Constrained Approximate Subtree Matching by Finite Automata

Eliška Šestáková, Bořivoj Melichar, and Jan Janoušek
Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 16000 Praha 6, Czech Republic
Eliska.Sestakova@fit.cvut.cz
Borivoj.Melichar@fit.cvut.cz
Jan.Janousek@fit.cvut.cz

Abstract

Processing tree data structures usually requires a pushdown automaton as a model of computation. Therefore, it is interesting that a finite automaton can be used to solve the constrained approximate subtree pattern matching problem. A systematic approach to the construction of such matcher by finite automaton, which reads input trees in prefix bar notation, is presented. Given a tree pattern and an input tree with m and n nodes, respectively, the nondeterministic finite automaton for the pattern is constructed and it is able to find all occurrences of the pattern to subtrees of the input tree with maximum given distance k. The distance between the pattern and subtrees of an input tree is measured by minimal number of restricted tree edit operations, called leaf nodes edit operations. The corresponding deterministic finite automaton finds all occurrences in time $\mathcal{O}(n)$ and has $\mathcal{O}\left(|A|^{k} m^{k+1}\right)$ states, where A is an alphabet containing all possible node labels. Note that the size is not exponential in the number of nodes of the tree pattern but only in the number of errors. In practise, the number of errors is expected to be a small constant that is much smaller than the size of the pattern. To achieve better space complexity, it is also shown how dynamic programming approach can be used to simulate the nondeterministic automaton. The space complexity of this approach is $\mathcal{O}(m)$, while the time complexity is $\mathcal{O}(m n)$.

Keywords: finite automaton, approximate tree pattern matching, subtree matching, constrained tree edit distance, dynamic programming

1 Introduction

ig all matches of a tree pattern in ing pattern matching. One of the , construct a finite automaton for lving exact tree pattern matching shdown automaton as a model of ict tree pattern matching problem
s an extension of both exact tree matching. aing problem is to find a substring o-string correction problem) to a as for the exact string matching problem, the automata app to solve the approximate string pattern matching problem ai

The goal of the approximate tree pattern matching prob rences of a given tree pattern in an input tree with the min:

introduced a constrained tree edit distance, some distance, where delete and insert operations are Selkow's approach is recursive, so the distance bet

lems have compiler exist. For references of formal languages and automata. e used to solve approximate subtree of tree edit operations allowed. This uctures usually requires a pushdown
automaton as a model of computation. H tree edit operations allows a finite autom tion. The proposed method defines leaf 1 tasks, such as node rename, leaf insertion to use these operations repeatedly such lowed to use operations leaf node insertio or delete a subtree of an arbitrary size. T] be unknown, if the trees cannot be trans edit operations.

First of all, the proposed method forms linear notations for a given tree pattern and an input tree by traversing their tree structures in a sequential way. After that, a finite automaton for constrained approximate subtree matching, which is directly analogous to approximate string matching automata, is constructed. The proposed automaton is built over a tree pattern P based on a maximum distance (number of errors) k desired and is able to find all occurrences of subtree P within a given input tree T in time linear to the number of nodes of T.

The major issue in automata theory is often the size of the deterministic automaton, which can be exponential in the number of nodes of the tree pattern. However, the size of the automaton in this case is $\mathcal{O}\left(|A|^{k} m^{k+1}\right)$, where m is the number of nodes of the tree pattern P, k is the maximum number of errors and A is an alphabet containing all possible node labels. In practise the number of errors is expected to be a small constant, that is much smaller than the size of the pattern. The paper also

An alphabet A is a finite non-empty set whose elements are called symbols. A nondeterministic finite automaton (NFA) is a 5 -tuple $M=\left(Q, A, \delta, q_{0}, F\right)$, where Q is a finite set of states, A is an alphabet, δ is a state transition function from $Q \times A$ to the power set of $Q, q_{0} \in Q$ is the initial state, $F \subseteq Q$ is a set of final states. A finite automaton is deterministic (DFA) if $\forall a \in A, q \in Q:|\delta(q, a)| \leq 1$.

A rooted and directed tree T is an acyclic connected directed graph $T=(N, E)$, where N is a set of nodes and E is a set of ordered pairs of nodes called directed edges. A root is a special node $r \in N$ with in-degree 0 . All other nodes of a tree T have in-degree 1 . There is just one path from the root r to every node $n \in N$, where $n \neq r$. A node n_{1} is a direct descendant of a node n_{2} if a pair $\left(n_{2}, n_{1}\right) \in E$.
T is called a labelled tree if there is a symbol from a finite alphabet A assigned to each node. T is called an ordered tree if a left-to-right sibling ordering in T is given. A subtree of a tree $T=(N, E)$ rooted at node $n \in N$ is a tree $T_{n}=\left(N_{n}, E_{n}\right)$, such that n is the root of T_{n} and N_{n}, E_{n} is the greatest possible subset of N, E, respectively.

The size of a tree $T=(N, E)$ denoted as $|T|$ is the cardinality of N. Any node of a tree with out-degree 0 is called a leaf. Leaves (T) stands for a set of all leaf nodes of the tree T. In the following, P and T will be used to denote rooted, ordered and labelled trees called a tree pattern and an input tree, respectively.

3 Problem Statement

A special type of the approximate tree pattern matching problem called approximate subtree matching is considered, where the goal is to find all occurrences of a tree pattern P to subtrees of an input tree T with maximum of k errors. Formally, the approximate subtree pattern matching problem for a maximum given distance is defined in the following way:

Definition 1 (Approximate subtree pattern matching with maximum of k errors). A tree pattern P matches an input tree $T=(N, E)$ in a node $n \in N$ if the distance D between the pattern P and the subtree of T rooted at n is less than or equal to k, i.e., $D\left(P, T_{n}\right) \leq k$.

The distance between a tree pattern and subtrees of an input tree is measured by minimal number of simple operations, called leaf nodes edit operations, applied to the tree pattern. Formal definitions of the leaf nodes edit distance and leaf nodes edit operations follows.

Definition 2 (Leaf nodes edit distance). Let T_{1} and T_{2} be two rooted, ordered and labelled trees. The leaf nodes edit distance between T_{1} and T_{2}, noted as $D_{L}\left(T_{1}, T_{2}\right)$, is the minimal number of leaf nodes edit operations needed to transform T_{1} to T_{2}. The distance D_{L} is unknown if T_{1} cannot be transformed to T_{2} by using only leaf nodes edit operations.

Definition 3 (Leaf nodes edit operations). Let $T=(N, E)$ be a rooted, ordered and labelled tree and S_{1}, S_{2}, S_{3} be sets such that $S_{1}=N, S_{2}=\operatorname{Leaves}(T), S_{3}=N$. Then leaf nodes edit operations for T are defined as follows:

1. node rename: change the label of a node $n \in S_{1}$ and assign $S_{1}=S_{1} \backslash\{n\}$,
2. leaf node deletion: delete a non-root leaf node $n \in S_{2}$ and assign $S_{2}=S_{2} \backslash\{n\}$,
3. leaf node insertion: insert a leaf node n_{1} as a child of a node $n_{2} \in S_{3}$. Do not update any set.

(a) Tree pattern P

(b) Input tree T

Figure 1: Graphical representation ree matching problem using leaf nodes edit distance $k=2$

Thus, there are seven occurrence maximum of $k=2$ errors as showr dashed lines and have numbers 1-7 errors in the occurrences of the tre
(1. match) 2 errors: rename the no
(2. match) 2 errors: rename the node a to b, delete the node b,
(3. match) exact match, 0 errors,
(4. match) 1 error: delete the node b,
(5. match) 1 error: delete the node b,
(6. match) 2 errors: rename the node a to b, rename the node b to a,
(7. match) 2 errors: add a leaf a as a child and as a left sibling of the node b.

Every sequential algorithm traverses a processed tree structı of nodes, which forms a corresponding linear notation of proposed method uses the following linear notation of tre notation which was introduced by Stoklasa, Janoušek and M

Definition 5 (Prefix bar notation). The prefix bar notat? T is defined as follows:

This section deals with the constrained approximate subtree pattern matching by a nondeterministic finite automaton, which reads an input tree T in the prefix bar notation. The finite automaton is able to find all approximate occurrences of a tree pattern P with maximum of k errors to subtrees of an input tree T using leaf nodes edit distance.

The method is analogous to the construction of approximate string pattern matching automata. The NFA is built for the tree pattern P to recognize a language $A^{*} X(P, k)$, where A is an alphabet containing all possible node labels that may occur in both the tree pattern and the input tree. The alphabet also includes a special symbol called bar (noted as |), introduced in the definition of the prefix bar notation. $X(P, k)$ is a finite language generated for the num ≥ 1 from a given tree pattern P using leaf nodes edit opel d as $X(P, k)=\left\{\operatorname{pref} _\operatorname{bar}(S): \operatorname{pref} _\operatorname{bar}(S) \in A^{*} \quad 1\right.$ automaton can find all occurrences of $x \in X($ of input tree. The construction of the NFA is

Example 7. Let P be a tree pattern as shows pref _bar $(P)=a b| |$. The transition diagra pattern P and maximum number of errors k

The NFA has a regular structure. State q and on level j (number of errors). States leaf operations allowing inserting bars. Insert leaf d subsequent "vertical" transitions. The first transiti the alphabet A (except $\mid)$ and they are followed by second transitions labelled by \mid. Rename node operations are represented by "diagonal" transitions labelled by those symbols of the alphabet A (except |) for which no direct transition to the next state exists. "Diagonal" ε-transitions represent delete leaf operations.

Input: A tree pattern $P(|P|=m)$ and its prefix bar notation pref_bar $(P)=p_{1} p_{2} \cdots p_{2 m}$, maximum number k of errors allowed.
Output: NFA M accepting language $A^{*} X(P, k)$.

1. Let $M^{\prime}=\left(\left\{q_{0}, q_{1}, \ldots, q_{2 m}\right\}, A, \delta, q_{0},\left\{q_{2 m}\right\}\right)$ be an exact pattern matching automaton, where (1) $\forall i, 0 \leq i<2 m: q_{i+1} \in \delta\left(q_{i}, p_{i+1}\right)$,
(2) $\forall a \in A: q_{0} \in \delta\left(q_{0}, a\right)$.
2. Create a sequence of $k+1$ instances of M^{\prime} such that: $M_{j}^{\prime}=\left(Q_{j}, A, \delta_{j}, q_{0 j}, F_{j}\right)$, $j=0,1,2, \ldots, k . Q_{j}=\left\{q_{0 j}, q_{1 j}, \ldots, q_{2 m j}\right\}, F_{j}=\left\{q_{2 m j}\right\}$.
3. Construct the automaton $M=\left(Q, A, \delta, q_{0}, F\right)$ as follows:
(a) $Q=\bigcup_{j=0}^{k} Q_{j}, q_{0}=q_{00}, F=\bigcup_{j=0}^{k} F_{j}$
(b) (copy) $\forall q \in Q, a \in A, j=0,1,2, \ldots, k$ do $\delta(q, a)=\delta_{j}(q, a)$,
(rename) $\forall i=0,1, \ldots, 2 m-1, j=0,1, \ldots, k-1, a \in A \backslash\left\{p_{i+1}, \mid\right\}$ do if $\left(p_{i+1} \neq \mid\right)$ then $q_{i+1, j+1} \in \delta\left(q_{i j}, a\right)$,
(delete) $\forall i=0,1, \ldots, 2 m-2, j=0,1, \ldots, k-1$ do if $\left(\left(p_{i+1} \neq \mid\right) \wedge\left(p_{i+2}=\mid\right)\right)$ then $q_{i+2, j+1} \in \delta\left(q_{i j}, \varepsilon\right)$
(insert) $\forall i=1,2, \ldots, 2 m-1, j=0,1, \ldots, k-1, a \in A \backslash\{\mid\}$ do $Q=Q \cup\left\{q_{i^{\prime} j^{\prime}}\right\}, q_{i^{\prime} j^{\prime}} \in \delta\left(q_{i j}, a\right), q_{i, j+1} \in \delta\left(q_{i^{\prime} j^{\prime}}, \mid\right)$.
4. Remove all states inaccessible from state q_{0} in M.

Algorithm 1: Construction of NFA that finds all approximate occurrences of a tree pattern P to subtrees of an input tree using leaf nodes edit distance.

Figure 2: Transition diagram of NFA from currences of a tree pattern P in prefix ba tree using leaf nodes edit operations with
all approximate oc$=a b \|$ in an input ors

5 Simulation of the Nondeterministic Finite Automaton for Constrained Approximate Subtree Matching

This section describes how the dynamic programming approach can be used to simulate the nondeterministic finite automaton for constrained approximate subreee matching. Given a tree pattern P with m nodes and an input tree T with n nodes, the algorithm computes a matrix D of size $(2 m+1) \times(2 n+1)$. Each element of the matrix $d_{i, j}(0 \leq i \leq 2 m, 0 \leq j \leq 2 n)$ contains the constrained distance between the partial trees represented by prefix bar notations of the tree pattern of length i and the input tree of length j. Elements of the matrix D are computed as follows:

$$
\begin{array}{lll}
d_{i, 0}=k+1 & 0<i \leq 2 m \\
d_{0, j}=0 & 0 \leq j \leq 2 n \\
d_{i, j}=\min & \begin{cases}\text { if }\left(p_{i}=t_{j}\right) \text { then } d_{i-1, j-1} & \text { (match) } \\
\text { if }\left(p_{i} \neq t_{j} \wedge p_{i}, t_{j} \neq \mid\right) \text { then } d_{i-1, j-1}+1, & \text { (rename) } \\
\text { if }\left(i>1 \wedge p_{i}=\left|\wedge p_{i-1} \neq\right|\right) \text { then } d_{i-2, j}+1, & \text { (delete) } \\
\text { if }\left(j>1 \wedge t_{j}=\left|\wedge t_{j-1} \neq\right|\right) \text { then } d_{i, j-2}+1, & \text { (insert) } \\
k+1 & \text { (otherwise) }\end{cases} \\
\qquad 0<i \leq 2 m, 0<j \leq 2 n
\end{array}
$$

This formula represents the simulation of the nondeterministic finite automaton introduced in the previous section. If $d_{2 m, j} \leq k$ then the tree pattern occurs in the input tree T with $d_{2 m, j}$ errors ending at position j in the pref _bar (T). Note, that all values $d_{i, j}>k$ in the matrix D can be replaced by the errors higher than k.

Example 8. Let P be a tree pattern (pref (pref_bar $(T)=b b b|a b|| | a a|b a|| | \mid)$ as s tively. The matrix D computed for the tr maximum number of errors $k=2$ is show pattern P in the input tree T are marked the matrix represented by number 3 .

		00	000								0	00					
	31	11	11	2		1	13	33		01	11	10	02	23	3		
	33	31	112	2	30	03	33	33	31	13	31	12	22	23	3	3	
		22	22	1		0	03	33	111	11	12	21	12	22	2		
			33									33					

Table 1: Matrix D for a tree pattern P, input tree T and $k=2$, where pref_bar $(P)=$ $a b|\mid$ and pref_bar $(T)=b b b| a b|||a a| b a|||\mid$

Theorem 9. The dynamic programming approach described by the formula can be used to simulate a run of the NFA for constrained approximate subtree matching using leaf nodes edit operations.

Proof. The NFA has a regular structure. It consists of depths $i(0 \leq i \leq 2 m)$ and levels $j(0 \leq j \leq 2 n)$. A depth represents a position in the pattern, while a level stands for the number of existing errors. Therefore, state $q_{i j}$ is at depth i and on level j. In the matrix D, each row i represents the depth i and each column j corresponds to a j-th step of a run of the NFA (i.e., j symbols of $\operatorname{pref} _\operatorname{bar}(T)$ read).

Every value $d_{i, j}$ of the matrix D stands for a level number (number of errors) of the topmost active state in i-th depth of the NFA and j-th step of the run of the NFA. If the value $d_{i, j}>k$ it simply means that there is no active state for the particular depth and step of the NFA.

At the beginning only the initial state is active, which is in the formula represented by setting $d_{0,0}=0$ and $d_{i, 0}=k+1(0<i \leq 2 m)$. The second part of the formula $d_{0, j}=0(0 \leq j \leq 2 n)$ simulates the self loop in the initial state. Third part of the formula describes the individual operations. The term $d_{i-1, j-1}$ simulates a matching transition - the value is copied to $d_{i, j}$ as the level has not changed and depth and step of the NFA is increased by 1 . Term $d_{i-1, j-1}+1$ corresponds to a rename transition the level, depth and step are all increased by 1 . Delete transition is represented by term $d_{i-2, j}+1$, level is increased by 1 , depth (position in the pattern) is increased by 2 , but position in the text is not changed. The term $d_{i, j-2}+1$ simulates insert transitions - level is again increased by 1 , position in the text is increased by 2 , but the depth is not increased. The last term sets $d_{i, j}$ to $k+1$, which means there is no possible transition.

Therefore, all transitions of the NFA are considered. If $d_{2 m, j} \leq k$ then a final state $q_{2 m, d_{2 m, j}}$ is active and the match is report urs in the input tree T with $d_{2 m, j}$ errors ending at position j Possibly, there can exist more ways in th asure that values $d_{2 n}$ imum function min
e a tree pattern and ly, where pref_bar $(F$ in the tree T just on occurs in T with 2 errors (delete leaf node b unction in the dynamic programming formula, stead the first one.

bo o ${ }^{c}$

(a) Tree pattern P

Figure 3: Graphical representation o

Theorem 11. The simulation of the NFA for constrai matching using leaf nodes edit operations by dynamic pro plexity $(2 m+1) \times(2 n+1)=\mathcal{O}(m n)$ and space complexity $4 m=\mathcal{O}(m)$.

Proof. The dynamic programming approach builds a matrix D of size $(2 m+1) \times$ $(2 n+1)$. All operations introduced in the formula can be done in constant time,
hence the time complexity of the simulation is $\mathcal{O}(m n)$. In the matrix D every column is computed using just two previous columns. Therefore, only 4 m space is needed in order to compute all values and the space complexity results in $\mathcal{O}(m)$.

6 Deterministic Finite f ~nstrained Approximate Subtree

To achieve better time complexity, the standard determinisation algor positions of all occurrences of the simply run on the prefix bar notati every time it goes through a final s the number of nodes of T.

Theorem 12. Given an input tree $T(|T|=n)$ and a tree patte the deterministic automaton for approximate subtree matching tha standard determinisation algorithm over the NFA constructed by all approximate occurrences of the subtree P in the input tree T us distance in time $2 n=\mathcal{O}(n)$.

Proof. The prefix bar notation of the input tree T is in the sea exactly once, symbol by symbol from left to right. The appropriate transition is taken each time a symbol is read, resulting in exactly $2 n$ transitions. Approximate occurrences of the tree pattern P are reported each time that DFA goes through a final state.

In order to prove the upper bound of the state complexity of the deterministic finite automaton that finds all approximate occurrences of subtree P in an input tree T using le concerning the matching probl locate words of
 reated from a nondeterministic one, using standard deterl on a subset construction. The nondeterministic automare with the self loop in the initial state for all symbols of

Moreover, it was shown that any acyclic automaton accepting language X can be transformed into a deterministic dictionary matching automaton accepting language $A^{*} X$ by just adding the self loop in the initial state and using standard determinisation algorithm. It has been proven that the number of states of such created automaton in not greater than $\mathcal{O}\left(\sum_{x \in X}|x|\right)$.

The proposed nondeterministic automaton that finds all approximate occurrences of a tree pattern P to subtrees of an input tree T using leaf nodes edit distance can be viewed as a nondeterministic dictionary matching automaton for a dictionary $X(P, k)$. The finite language $X(P, k)$ was defined in the previous section as follows:

$$
X(P, k)=\left\{\text { pref_bar }(S): \text { pref_bar }(S) \in A^{*}, D_{L}(P, S) \leq k\right\}
$$

Therefore, the deterministic automaton M accepting language $A^{*} X(P, k)$, noted as $M\left(A^{*} X(P, k)\right)$, has maximum of $\mathcal{O}\left(\sum_{x \in X(P, k)}|x|\right)$ states. Hence, the goal is to determine the size of the language $X(P, k)$ by finding the number of strings that represent prefix bar notations of trees created from the tree pattern P by using leaf nodes edit operations.

Theorem 13. Given a tree pattern $P(|P|=m)$, the number of strings, standing for prefix bar notations of trees, created from P by at most k rename node operations is $\mathcal{O}\left(|A|^{k} m^{k}\right)$.

Proof. The set of strings created by exactly i rename node operations $(0 \leq i \leq k)$ is made by replacing exactly i symbols of $\operatorname{pref} _\operatorname{bar}(P)$ by other symbols. There are $\binom{m}{i}$ possibilities for choosing i symbols from $\operatorname{pref} \operatorname{bar}(P)$ and $|A|-2$ possibilities for choosing the new symbol. Hence, the number of generated strings is at most $\binom{m}{i}(|A|-2)^{i}=\mathcal{O}\left(m^{i}\right)(|A|-2)^{i}=\mathcal{O}\left(|A|^{i} m^{i}\right)$. Therefore, the size of the set of strings created by at most k rename node operations is $\sum_{i=0}^{k} \mathcal{O}\left(|A|^{i} m^{i}\right)=\mathcal{O}\left(|A|^{k} m^{k}\right)$.

Theorem 14. Given a tree pattern $P(|P|=m)$, the number of strings, standing for prefix bar notations of trees, created from P by at most k delete leaf node operations is $\mathcal{O}\left(|\operatorname{Leaves}(P)|^{k}\right)$.

Proof. The set of strings created by exactly i delete leaf operations ($0 \leq i \leq k$) is made by deleting exactly $2 i$ symbols from pref _bar (P). There are $(\underset{i}{|\operatorname{Leaves}(P)|})=$ $\mathcal{O}\left(\mid\right.$ Leaves $\left.\left.(P)\right|^{i}\right)$ possibilities for choosing i leaf nodes from pref_bar (P). Therefore, the size of the set of strings created by at most k delete leaf operations can be specified as follows: $\sum_{i=0}^{k} \mathcal{O}\left(|\operatorname{Leaves}(P)|^{i}\right)=\mathcal{O}\left(|\operatorname{Leaves}(P)|^{k}\right)$.

Theorem 15. Given a tree pattern $P(|P|=m)$, the number of strings, standing for prefix bar notations of trees, created from P by at most k insert leaf node operations is $\mathcal{O}\left(|A|^{k} m^{k}\right)$.

Proof. The number of strings created by exactly rations can be transformed to the number of dipaths (direc found in a nondeterministic finite automaton constructed by ne node and delete leaf nodes transitions removed. A dipath \quad te and goes to some of final states. There are $2 m$ steps neede (reading the pattern) and i steps down (insert operations, esenting an insert operation can be viewed as one step). Hend sented by a string containing $2 m$ letters R (right) and i letters D (down). Moreover, the dipath needs to start and end with the letter R. The number of such strings is $\binom{2 m+i-2}{i}$. Each letter D can represent $|A|-1$ inserted symbols, so the total number of strings created by exactly i insert leaf node operations is at most $\binom{2 m+i-2}{i}(|A|-1)^{i}=\mathcal{O}\left(m^{i}|A|^{i}\right)$. Therefore, the size of the set of strings created by at most k insert leaf node operations is $\sum_{i=0}^{k} \mathcal{O}\left(|A|^{i} m^{i}\right)=\mathcal{O}\left(|A|^{k} m^{k}\right)$.

Theorem 16. Given a tree pattern $P(|P|=m)$, the number of strings, standing for prefix bar notations of trees, created from P by at most k operations node rename, leaf node insertion and leaf node deletion is $\mathcal{O}\left(|A|^{k} m^{k}\right)$.

Proof. The number of such strings can be computed as follows:

$$
\begin{aligned}
\sum_{x=0}^{k} & \sum_{y=0}^{k-x} \sum_{z=0}^{k-x-y} \underbrace{\mathcal{O}\left(|A|^{x} m^{x}\right)}_{\substack{\text { rename } \\
\text { x nodes }}} \underbrace{\mathcal{O}\left(|A|^{y} m^{y}\right)}_{\substack{\text { insert } \\
\text { y leaves }}} \underbrace{\mathcal{O}\left(\mid \text { Leaves }\left.(P)\right|^{z}\right)}_{\substack{\text { delete } \\
z \text { l leaves }}} \\
& \sum_{x=0}^{k} \sum_{y=0}^{k-x} \sum_{z=0}^{k-x-y} \mathcal{O}\left(|A|^{x+y} m^{x+y} \mid \text { Leaves }\left.(P)\right|^{z}\right) \\
& \sum_{x=0}^{k} \sum_{y=0}^{k-x} \sum_{z=0}^{k-x-y} \mathcal{O}\left(|A|^{x+y} m^{x+y+z}\right)=\mathcal{O}\left(\left|A^{k}\right| m^{k}\right) .
\end{aligned}
$$

Theorem 17.

7 Conclusion and Future Work

It was shown that finite automata can be used to solve constrained approximate subtree pattern matching problem. This is quite interesting since processing tree data structures usually requires a pushdown automaton as a model of computation. The proposed method creates a nondeterministic finite automaton for a given tree pattern P which is able to find all occurrences of a tree pattern P to subtrees of an input tree T with maximum distance (number of errors) k. The distance between a tree pattern P and subtrees of an input tree T is measured by minimal number of simple operations called leaf nodes edit operations.

techniques described here may also be relevant to other forms of approximate tree pattern matching problem, which we hope to explore in the future. Currently, we are working on the automata approach in respect to larger sets of edit operations allowed. In case of less restricted sets including general operations such as node insertion or node deletion the pushdown automata are required as models of computation.
Acknowledgements. This research has been partially supported by grant of CTU in Prague as project No. SGS17/209/OHK3/3T/18.

References

1. P. Bille: A survey on tree edit distance and related problems. Theoretical computer science, 337(1) 2005, pp. 217-239.
2. R. Cole and R. Hariharan: Tree pattern matching to subset matching in linear time. SIAM Journal on Computing, 32(4) 2003, pp. 1056-1066.
3. M. Crochemore and C. Hancart: Automata for matching patterns, in Handbook of formal languages, Springer, 1997, pp. 399-462.
4. E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithms, 6(1) Dec. 2009, pp. 2:1-2:19.
5. T. Flouri: Pattern matching in tree structures, PhD thesis, Czech Technical University, 2012.
6. C. M. Hoffmann and M. J. O'Donnell: Pattern matching in trees. Journal of the ACM (JACM), 29(1) 1982, pp. 68-95.
7. S. R. Kosaraju: Efficient tree pattern matching, in Foundations of Computer Science, 1989., 30th Annual Symposium on, IEEE, 1989, pp. 178-183.
8. L. KrčÁL: Tree edit distance and approximate tree pattern matching problem. Bachelor's thesis. Department of Computer Science and Engineering, Czech Technical University in Prague, Prague, Czech Republic, 2011.
9. J. Lahoda and J. ŽĎÁrek: Simple tree pattern matching for trees in the prefix bar notation. Discrete Applied Mathematics, 163 2014, pp. 343-351.
10. S. Y. Lu: A tree-to-tree distance and its application to cluster analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, pp. 219-224.
11. F. Luccio and L. Pagli: Simple solutions for approximate tree matching problems, in Colloquium on Trees in Algebra and Programming, Springer, 1991, pp. 193-201.
12. B. Melichar: Approximate string matching by finite automata, in International Conference on Computer Analysis of Images and Patterns, Springer, 1995, pp. 342-349.
13. B. Melichar, J. Holub, and T. Polcar: Text searching algorithms. Available on: http://stringology.org/athens, 2005.
14. S. M. Selkow: The tree-to-tree editing problem. Information processing letters, 6(6) 1977, pp. 184-186.
15. J. Stoklasa, J. Janoušek, and B. Melichar: Subtree pushdown automata for trees in bar notation, 2010. London Stringology Days, 2010.
16. M. Svoboda and I. Holubová: Refinement correction strategy for invalid XML documents and regular tree grammars, in International Conference on Database and Expert Systems Applications, Springer, 2014, pp. 308-316.
17. K. C. TAI: The tree-to-tree correction problem. Journal of the ACM (JACM), 26(3) 1979, pp. 422-433.
18. K. Zhang, D. Shasha, and J. T. L. Wang: Approximate tree matching in the presence of variable length don't cares. Journal of Algorithms, 16(1) 1994, pp. 33-66.
