 13. Given a tree pattern P (|P | = m), the number of strings, standing for

prefix bar notations of trees, created from P by at most k rename node operations is

O(|A|kmk).

Proof. The set of strings created by exactly i rename node operations (0 ≤ i ≤ k)
is made by replacing exactly i symbols of pref bar(P ) by other symbols. There are
(
m

i

)
possibilities for choosing i symbols from pref bar(P ) and |A| − 2 possibilities

for choosing the new symbol. Hence, the number of generated strings is at most
(
m

i

)
(|A| − 2)i = O(mi)(|A| − 2)i = O(|A|imi). Therefore, the size of the set of strings

created by at most k rename node operations is
∑k

i=0 O(|A|imi) = O(|A|kmk).

Theorem 14. Given a tree pattern P (|P | = m), the number of strings, standing for

prefix bar notations of trees, created from P by at most k delete leaf node operations

is O(|Leaves(P )|k).

Proof. The set of strings created by exactly i delete leaf operations (0 ≤ i ≤ k)

is made by deleting exactly 2i symbols from pref bar(P ). There are
(
|Leaves(P )|

i

)
=

O(|Leaves(P )|i) possibilities for choosing i leaf nodes from pref bar(P ). Therefore,
the size of the set of strings created by at most k delete leaf operations can be specified
as follows:

∑k

i=0O(|Leaves(P )|i) = O(|Leaves(P )|k).

Theorem 15. Given a tree pattern P (|P | = m), the number of strings, standing for

prefix bar notations of trees, created from P by at most k insert leaf node operations

is O(|A|kmk).

Proof. The number of strings created by exactly i insert leaf node operations can
be transformed to the number of dipaths (directed paths) that can be found in a
nondeterministic finite automaton constructed by Algorithm 1 with rename node and
delete leaf nodes transitions removed. A dipath starts at the initial state and goes
to some of final states. There are 2m steps needed to be done to the right (reading
the pattern) and i steps down (insert operations, the two transitions representing an
insert operation can be viewed as one step). Hence, every dipath is represented by a
string containing 2m letters R (right) and i letters D (down). Moreover, the dipath
needs to start and end with the letter R. The number of such strings is

(
2m+i−2

i

)
. Each

letter D can represent |A|−1 inserted symbols, so the total number of strings created
by exactly i insert leaf node operations is at most

(
2m+i−2

i

)
(|A| − 1)i = O(mi|A|i).

Therefore, the size of the set of strings created by at most k insert leaf node operations
is
∑k

i=0 O(|A|imi) = O(|A|kmk).

Theorem 16. Given a tree pattern P (|P | = m), the number of strings, standing for

prefix bar notations of trees, created from P by at most k operations node rename,

leaf node insertion and leaf node deletion is O(|A|kmk).
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Proof. The number of such strings can be computed as follows:

k∑

x=0

k−x∑

y=0

k−x−y
∑

z=0

O(|A|xmx)
︸ ︷︷ ︸

rename
x nodes

O(|A|ymy)
︸ ︷︷ ︸

insert
y leaves

O(|Leaves(P )|z)
︸ ︷︷ ︸

delete
z leaves

k∑

x=0

k−x∑

y=0

k−x−y
∑

z=0

O(|A|x+ymx+y|Leaves(P )|z)

k∑

x=0

k−x∑

y=0

k−x−y
∑

z=0

O(|A|x+ymx+y+z) = O(|Ak|mk).

Theorem 17. Let P be a tree pattern such that |P | = m and k be the maximum

number of errors allowed. The number of states of the deterministic finite automaton

M(A∗X(P, k)) that is obtained using standard determinisation algorithm over NFA

constructed by Algorithm 1 is O(|A|kmk+1).

Proof. As stated in [13], [3] the state complexity of this automaton is at most the
same as the size of the language X(P, k). Since ∀x ∈ X(P, k) : |x| ≤ 2m + 2k, the
size of the language X(P, k) is

O(
∑

x∈X(P,k)

|x|) = O((2m+ 2k)|A|kmk) = O(|A|kmk+1).

7 Conclusion and Future Work

It was shown that finite automata can be used to solve constrained approximate
subtree pattern matching problem. This is quite interesting since processing tree
data structures usually requires a pushdown automaton as a model of computation.
The proposed method creates a nondeterministic finite automaton for a given tree
pattern P which is able to find all occurrences of a tree pattern P to subtrees of an
input tree T with maximum distance (number of errors) k. The distance between a
tree pattern P and subtrees of an input tree T is measured by minimal number of
simple operations called leaf nodes edit operations.

The NFA can be turned into DFA by using the standard determinisation algo-
rithm. The searching phase is afterwards performed in time O(n), where n is the
number of nodes of an input tree T . In theory, the state complexity of the determin-
istic automaton can be exponential in the number of nodes of the tree pattern P .
However, Section 6 gives the proof that the size of the proposed deterministic au-
tomaton is only O(|A|kmk+1), where m is the number of nodes of the tree pattern P ,
k is the maximum number of errors and A is an alphabet containing all possible node
labels. In practise the number of errors is expected to be a constant much smaller
than the size of the pattern.

In Section 5, it was also shown how dynamic programming can be used to simulate
the nondeterministic finite automaton. This approach hasO(m) space complexity and
O(mn) time complexity.

The proposed methods solve an approximate tree pattern matching subproblem
since the operations used are a subset of general tree edit operations. Hence, the
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techniques described here may also be relevant to other forms of approximate tree
pattern matching problem, which we hope to explore in the future. Currently, we are
working on the automata approach in respect to larger sets of edit operations allowed.
In case of less restricted sets including general operations such as node insertion or
node deletion the pushdown automata are required as models of computation.
Acknowledgements. This research has been partially supported by grant of CTU
in Prague as project No. SGS17/209/OHK3/3T/18.
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8. L. Krčál: Tree edit distance and approximate tree pattern matching problem. Bachelor’s

thesis. Department of Computer Science and Engineering, Czech Technical University in Prague,
Prague, Czech Republic, 2011.
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