
Two-Dimensional Bitwise Memory Matrix:

A Tool for Optimal Parallel Approximate Pattern

Matching⋆

Jan Šupol and Bořivoj Melichar

Department of Computer Science & Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague
Karlovo nám. 13, 121 35 Prague 2

jan.supol@gmail.com, melichar@fel.cvut.cz

Abstract. A very fast parallel approach to pattern matching is presented. The ap-
proach is based on the bit-parallel approach and we use two-dimensional bitwise mem-
ory matrix which helps to achieve very fast parallel pattern matching algorithms. The
parallel pattern matching takes O(1) time for the exact pattern matching and O(k) for
the approximate pattern matching, where k is the number of errors.

1 Introduction

The pattern matching problem is to find all occurrences of a given pattern P =
p1p2 . . . pm in a larger text T = t1t2 . . . tn, n > m, both sequences of symbols from a
given alphabet A = a1a2 . . . a|A|.

Many different solutions of this problems are known, and we are interested in the
pattern matching using finite nondeterministic automata. A finite automaton (FA) is
a quintuple (Q,A, δ, I, F) where Q is a finite set of states, A is a finite input alphabet,
and F ⊆ Q is a set of final states. If FA is nondeterministic (NFA), then δ is a mapping
Q × (A ∪ {ε}) 7→ P (Q) and I ⊆ Q is a set of initial states. If FA= (Q,A, δ, q0, F) is
deterministic (DFA), then δ is a (partial) function Q×A 7→ Q and q0 is the only initial
state. We refer to NFA used for pattern matching as a pattern matching automaton
(PMA).

Hamming distance H(x, y) ≤ k is maximum k substitutions (replace operations)
required to transform string x into string y (see [4]). Levenshtein distance L(x, y) ≤ k

is maximum k operations replace, insert, or delete required to transform string x into
string y. PMA for pattern P using the Hamming distance k is a pattern matching
automaton that matches any pattern X, such that H(P,X) ≤ k. PMA for pattern P

using the Levenshtein distance k is a pattern matching automaton that matches any
pattern X, such that L(P,X) ≤ k.

The running of PMA can be simulated by the bit-parallel algorithms. This tech-
nique was introduced in [2] (“shift-and” variation), and it was improved in [1, 9]
(“shift-or” variation used in this paper). It has been shown [5], that the bit-parallel
algorithms simulates NFA and we use these algorithms for the parallel pattern match-
ing.

⋆ This research has been partially supported by the Ministry of Education, Youth, and Sport of
the Czech Republic under research program MSM6840770014, by the Czech Science Foundation
as project No. 201/06/1039, and by the Czech Technical University as project No. CTU0609613

2D Bitwise Memory Matrix: A Tool for Optimal Parallel Approximate Pattern Matching

Parallel pattern matching was quite a popular topic. We might cite a constant
time string matching algorithm [3], which has the same time complexity as our al-
gorithm for the exact pattern matching, though it does not use the bit-parallelism.
We might also cite an O(log m + k) time [8], or an O(k) time [7] algorithms for the
approximate pattern matching. These have similar time complexity to our O(k) algo-
rithm for approximate pattern matching, but our algorithm needs a smaller number
of processors.

Our algorithm needs EREW PRAM for the exact string matching and CREW

PRAM for the approximate string matching. More information for the parallel com-
putation models is e.g. in [6]. We also need a shared memory organized as a matrix of
size O(n×n) bits, where n is the length of the text. Since bit-parallel algorithms work
with a computer word of length m, where m is the length of the pattern, we need
to access a whole word in the bit-memory matrix. Here we have a strong condition.
We need to access this memory both on rows and on columns. Therefore we use two
operations to access the memory matrix. The first is MEMX [indexx][indexy] access-
ing a word in a column with index indexx starting with the bit on a row with index
indexy and the second is MEMY [indexx][indexy] accessing a word on a row with
index indexy starting with the bit in a column with index indexx. This accessibility
is enough to present a cost-optimal parallel approximate pattern matching algorithm.

A parallel algorithm is cost-optimal if its time processor product is equal to the
time of the best known sequential algorithm solving the same issue.

We use some bitwise operations in this paper. Operation or is a standard bitwise
OR operation and operation and is a standard bitwise AND operation. Operation shl

is a standard shift-left bitwise operation, and the right-most bit is set to 0. Operation
shr is a standard shift-right bitwise operation, and the left-most bit is set to 1. We
also use operation shli(x) as the operation shl performed i times on bit-vector x.

This paper is organized as follows. Section 2 explains the “shift-or” variation
of a bit-parallel algorithm. Section 3 discuss the parallel variation of thr “shift-or”
algorithm. Section 4 provides a conclusion.

2 Bit-Parallelism

Here we explain the “shift-or” variation of the bit-parallel algorithm. It uses matrices
Rl, 0 ≤ l ≤ k of size m×(n+1), and matrix D of size m×|A|, where k is the maximum
number of edit operations in pattern P . Each element rl

j,i, 0 ≤ i ≤ n contains 0, if
the edit distance between string p1p2 . . . pj and the string ending at position i in text
T is ≤ l, or 1, otherwise. Each element dj,x, 0 < j ≤ m, x ∈ A, contains 0, if pj = x,
or 1, otherwise.

In exact string matching, vectors R0
i , 0 ≤ i ≤ n, are computed as follows:

r0
j,0 = 1, 0 < j ≤ m

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
(1)

In approximate string matching using the Hamming distance, vectors Rl
i, 0 ≤ l ≤

k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 1, 0 < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i = (shl(R0

i−1) or D[ti]) and shl(Rl−1

i−1), 0 < i ≤ n, 0 < l ≤ k

(2)

19

Proceedings of the Prague Stringology Conference ’06

In approximate pattern matching using the Levenshtein distance, vectors Rl
i, 0 ≤ l ≤

k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 0, 0 < j ≤ l, 0 < l ≤ k

rl
j,0 = 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i = (shl(Rl

i−1) or D[ti])
and shl(Rl−1

i−1 and Rl−1

i)
and (Rl−1

i−1
or V), 0 < i ≤ n, 0 < l ≤ k

(3)

The auxiliary vector V is computed as follows:

V =









v1

v2

...
vm









, where vm = 1 and vj = 0,∀j, 1 ≤ j < m. (4)

The term shl(Rl
i−1) or D[ti]) represents matching – position i in text T is in-

creased, the position in pattern P is increased by operation shl, and the positions
corresponding to the input symbol ti are selected by term or D[ti]. The term shl(Rl−1

i−1)
represents edit operation replace – position i in text T is increased, the position in
pattern P is increased, and edit distance l is increased. The term shl(Rl−1

i) repre-
sents edit operation delete – the position in pattern is increased, the position in the
text is not increased, and edit distance l is increased. The term Rl−1

i−1
represents edit

operation insert – the position in the pattern is not increased, the position in the text
is increased, and edit distance l is increased. The term or V provides that no insert
transition leads from any final state.

D a b c d A \ {a, b, c, d}
a 0 1 1 1 1
d 1 1 1 0 1
b 1 0 1 1 1
b 1 0 1 1 1
c 1 1 0 1 1
a 0 1 1 1 1

Table 1. Matrix D for the pattern P = adbbca

An example of mask matrix D for the pattern P = adbbca is shown in Table 1
and an example of matrix R0 for exact pattern matching and matrix R1 for approx-
imate string matching using the Levenshtein distance k = 2, respectively, is shown in
Table 2.

3 Parallelization of the bit-parallel algorithms

This section focuses on bit-parallel simulation of the nondeterministic PMA. The
motivation is to use many processors, each with computer words long enough to
fit into a single register bit-vector m bits in length, and to make the bit-parallel
algorithms truly parallel.

20

2D Bitwise Memory Matrix: A Tool for Optimal Parallel Approximate Pattern Matching

R0 − a d c a b c a a b a d b b c a

a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R1 − a d c a b c a a b a d b b c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
b 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

R2 − a d c a b c a a b a d b b c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
c 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0
a 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0

Table 2. Matrices R0, R1, and R2 for pattern matching using the Levenshtein distance, T =
adcabcaabadbbca, k = 2, P = adbbca

Now we explain the idea originating in Formula (1) using the “shift-or” algorithm.
The first bit-vectors may be computed as follows:

R0

0 = R0

0

R0

1 = shl(R0

0) or D[t1]

R0

2 = shl(R0

1) or D[t2] = shl(shl(R0

0) or D[t1]) or D[t2] =

= shl2(R0

0) or shl(D[t1]) or D[t2]

R0

3 = shl(R0

2) or D[t3] = shl(shl(R0

1) or D[t2]) or D[t3] =

= shl(shl(shl(R0

0) or D[t1]) or(D[t2])) or D[t3] =

= shl3(R0

0) or shl2(D[t1]) or shl(D[t2]) or D[t3]

Hence the following equation might be proven:

R0

i = shli(R0

0) or shli−1(D[t1]) . . . or shl(D[ti−1]) or D[ti], 1 ≤ i ≤ n (5)

Using Formula (5) we may compute the example for the pattern P = adbbca and
text T = adcbcadbbca depicted in Table 3. Note that we use the same matrix D as in
Section 2, Table 1.

The initial bit-vector, left-shifted by i = n = 11 bits, is in the first column labeled
with the symbol “-”. In each other column, except the last one, there is a bit-vector
from matrix D left-shifted by some number of bits. The or operation between all
these rows gives the result, and as we can see, a match occurs only in one position,
the same as in Table 2. We may conclude many interesting observations from this
example.

21

Proceedings of the Prague Stringology Conference ’06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R0 − a d c a b c a a b a d b b c a OR

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3. Matrix R0 for pattern matching for the exact pattern, P = adbbca, T = adcabcaabadbbca

There are only two reasons for the initial bit-vector R0
0 to have something to start

sequentially with, and to disallow a match on the prefix of the text T shorter than
pattern P .

The only interesting part of the matrix is the bold part. We can also exclude the
first m − 1 = 5 rows labeled with symbols “a, d, b, b, c” and the last m = 6 rows,
since there cannot be a match (in the exact case). Also the initial bit-vector is not
important.

We implement the shift by j-bits shlj(D[ti]) operation as a writing of one com-
puter word m-bits long into a memory in a specified position using operation
MEMX[n − j][j] ← D[ti]. Having this memory organization, there is a word on
each row of the memory MEMY [n − j][j] (a bold one in Table 3), which contains a
crucial information:

Proposition 1. The word in memory MEMY[n− j + 1][j − 1] > 0, 1 ≤ j ≤ n if and

only if tn−j+1tn−j+2 . . . tn−j+m 6= p1p2 . . . pm.

Proof. Simply from the definition of matrix D. If tn−j+i = pi then di,n−j+i = 0 or
1 otherwise, 1 ≤ j ≤ n, 1 ≤ i ≤ m. But each bit di,n−j+i is in the (j − 1)-th row,
because vector D[tn−j+i] has been shifted by j − i bits. ⊓⊔

The or operation is then a comparison, whether a computer word in a row is zero
(a match), or non-zero (a mismatch) and we may compute:

R0

i = MEMY[n − i + 1][i − 1], m ≤ i ≤ n (6)

We are not interested in the bit-vectors R0
i , 0 < i < m − 1, because there can not be

a match.

22

2D Bitwise Memory Matrix: A Tool for Optimal Parallel Approximate Pattern Matching

If the access time to the memory using both MEMX and MEMY operations is
O(1), string-matching in parallel takes only O(1) parallel time using n processors.

3.1 Parallel pattern matching using the Hamming distance

The observation of Table 3 may continue. Matrix Rl no longer consists only of bit-
vectors Rl

i, 0 ≤ l ≤ k, 0 ≤ i ≤ n.
The bit-vectors R0

i computed by Formula 1 in the sequential algorithm on the
diagonal of the matrix were composed of the bit-vectors n−i+1, n−i+2, . . . , n−i+m.
However, they are slightly different: the bit-vectors computed in parallel contain more
bits set to zeros, more active states, because they were not deactivated using prefix
computation by the operation or. In exact pattern matching this was not important,
because Proposition 1 ensures at least one bit set to one if there is no match.

The advantage is that the number of bits set to 1 indicates the number of replace
operations needed for a matching.

However, using the Hamming distance this difference is most important. Since we
are going to perform “replace” operations in parallel, we could perform more than
one “replace”, each in a different position and we cannot guarantee the number of
these “replace” operations. Therefore we need vectors R0

j exactly as in the sequential
version. This ensures only one “replace” operation performed in each of k levels,
because the “replace” is only after a “match”, except the first symbol.

C0 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
9 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4. Matrices C0, and R1 for pattern matching using the Hamming distance, T = adcbcadbbca,
k = 3, P = adbbca

It is very easy to find the first (highest, left-most) bit set to 1 and to set all lower
bits to 1 as well. This operation can be performed as:

R0

i ← R0

i or 2⌈log2R0

i
⌉, m ≤ i ≤ n (7)

23

Proceedings of the Prague Stringology Conference ’06

C1 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. Matrices C1, and R2 for pattern matching using the Hamming distance, T = adcbcadbbca,
k = 3, P = adbbca

This computation is very fast, O(1) time. For example the operation log2x is com-
puted using instruction FYL2X on X86 processors.

We use the observations on this section and we can formulate the idea of parallel
pattern matching using the Hamming distance, which could be used later with the
Levenshtein distance.

We compute the corrected matrix Rl, 0 ≤ l ≤ k from each matrix Rl using Formula
7. We refer to this corrected matrix as C l. The shifted vectors D[ti], 0 ≤ i ≤ n placed
in matrix Rl are no longer in matrix C l. Thus we refer to these vectors (shown in
bold in Table 3) as C l

i .

The observation of matrix R0 revealed that each vector R0
l ,m ≤ l ≤ n contains

the bits set to 1 if a replace operation is needed. Each vector Rl
i in matrix C l refers to

a prefix successfully matched with at most l substitutions and in matrix Rl+1 we may
add one substitution more. Thus we compute each matrix Rl, 0 < l ≤ k as follows:

Rl
i = shli(Rl

0) or (shli−1(D[t1]) and C l−1

0) . . .

or (shl(D[ti−1]) and C l−1

i−2)
or (D[ti] and C l−1

i−1
), 1 ≤ i ≤ n, 1 ≤ l ≤ k

(8)

An example of parallel pattern matching using the Hamming distance for the
pattern P = adbbca, k = 3, T = adcbcadbbca is given in Table 4, Table 5, and
Table 6, respectively. The first table contains matrix C0, which has been corrected by
Formula 7 from matrix R0, and matrix R1, computed by Formula 8. The second table
contains matrix C1 corrected by Formula 7 from matrix R1, and matrix R2 computed
by Formula 8. The last table contains matrix C2 corrected by Formula 7 from matrix

24

2D Bitwise Memory Matrix: A Tool for Optimal Parallel Approximate Pattern Matching

C2 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

R3 a d c a b c a a b a d b b c a OR

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
14 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Table 6. Matrices C2, and R3 for pattern matching using the Hamming distance, T = adcbcadbbca,
k = 3, P = adbbca

R2, and matrix R3 computed by Formula 8. These tables are shortened, as described
above.

3.2 Parallel pattern matching using the Levenshtein distance

Parallel pattern matching using the Hamming distance is very similar to the pattern
matching using the Levenshtein distance, though in addition we must consider the
operations “insert” and “delete”.

Recall Formula 3. We computed Rl
i, 0 < i ≤ n, 0 < l ≤ k in the sequential

algorithm as:

Rl
i = (shl(Rl

i−1) or D[ti])
and shl(Rl−1

i−1 and Rl−1

i)
and (Rl−1

i−1 or V), 0 < i ≤ n, 0 < l ≤ k

(9)

We use exactly the same logic rules for operations “insert” and “delete”, and we may
formulate for the Levenshtein distance:

Rl
i = shli(Rl

0)
or (shli−1(D[t1]) and C l−1

0 and shl(C l−1

1) and (shr(C l−1

0) or V))
. . .

or (shl(D[ti−1] and C l−1

i−2
and shl(C l−1

i−1
) and (shr(C l−1

i−2
) or V))

or (D[ti] and C l−1

i−1 and shl(C l−1

i) and (shr(C l−1

i−1) or V)),
1 ≤ i ≤ n, 1 ≤ l ≤ k

(10)

When computing vector Rl
i, each term C l−1

i−1 represents operation “replace” as
when using the Hamming distance. Since this bit-vector has been already shifted by

25

Proceedings of the Prague Stringology Conference ’06

C0 − a d c a b c a a b a d b b c a OR

3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 − a d c a b c a a b a d b b c a OR

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 7. Matrices C0 and R1 for pattern matching using the Levenshtein distance, T = adcbcadbbca,
k = 2, P = adbbca

n − i + 1 positions once, that is one more than n − i shifts when computing the i-th
column, thus no further shift operation is needed to transform the sequential term
shl(Rl−1

i−1) into a parallel term.

The term (shr(C l−1

i−1) or V) represents the operation “insert”. This vector has
been shifted too much by the same logic as the bit-vector for operation “replace”.
Therefore we need to shift it one bit back, when transforming the sequential “insert”
term (Rl−1

i−1 or V) into a parallel term.

The term shl(C l−1

i) represents the operation “delete”. The bit-vector C l−1

i has
been shifted exactly enough to shift it once more for the same reason as in the
sequential algorithm.

Due to the operations “delete” and “insert” we need to shorten the original matrix
R0 less than when using the Hamming distance. We need the initial bit-vector Rl

0 de-
fined by Formula 3, which sets more states initial because of the “delete” ε-transitions
from the initial state. We also need k rows before the (m−1)-th row for the operation
“delete” and we need k rows after the (n − 1)-th row for operation “insert”.

An example of parallel pattern matching using the Levenshtein distance for the
pattern P = adbbca, text T = adcbcadbbca and k = 2 is given in Table 7 and Table

26

2D Bitwise Memory Matrix: A Tool for Optimal Parallel Approximate Pattern Matching

C1 − a d c a b c a a b a d b b c a OR

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 − a d c a b c a a b a d b b c a OR

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
14 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
16 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table 8. Matrices C1 and R2 for pattern matching using the Levenshtein distance, T = adcbcadbbca,
k = 2, P = adbbca

8. The former table contains matrix C0 computed by Formula 7 from matrix R0 in
Table 3 and it also contains matrix R1 computed from matrix C0 by Formula 10.
The latter contains matrix C1 computed from matrix R1 by Formula 7 and it also
contains matrix R2 computed from matrix C1 by Formula 10.

4 Conclusion

We have presented the idea of parallel pattern matching using bit-parallelism (the
“shift-or” variation).

We used a two-dimensional memory matrix which enabled very fast parallel pat-
tern matching. Parallel pattern matching for an exact pattern takes O(1) parallel
time, using n processors. The algorithm does not need any concurrent read or write
operation, thus it can be implemented on EREW PRAM with shared two-dimensional
memory. Since the processor-time product is O(n), it is a cost-optimal algorithm.

Parallel pattern matching using the Hamming distance with k substitutions takes
O(k) parallel time, using n processors. The algorithm also does not need any con-
current read or write operation, thus it can also be implemented on EREW PRAM

27

Proceedings of the Prague Stringology Conference ’06

with shared two-dimensional memory. The processor-time product is equal to the
sequential time O(kn), hence this algorithm is also cost-optimal.

Parallel pattern matching using the Levenshtein distance with k substitutions
takes O(k) parallel time, using max(n+1, n−m+2k +1) processors. The algorithm
needs a concurrent read operation when reading the same bit-vector C l

i , 0 ≤ l < k, 1 ≤
i ≤ n−1, thus it can be implemented on CREW PRAM with shared two-dimensional
memory. The processor-time product is also equal to the sequential time O(kn).

Known parallel pattern matching algorithms are derived from dynamic program-
ming, which takes O(mn) sequential time and therefore these parallel pattern match-
ing algorithms are non-optimal. Parallel pattern matching derived from the bit-
parallel algorithms can provide an optimal parallel pattern matching algorithm even
when not using two-dimensional memory based on some ideas mentioned in this pa-
per.

References

[1] R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

[2] B. Dömölki: An algorithm for syntactic analysis. Computational Linguistics, 8 1964, pp. 29–46.
[3] Z. Galil: A constant-time optimal parallel string-matching algorithm, in Proceedings of the

twenty-fourth annual ACM symposium on Theory of Computing, ACM Press, 1992, pp. 69–76.
[4] R. W. Hamming: Coding and information theory (2nd ed.), Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1986.
[5] J. Holub: Simulation of Nondeterministic Finite Automata in Pattern Matching, Ph.D. Thesis,

Czech Technical University in Prague, Feb. 2000.
[6] J. JáJá: An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[7] Y. Jiang and A. H. Wright: O(k) parallel algorithms for approximate string matching.

Neural, Parallel and Scientific Computations, 1 1993, pp. 443–452.
[8] G. M. Landau and U. Vishkin: Fast parallel and serial approximate string matching. Journal

of Algorithms, 10(2) 1989, pp. 157–169.
[9] S. Wu and U. Manber: Fast text searching allowing errors. Commun. ACM, 35(10) 1992,

pp. 83–91.

28

