
Simple Tree Pattern Matching for Trees in the

Prefix Bar Notation

Jan Lahoda1 and Jan Žd’́arek2,⋆

1 Sun Microsystems Czech,
V Parku 2308/8, 148 00 Praha 4, Czech Republic,

Jan.Lahoda@sun.com
2 Department of Theoretical Computer Science,

Faculty of Information Technology,
Czech Technical University in Prague,

Kolejńı 550/2, 160 00 Prague 6, Czech Republic
Jan.Zdarek@fit.cvut.cz

Abstract. A new pushdown automata based algorithm for searching all occurrences
of a tree pattern in a subject tree is presented. The algorithm allows pattern matching
with don’t care symbols and multiple patterns. A simulation algorithm is also proposed,
and practical experimental results are presented.

1 Introduction

Tree pattern matching has numerous applications in computing, for example in pro-
gram optimization, code generation and refactoring. It has been researched thorougly
for several decades, see Janoušek and Melichar [9]. Recently, a new stream of re-
search has been started by Janoušek and Melichar [9]. They consider trees in the
postfix notation as strings and present a transformation from any given bottom-up
finite tree automaton recognizing a regular tree language to a deterministic pushdown
automaton accepting the same tree language in postfix notation. Based on this fun-
damental result, Melichar et al. started to extend principles of text pattern matching
using finite automata into the tree pattern matching domain. They use pushdown
automata for matching in trees, where trees are represented by their prefix or post-
fix notation [8,4,5]. These automata are either constructed directly as deterministic
pushdown automata, or they are nondeterministic input-driven pushdown automata.
The nondeterminism can be removed in the latter case, as it is known that any input-
driven pushdown automaton can be determinised [13]. The prefix bar notation is the
prefix notation of a rooted ordered labeled directed tree where only closing bracket of
a bracket pair is used. The prefix bar notation was introduced by Stoklasa, Janoušek
and Melichar in [10,11]. A detailed overview of the tree matching algorithms based
on pushdown automata is due to Janoušek [7].

In this paper we propose a new algorithm for tree pattern matching. The algo-
rithm allows to perform tree pattern matching with don’t cares, including multiple
tree patterns, by means of pushdown automata. The pushdown automata constructed
by our algorithm are visibly pushdown [1] and so can be determinised. As the deter-
minised versions of the visibly pushdown automata can be quite big (see Section 3), a
simulation algorithm is also proposed for the constructed automata. The simulation
algorithm was evaluated experimentally and the results are presented in the final part
of the paper.

⋆ Partially supported by GAČR project No. 201/09/0807 and MŠMT project No. MSM6840770014.

Jan Lahoda, Jan Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation, pp. 25–36 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’́arek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

26 Proceedings of the Prague Stringology Conference 2010

The motivation to invent the algorithm described herein was a tool that allows to
quickly search vast amounts of source code and find given patterns in the code. The
tool is given one or more AST snippets (“patterns”), including don’t cares, and then
it processes a huge number of ASTs and searches for occurrences of the pattern(s)
in these ASTs. To fulfill this task, the tool preprocesses the pattern once, and then
analyses the ASTs, processing them on the fly.

1.1 Definitions

Let A be a finite alphabet and its elements be called symbols. A set of strings over
A is denoted by A∗. A language L is any subset of A∗, L ⊆ A∗. The empty string
is denoted by ε. The “don’t care” symbol is a special universal symbol that matches
any other symbol including itself [3].

A finite automaton (FA) is a quintuple (Q,A, δ, I, F). Q is a finite set of states, A

is a finite input alphabet, F ⊆ Q is a set of final states. If an FA is nondeterministic
(NFA), then δ is a mapping Q × (A ∪ {ε}) 7→ P(Q) and I ⊆ Q is a set of initial
states. A deterministic FA (DFA) is (Q,A, δ, q0, F), where δ is a (partial) function
Q × A 7→ Q; q0 ∈ Q is the only initial state.

The following definitions introduce pushdown automata and related notions. A
(nondeterministic) pushdown automaton (PDA), is a septuple (Q,A,G, δ, q0, Z0, F),
where Q is a finite set of states, A is a finite input alphabet, G is a finite pushdown
store alphabet, δ is a mapping Q× (A ∪ {ε}) × G 7→ P(Q×G∗), q0 ∈ Q is an initial
state, Z0 ∈ G is the initial pushdown store symbol, F ⊆ Q is a set of final states.
A pushdown store operation of PDA M , M = (Q,A,G, δ, q0, Z0, F), is a relation
(A ∪ {ε}) × G 7→ G∗. A pushdown store operation produces new contents on the
top of the pushdown store by taking one input symbol or the empty string from the
input and the current contents on the top of the pushdown store. The pushdown store
grows to the right if written as a string x, x ∈ G∗. A transition of PDA M is the
relation ⊢M⊆ (Q×A∗ ×G)× (Q×A∗ ×G∗). It holds that (q, aw, αβ) ⊢M (p, w, γβ)
if (p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation ⊢M is denoted ⊢k

M
, ⊢+

M
, ⊢∗

M
, respectively.

A PDA is a deterministic PDA if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G.
2. For all α ∈ G, q ∈ Q, if δ(q, ε, α) 6= ∅, then δ(q, a, α) = ∅ for all a ∈ A.

A language L accepted by PDA M is a set of words over finite alphabet A. It is
defined in two distinct ways:

1. Accepting by final state:
L(M) = {x : δ(q0, x, Z0) ⊢

∗

M
(q, ε, γ), x ∈ A∗, γ ∈ G∗, q ∈ F} .

2. Accepting by empty pushdown store:
Lε(M) = {x : (q0, x, Z0) ⊢

∗

M
(q, ε, ε), x ∈ A∗, q ∈ Q} .

If the PDA accepts the language by empty pushdown store then the set F of its final
states is defined to be the empty set.

Alur and Madhusudan [1] introduced a special type of pushdown automata and
languages they accept.

A visible alphabet Ã is a triple Ã = (Ac, Ar, Aint). Ã comprises three categories
of symbols, three disjoint finite alphabets: Ac is a finite set of calls (pushdown store

J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 27

grows), Ar is a finite set of returns (pushdown store shrinks), Aint is a finite set of
internal actions that do not use the pushdown store.

A visibly pushdown automaton (VPA) is a septuple (Q, Ã,G, δ,Qin, Z0, F), where
Q is a finite set of states, Ã is a finite visible alphabet, G is a finite pushdown store
alphabet, δ is a mapping: (Q × Ac × ε) 7→ (Q × (G \ {Z0})) ∪

(Q × Ar × G) 7→ (Q × ε) ∪
(Q × Aint × ε) 7→ Q × ε) ,

Qin ⊆ Q is a set of

initial states, Z0 ∈ G is the initial pushdown store symbol, F ⊆ Q is a set of final
states.

All notions related to extended pushdown automata hold for visibly pushdown
automata as well. Specifically, the language accepted by visibly pushdown automaton:
A language L(M) accepted by visibly pushdown automaton M is the set of words
accepted by M . A visibly pushdown language is a set of words over some finite alphabet
A, L ⊆ A∗ with respect to Ã (Ã-VPL) if there exists a visibly pushdown automaton
M over Ã such that L(M) = L. Visibly pushdown automata can be determinised.

Let V be a set of nodes, E be a set of edges. A rooted ordered labeled directed
tree T , T = (V,E), is a rooted directed tree where every node v ∈ V is labeled by
symbol a ∈ A and its out-degree is given by the arity of the symbols of A. Nodes
labeled by nullary symbols (constants) are called leaves. All trees used in this paper
are rooted ordered labeled directed trees.

Let us define the prefix bar notation [11, analogous to Def. 2].

Definition 1. The prefix bar notation of tree P , with root r and its children c1, . . . , cn,
denoted by d(P) is defined recursively as follows: d(P) = rd(c1) · · · d(cn) ↑.

Note also that r and ↑ in Definition 1 are symbols of alphabets Ac and Ar, re-
spectively, of a particular visibly pushdown automaton we simulate.

2 Main Idea

In this section, we will describe new algorithms for exact tree pattern matching and
for tree pattern matching with don’t cares. The algorithms use Euler-like notation to
serialize the trees (Žd’́arek [12, Alg. 3.8]) and finite automata or pushdown automata
to perform the matching. The algorithms described herein in fact extend the algorithm
described by Flouri, Janoušek and Melichar in [5] where they consider deterministic
PDA constructions for subtree pattern matching.

2.1 Exact Pattern Matching

In this section, we will present a simple algorithm for exact tree pattern matching
based on finite automata. As noted by Stoklasa, Janoušek and Melichar [11, Theo-
rem 1], the prefix bar notation of a tree contains prefix bar notations of all subtrees of
the tree as substrings. The exact pattern matching can therefore be performed easily
as follows. First, a finite automaton for exact string pattern matching is constructed
for d(P). A string matching algorithm is then used to locate the occurrences of d(P)
in d(T), which correspond to occurrences of P in T .

Theorem 2. Given tree pattern P , containing m total nodes, and subject tree T ,
containing n total nodes, the aforementioned algorithm for tree pattern matching runs
in O(n + m) time.

28 Proceedings of the Prague Stringology Conference 2010

Proof. The deterministic finite automaton constructed for the prefix bar notation of
P will have 2m + 1 states, and can be constructed in O(m) time (Crochemore [2],
Holub [6]). Pattern matching over the prefix bar notation of T using this automaton
then takes O(n) time.

2.2 Pattern Matching with Don’t Cares

In this section, we will show how to extend the algorithm described in the previous
section to handle don’t care tree nodes.

Definition 3. A leaf node of tree pattern P marked with don’t care symbol + matches
any single complete subtree in the subject tree T .

Definition 4. The prefix bar notation of tree P with don’t care symbols, root r and
children c1, . . . , cn, denoted by d(P) is defined recursively as follows:

d(P) =

{

rd(c1) · · · d(cn) ↑ iff r 6= +
+ iff r = +

The finite automata are not sufficient to model tree pattern matching with don’t
care symbols. Pushdown automata (PDA) will be used for this task.

Algorithm 1 shows the construction of the pushdown automaton for tree pattern
matching with don’t cares. The tree pattern matching is then performed over the
prefix bar notation of the subject tree.

The PDA constructed by Algorithm 1 is structurally similar to finite automaton
for exact tree pattern matching described in the previous section. The pushdown op-
erations for “down” and “up” symbols are as follows. For “down” symbols, pushdown
symbol e is pushed to the store, for “up” symbols the same symbol is popped from
the store. The reason for pushing and popping this symbol is to ensure that dur-
ing matching the pushdown store contains as many symbols as is the current depth
in the subject tree. This limits the actual pushdown-store non-determinism of the
automaton.

The don’t cares are translated into the PDA as shown in Figure 1. In the transition
from the state s to (inner) state i, the “target” state is remembered in the pushdown
store. The loop transitions on the state i ensure that whole subtree will be skipped.

In Algorithm 1, lines 4– 11 construct the states for matching the don’t care symbol
(as shown in Figure 1). Lines 13–19 construct the basic structure of the automaton.
Lines 22–25 construct the loop in the initial state.

For patterns without don’t care symbols, the Algorithm 1 constructs automata
that are functionally equivalent to finite automata for exact tree pattern matching
of trees in prefix bar notation described in Section 2.1. The states and transitions
that are created for don’t care symbols assure that the automaton will skip symbols
that correspond to a complete subtree in the prefix bar notation. The first such
symbol pushes a marker symbol at the top of the of the pushdown store. When the
closing ↑ symbol of the complete subtree is processed, this marker is found at the
top of the pushdown store, and the matching continues with the following symbol
of the pattern’s prefix bar notation. The algorithm therefore performs tree pattern
matching with don’t care symbols for tree in the prefix bar notation.

The PDA constructed by Algorithm 1 is a non-deterministic one. Note, however,
that the non-determinism is caused solely by the loop in the initial state. Without it,
the automaton would be deterministic and would implement a tree-top search. The
PDA is also a visibly pushdown automaton ([1]) and so can always be determinised.

J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 29

s ti
a ∈ A|ε → t . . .

↑ |e → ε

. . .

a ∈ A|ε → e

↑ |t → ε

Figure 1. PDA states representing don’t care symbol

Algorithm 1 Construction of PDA from tree pattern for tree pattern matching
Input: Pattern tree P in the prefix bar notation
Output: PDA M = (Q,A,G, δ, q0, e, F)
1: create state q0, q = q0, Q = {q0}, G = {e}
2: for all a ∈ d(P) do

3: if a is + then

4: create new states q1, q2

5: for all b ∈ A do

6: δ(q, b, ε) = {(q1, q2)}
7: δ(q1, b, ε) = {(q1, e)}
8: end for

9: δ(q1, ↑, e) = {(q1, ε)}
10: δ(q1, ↑, q2) = {(q2, ε)}
11: q = q2, G = G ∪ {q2}
12: else

13: create new state q′

14: if a is ↑ then

15: δ(q, a, e) = {(q′, ε)}
16: else

17: δ(q, a, ε) = {(q′, e)}
18: end if

19: q = q′

20: end if

21: end for

22: for all b ∈ A do

23: δ(q0, b, ε) = δ(q0, b, ε) ∪ {(q0, e)}
24: end for

25: δ(q0, ↑, e) = {(q0, ε)}
26: F = {q}

30 Proceedings of the Prague Stringology Conference 2010

b

a

f+c

d

Figure 2. Example tree pattern with don’t cares - its prefix bar notation is abc ↑↑
d + f ↑↑↑

12

11

10

97

6

1

0

3

2

5

4 8

c|ε → e

d|ε → e

↑ |e → ε

b|ε → e

f |ε → e

x ∈ A|ε → e, ↑ |e → ε

↑ |e → ε
x ∈ A|ε → 8

↑ |8 → ε

↑ |e → ε

↑ |e → ε

x ∈ A|ε → e, ↑ |e → ε

↑ |e → ε

a|ε → e

Figure 3. Pattern matching PDA for tree pattern shown in Figure 2

J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 31

2.3 Multiple Pattern Matching

The algorithms described in the previous sections can be straightforwardly extended
to perform the tree pattern matching with don’t cares for multiple patterns. For each
pattern, the PDA is constructed using Algorithm 1. A new PDA is then constructed
from these sub-PDAs by uniting the initial states.

2.4 Simulation

In the previous sections, we have shown a way to construct a non-deterministic push-
down automaton for tree pattern matching with don’t cares. The constructed automa-
ton is also visibly pushdown, and so can be determinised. However, as the automaton
can become quite big during the determinization process, we will show how to effi-
ciently simulate the non-deterministic automaton. In this section, we will show that
the pushdown store non-determinism is limited and base the simulation on this fact.

Lemma 5 (Absence of variable-length branches). Let T be a tree and d(T) its
prefix bar notation. Let M = (Q,A,G, δ, q0, e, F) be a PDA constructed by Algorithm 1
for a tree pattern P . Then for each prefix p of d(T) exists an integer l such that for
each transition sequence (q0, p, e) ⊢

∗ (q′, ε, s), l = |s|.

Proof. In the PDA created by Algorithm 1, all the transitions for ↑ pop a symbol
from the pushdown store and all transitions for the other symbols push a symbol to
the pushdown. Consequently, the depth of the pushdown store depends only on the
number of ↑ and non-↑ symbols in the currently processed prefix, not on the sequence
of transitions.

Note 6 (No interference on the pushdown store). Let M = (Q,A,G, δ, q0, e, F) be a
PDA constructed by Algorithm 1 for a tree pattern P . Then there are no two states
q1, q2 ∈ Q, q1 6= q2, a ∈ A and s, u, w ∈ G, s 6= e such that δ(q1, a, w) = (q′1, ws),
δ(q2, a, u) = (q′2, us).

The meaning of Lemma 5 is that there are no variable-length branches of the push-
down store while simulating this automaton. Note 6 points out that no two distinct
transitions store the same symbol to the pushdown store. These two observations
together assure that the pushdown store of PDA constructed by Algorithm 1 can be
simulated using bit parallelism. The simulation algorithm based on bit-parallelism is
described below.

The simulation is shown in Algorithm 2. The simulation is based on the simulation
of non-deterministic finite automata using bit-parallelism. Variable W consisting of
|Q| bits contains the bit mask of active states (one bit of W is assigned to each
state, active and inactive states have bit value 1 and 0, respectively). Each entry
of pushdown store S, consisting of |G| bits, contains the bit mask of the current
pushdown symbols (one bit is assigned to each pushdown symbol except e, if the
symbol is in the pushdown store at the given level, value 1 is used, 0 otherwise).
Symbol e is always on the pushdown store and does not need to be encoded.

Theorem 7. Algorithm 2 runs in O(nm2) worst case time, where n is the number
of nodes of the subject tree and m is the number of nodes of the pattern tree.

32 Proceedings of the Prague Stringology Conference 2010

Algorithm 2 Simulation of PDA for tree pattern matching
Input: Subject tree T in the prefix bar notation, PDA M = (Q,A,G, δ, q0, e, F)
Output: Root nodes of the occurrences of tree pattern P in subject tree T

1: W = {q0}, S = ∅
2: for all a ∈ d(T) do

3: if a is ↑ then

4: W ′ = ∅
5: for all q ∈ W do

6: (q′, ε) = δ(q, ↑, e) /*at most one such entry*/
7: W ′ = W ′ ∪ {q′}
8: end for

9: W ′ = W ′∪ pop element from S

10: W = W ′

11: else

12: W ′ = ∅, S′ = ∅
13: for all q ∈ W do

14: for all (q′, s′) in δ(q, a, ε) do

15: if s′ = e then

16: W ′ = W ′ ∪ {q′}
17: else

18: S′ = S′ ∪ {s′}
19: end if

20: end for

21: end for

22: W = W ′, push S′ to S

23: end if

24: if W ∩ F 6= ∅ then

25: found occurrences of P in T

26: end if

27: end for

J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 33

Proof. The main loop starting at line 2 iterates over 2n elements of the prefix bar
notation of the subject tree T . Both branches of the if statement on line 3 iterate
over the currently active states, perform transitions in the PDA and merge the results
using union. There may be up to O(m) active states and each union takes up to O(m)
time. As δ(q, a, ε) may contain at most two elements (for q = q0), the loop on line 14
is performed at most twice. Therefore, each pass through the if statement on line 3
takes O(m2) time. The intersection on line 24 takes O(|F |) time (O(m) in the worst
case). Therefore, the total worst case time complexity of the algorithm is O(nm2).

An example of the simulation is given in Figure 5. The subject tree of the tree
pattern matching is depicted in Figure 4, the tree pattern is shown in Figure 2 and
the corresponding PDA for tree pattern matching is depicted in Figure 3. The figure
presents set of the active states W and pushdown store S, used to identify the end of
a subtree matched by a don’t care symbol in the pattern. Their values are displayed
before and after the reading of each input symbol.

b

b

a

fac

d

c x f

d

Figure 4. Example subject tree for example shown in Figure 5

text a b c ↑ ↑ d a b c ↑ ↑ d x ↑ f ↑ ↑ ↑ f ↑ ↑ ↑
W 0

1 2 3 4 5 6 8 9 10 11 12

1 2 3 4 5 6 8 9 10 11 12

S {8} {8} {8} {8}

{8} {8} {8} {8} {8}

{8} {8} {8}

Figure 5. Example of simulation using PDA depicted in Figure 3 in the subject tree
depicted in Figure 4; W is the set of active states, S is the pushdown store; F = {12}

34 Proceedings of the Prague Stringology Conference 2010

3 Experimental Results

To evaluate the practical properties of the proposed algorithm, we have implemented
the algorithm and performed several experiments.

First, let us discuss the number of states and pushdown symbols in non-determinis-
tic and deterministic pushdown automata for tree pattern matching. We have imple-
mented an incremental version of determinization algorithm described by Alur and
Madhusudan [1]. Consider for example tree pattern depicted in Figure 6. The cor-
responding non-deterministic pushdown automaton has 19 states and 6 pushdown
symbols. When this automaton is determinised, the resulting deterministic pushdown
automaton has 20087 accessible states and 154 used pushdown symbols. Although this
is significantly less than the upper bound of number of states and number of push-
down symbols (which is in this case 219·6 states and and 26·6 pushdown symbols), the
absolute number of states is still significant and it would be impractical to keep such
big automata.

+

+

a

a

a

a

+

+

+

Figure 6. Example tree for which corresponding tree pattern matching PDA is de-
terminised

Furthermore, we tested the impact of the use of bit parallelism for simulating
the non-deterministic PDA for tree pattern matching, 46433 Java source files were
searched for selected patterns. The tested source files were a complete NetBeans IDE
main code base, available at http://hg.netbeans.org/main-golden, the changeset
on which the experiments were performed was 96f614d8662d. The tested patterns
are shown in Table 1. Let us note that the patterns are expanded before the PDA
is constructed using the algorithms denoted above. This expansion produces a set of
patterns for each input pattern for the user’s convenience. For example the pattern

org.openide.util.RequestProcessor.getDefault()

is augmented with patterns like

RequestProcessor.getDefault() and getDefault().

J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 35

The experimental results are summarized in Table 2. The results suggest that the
number of states active at any given time during the matching is very low in practice.
The simulation algorithm is therefore practically viable.

1. method invocation:

org.openide.util.RequestProcessor.getDefault()

2. double checked locking:

if ($var == null) {

synchronized($lock) {

if ($var == null) $statements;

}

}

3. 151 standard NetBeans IDE patterns

Table 1. Tested patterns

pattern name total states active states running time [s]
average maximum

method invocation 20 1.54 3 163
double checked locking 449 1.52 12 121
all 3853 6.67 70 254

Table 2. Summary of experimental results. For tested patterns see Table 1

4 Conclusion

In this paper we have presented a new algorithm for tree pattern matching. The
algorithm is based on pushdown automata and supports both don’t care symbols and
multiple patterns. An algorithm for efficient simulation of the automaton is given.

We see several possible directions for future research. One possible direction is
to investigate possibility of don’t cares which would match any number of complete
subtrees (i.e. don’t cares with a variable arity). It would also be possible to investi-
gate the behaviour of the determinisation algorithm with regard to the tree pattern
matching PDA (not only the one described in this paper), and if it is possible to
adjust the PDAs in such a way that the determinisation algorithm would provide
smaller results. Finally, the don’t cares may not be independent: e.g. it is possible to
say that two subtrees that are covered by two don’t cares must in fact be equivalent.
Would it be possible to extend the tree pattern matching algorithm to understand
such constraint?

4.1 Acknowledgements

The authors wish to thank the anonymous referees for their detailed reviews and
helpful comments.

36 Proceedings of the Prague Stringology Conference 2010

References

1. R. Alur and P. Madhusudan: Visibly pushdown languages, in Proceedings of the thirty-
sixth Annual ACM Symposium on Theory of Computing, New York, NY, 2004, ACM Press,
pp. 202–211.

2. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing, Hong-
Kong, 2002, 310 pages.

3. M. J. Fischer and M. S. Paterson: String matching and other products, in Complexity of
Computation, R. M. Karp, ed., vol. 7, SIAM-AMS Proceedings, 1974, pp. 113–125.

4. T. Flouri, J. Janoušek, and B. Melichar: Tree pattern matching by deterministic push-

down automata, in Proceedings of the International Multiconference on Computer Science and
Information Technology, Workshop on Advances in Programming Languages, M. Ganzha and
M. Paprzycki, eds., vol. 4, IEEE Computer Society Press, 2009, pp. 659–666.

5. T. Flouri, J. Janoušek, and B. Melichar: Subtree matching by pushdown automata.
Computer Science and Information Systems, 7(2) Apr. 2010.

6. J. Holub: Simulation of Nondeterministic Finite Automata in Pattern Matching, PhD thesis,
Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic, 2000.

7. J. Janoušek: Arbology: Algorithms on trees and pushdown automata, habilitation thesis, Brno
University of Technology, 2010, submitted.

8. J. Janoušek: String suffix automata and subtree pushdown automata, in Proceedings of the
Prague Stringology Conference 2009, J. Holub and J. Žd’́arek, eds., Czech Technical University
in Prague, 2009, pp. 160–172.

9. J. Janoušek and B. Melichar: On regular tree languages and deterministic pushdown auto-

mata. Acta Inform., 46(7) Nov. 2009, pp. 533–547.
10. J. Stoklasa, J. Janoušek, and B. Melichar: Subtree pushdown automata for trees in bar

notation, 2010, London Stringology Days 2010, London.
11. J. Stoklasa, J. Janoušek, and B. Melichar: Subtree pushdown automata for trees in bar

notation, 2010, submitted to J. Discret. Algorithms.
12. J. Žďárek: Two-dimensional Pattern Matching Using Automata Approach, PhD thesis, Fac-

ulty of Electrical Engineering, Czech Technical University in Prague, Czech Republic, 2010,
submitted, http://www.stringology.org/papers/Zdarek-PhD_thesis-2010.pdf.

13. K. Wagner and G. Wechsung: Computational Complexity, Springer-Verlag, Berlin, 2001.

http://www.stringology.org/papers/Zdarek-PhD_thesis-2010.pdf

