Backward Pattern Matching Automaton

Jan Antos and Borivoj Melichar

Department of Computer Science & Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo ndm. 13, 121 35 Prague 2

e-mail: {antosj,melichar}@fel.cvut.cz

Abstract. We present a new algorithm to solve a large number of backward
pattern matching problems. This algorithm is specified by the theory of finite
automata. The algorithm is based on the utilization of a formal tool called
“Backward Pattern Matching Automaton”, which we specify in this paper. In-
troduction of such a tool presents a formal base to the world of backward pattern
matching.

Keywords: backward pattern matching, string matching, sequence matching,
approximate pattern matching, subpattern matching, don’t care symbols, finite
automata, formal tool

1 Introduction

Pattern matching (string and sequence matching) is an essential part of many applica-
tions. This discipline has been intensively studied since the beginning of the seventies
and many pattern matching problems have been discovered and extensively studied.
A number of new algorithms was presented. Yet these algorithms lack a common
theory and are often hard to understand, evaluate and proof. One reason for such a
diversity is the nonexistence of a uniform formalism needed for the specification of
the problems themselves.

In 1996 a formalism was found, which allows principles of matching algorithms to
be formally specified. This formalism is based on a finding, that all one-dimensional
matching algorithms are sequential problems and thus can be solved by the use of
finite automata [MH97a].

At the same time a classification of matching problems was presented. This classi-
fication is not (and cannot be) complete, but it classifies 192 different pattern match-
ing problems in a six-dimensional space [MH97]'. Together with the new formalism
it resulted in an interesting fact: Having a finite automaton to describe the pattern
matching problem of one string in a text, all the other 191 problems can be solved by
simple operations applied to this one automaton [MH97]. Only a forward matching
technique was explored in [MH97| leaving the question open, if similar operations

!The number of problems was further increased to 336 in the following years by the addition of
approximate matching over well-ordered alphabets.

81

Proceedings of the Prague Stringology Conference 05

can be defined to solve all the above mentioned pattern matching problems using the
backward pattern matching algorithm.

The motivation of this paper is to present a formal specification of a backward
pattern matching automaton which will be used as a model in a general backward
pattern matching algorithm. The algorithm itself is simple and general and is the
same for any backward pattern matching problem. The only part that is changed is
the model of the problem which is fed to the algorithm input. This paper specifies
the algorithm and the model and shows the construction of the model for a selected
problem. It is important to mention that models for other 336 problems (as well as
any future ones) can be obtained from the already defined models by simple operations
over the finite automata.

2 Basic Definitions

This paper uses common notions from graph and finite automata theory. Only notions
not commonly used, or notions that are specific to this paper are mentioned in this
section.

Definition 2.1 (Complement of symbol). Given an alphabet A and a symbol a €
A, the complement of a according to A is the set of symbolsa ={s: s € A, s # a}.

Definition 2.2 (Proper prefix). w is a proper prefix of P when w € pref(P) A
(wv € P,v € AT) which can also be expressed as w € pref(P\ {w}).

Definition 2.3 (Move of FA). A move of a finite automaton is such a change of
configuration of the finite automaton, that exactly one symbol has been read from the
automaton input.

Remark. Note the difference between a move and a transition. While a move is
a change of configuration resulting from reading a symbol a transition is a relation
FurC (Q x A*) X (Q x A*) defined as (q, aw) Fur (p, w) where p € 6(q,a), a € AU{e},
w € A%, p,q €). Because an automaton can contain e-transitions, one move can
look for example like: (q1, aw) & (g2, aw) = (g3, w) given a € A, w € A*, g5 € 0(q1,¢),
qs € 6(qz, a).

Definition 2.4 (Collection). A Ccollection is a set, that can contain duplicates.
We will use symbols | and | to mark the collection.

Definition 2.5 (Reversed string). Let us have string u € A*, u = ajas ... a,, a; €
A. Then string v = u®®, where v € A* and v = anan_1...a1, a; € A is called reversed
string. All reversed strings from a set of strings W C A* will be denoted by WT.

Remark. A particular substring of a string s, where the substring starts at position
i of the string s and ends at positions j (inclusive), will be denoted as s; . . .s;.

3 Problem Specification

3.1 Brief Introduction to Backward Pattern Matching

Backward pattern matching can greatly speed up the pattern matching process be-
cause it is capable of skipping parts of the text. Thus we can achieve time complexity

82

Backward Pattern Matching Automaton

lower then O(n). The main point of backward pattern matching is that the pattern
is compared from the right to left. Several techniques exist, this paper is going to
explore the BDM method [CR94]. The prefix of the pattern is searched for in the
text. When the longest prefix is found, the position in the text is shifted accordingly.
The algorithm is therefore skipping parts of the text, where no match can occur. This
principle is visualized in Figure 1.

this is not a prefix => a match cannot occur here
longest prefix found

TEXT |

-¢——]matching direction T

equal prefix new position in text

PATTERN |

shift

[|

Figure 1: The backward pattern matching principle followed in this paper

3.2 Classification of Pattern Matching Problems

The classification of pattern matching problems has been described in [MH97]. This
subsection presents a brief extract of the main ideas. See [MH97] for full details.

Pattern matching problems for a finite size alphabet can be classified according to
several criteria. We will use six criteria for classification leading to a six-dimensional
space in which one point corresponds to a particular pattern matching problem. Let
us make a list of all dimensions including possible values in each dimension:

1. Nature of the pattern: string, sequence.
2. Integrity of the pattern: full pattern, subpattern.
3. Number of patterns: one, finite number, infinite number.

4. The way of matching: exact, approximate matching with Hamming distance (R-
matching), approximate matching with Levenshtein distance (DIR-matching),
approximate matching with generalized Levenshtein distance (DIRT-matching),
approximate with A-matching, approximate with I'-matching, approximate with
mazx(A,T')-matching.

5. Importance of symbols in pattern: take care of all symbols, don’t care of some
symbols.

6. Number of instances of pattern: one, finite sequence.

If we count the number of possible pattern matching problems, we obtain
N=2-2-3-7-2-2=336.

83

Proceedings of the Prague Stringology Conference '05

In order to make references to a particular pattern matching problem easy, we
will use abbreviations for all the problems. These abbreviations are summarized in
Table 1. Using this method, we can, for example, refer to exact string matching of
one string as the SFOECO problem.

Instead of a single pattern matching problem we will use the notion of a family of
pattern matching problems. In this case we will use symbol 7 instead of a particular
letter. For example SFO?7? is the family of all the problems concerning one full
string matching.

We will denote a pattern matching problem by symbol ©. A pattern matching
problem can be then written, for example, as © = SFOFECO or © = SFO?77.

Dimension | 1 | 2 | 3 516
SIF|O C|O
Q|S|F D|C

I

Z 4> H 05 e

Table 1: Abbreviations of dimension values

Remark. The input to the pattern matching algorithm s text T and pattern set P.
Because it is often difficult to define the set P, we will sometimes specify the input to
the algorithm using the base pattern set Po and the pattern matching problem ©. Let
us show how these relate to each other on a few examples:

© = SFOECO, Py = {banana} = P = {banana},
© = SSOECO, Pg = {banana} = P ={w:w € fact(banana)}.

To further simplify the notation and to make the text more readable we will use
an abbreviation of the above statements. For example:

P = {banana}srorco = P ={w:w € A*, Dy(w,banana) < k},

where Dy is the Hamming distance and k is the maximum distance still considered
to be a match.

4 Range of Problems Solved by This Paper

In this paper we will present a general algorithm which is capable of solving all the
above mentioned problems. This algorithm should also solve any future problems.
The algorithm uses the Backward Pattern Matching Automaton (BPMA) which is
used as a model of a particular pattern matching problem. Some of these BPMA are
presented here as examples. In the case of new pattern matching problems defined in
the future, the only task is to define the appropriate BPMA. A very important part
of this paper is to show, that these BPMA can be derived from the simplest BPMA
for the SFOECO problem (exact pattern matching of one string) only by the simple
operations performed over the finite automaton.

84

Backward Pattern Matching Automaton

5 The Solution

The motivation is to design a simple algorithm which can be applied to a vast range
of problems. Such an algorithm has to be independent of the actual problem we are
trying to solve. We thus separate the pattern matching into two phases.

Phase One is the ”construction phase”. The input to Phase One is the type of
problem specified by © and the set of patterns P that we want to match. The output
of Phase One is the model M of the problem © applied to the base set of patterns
Pg. Model M has the form of an attributed nondeterministic finite automaton.
Construction of this model is different for different problems, but it has a common
base: the basic pattern matching model is constructed first and then automaton
operations are applied to it and the final model is derived.

Phase Two is the “matching phase”. The input to Phase Two is the model M
(the model of the pattern matching problem constructed in Phase one) and the text
T. The output of Phase Two is the set of occurrences of patterns p € P in text
T. The automaton M is repeatedly used in the matching phase and attributes of its
states and transitions are evaluated. Phase Two is thus completely independent of
the problem ©.

6 Backward Pattern Matching Automaton

Each pattern matching problem can be described using its model in the form of an
attributed nondeterministic finite automaton (Definition 6.1). This model is then
used in the pattern matching phase.

Definition 6.1 (Attributed Nondeterministic Finite Automaton). Attributed
Nondeterministic Finite Automaton (ANFA) M is five-tuple M = (NF A, R, v,4,7s, G)

where
NFA is nondeterministic finite automaton NFA = (Q, A, 0, qo, F),

R is a finite set of attributes. Every attribute has a domain H(r)
specifying possible values of attribute r. R = R, U Ry,
Yq is a mapping @Q X R, — H(r) U0 where r € Ry,
Vs is a mapping Q@ X Q@ x A x Rs — H(r) U where r € Ry,
G s a finite set of semantic rules of the following form:
pr 4= g(q.r1, .o QT DT DTy bgpa Ty - - s tapaTh)

where q.r denotes a v,(q,7) and reads as “value of attribute r of state q”,
typ.a-r denotes v5(q,p, a,r) and reads as “value of attribute r of transition
d(q,a) > p 7, and where m,n, k € N.

At places, where no confusion arises, we will use t.r instead of 4,q.7.

In this paper we are going to define ANFA common to the S??7770 pattern match-
ing problems. We are going to call this automaton BPMA (Backward Pattern Match-
ing Automaton). If more pattern matching problems are to be solved, there might
be a need to extend its set of attributes R and/or its set of semantic rules G.

Definition 6.2 (Backward Pattern Matching Automaton). A Backward Pat-
tern Matching Automaton (BPMA) M is an attributed nondeterministic finite au-
tomaton M = (NFA, R,~,,7s, G) where

85

Proceedings of the Prague Stringology Conference '05

NFA = (Q7A767q07F)7
L(NFA) =pref(P®), P is set of patterns,

R=R,UR;
Rl] = {tC,plC,pf},
H(tc) =N,
H(ple) =N,
H(pf) = {TRUE, FALSE},
Rs ={ptf},

H(ptf) = {TRUE, FALSE},
G ={p.tc <+ qtc+1,
p.pf < tf t.ptf = TRUE then TRUE else q.pf,
pplc<—1fq € F N p.pf =TRUE then p.tc else q.plc,
t.ptf is precomputed for all transitions,
qo.tc < 0,
qo-pf < FALSE,

qo.plc <=0 } for q,p,t: 6(q,a) D p, t ~ typa.
Let’s have a BPMA and

(QanRZR) l_* (qa ZR)J q € QJ w,z € A*a

then we can explain the meaning of BPMA state attributes as follows:

Attribute tc is the acronym for Transition Counter. This attribute stores the
number of automaton moves. This number equals the number of symbols read from
the automaton input to reach the current configuration:

q.tc = |w|.

Attribute plc is the acronym for Prefiz Length Counter. This attribute stores the
length of some proper prefix found from the last shift operation. Because the au-
tomaton is nondeterministic and several options for (qo, w'2%) - (g, 2') are possible,
the value of ¢.plc does not have to be the actual longest proper prefix of w, so in the
final count, we have to evaluate all of the ¢.plc,q € F' to find the plc,,.,. The fact

that pleme: = |pref(P\{w})|masz has to be assured by the way the model is built.
Then we can state that:

g.plc € {jv] :v,u € A*, vu =w, v € pref(P\{v})},

Plemae = mazx{q.plc : q € F}.

Attribute pf is the acronym for Prefiz Flag. Attribute pf of a state ¢ has value
TRUE if from a current automaton configuration every future final configuration
reached indicates that a proper prefix of some pattern p € P has been found. If
the value of any final state is FALSE it indicates, that an occurrence of a pattern has
been found:

¢pf =TRUE = Vue€ A* VYq; € F, §(q,u”™) 3 q; : uw € pref(P\{uw}),

gpf =FALSE A qe FF = weP

The meaning of the BPMA transition attributes can be explained as follows:

86

Backward Pattern Matching Automaton

Attribute ptf is the acronym for Prefiz Transition Flag. Attribute ptf of transition
§(q,a) = ¢, q,¢ € Q, a € A* has value TRUE if by an associated move the automaton
will move to such a configuration, that any final state reached from there will mean,
that we have found a proper prefix of some pattern p € P:

tgqaplf = TRUE =
Vu,v € A*, Vq; € F, §(qo,v%) 2 q, (¢, u®) 3 q; : uav € pref(P\{uav}).

Note, that while some string w € P can also be a proper prefix w € pref(P\{w}),
the automaton mentioned above is inherently nondeterministic: both of the following
situations can happen at the same time:

qr € 6(qo, w®) A ¢r.pf = TRUE
qr € 6(qo, w®) A qs.pf = FALSE.

This behavior is wanted in this case because we want to detect both situations
simultaneously. We need to know that a pattern occurrence has been found and also
we need to know that an occurrence of a proper prefix has been found, so we can
compute the appropriate shift function.

See the following sections for examples of backward pattern matching automata.

7 The Algorithm

7.1 Definition of the Algorithm

Phase Two has as input model M of pattern matching problem © and the text T
in which we want to perform the actual pattern matching. Phase Two performs
the matching itself. It consists of the specific backward pattern matching algorithm.
This algorithm is simple and unified — the algorithm is the same for all the pattern
matching problems defined in 3.2 and possibly for future ones.

The backward pattern matching algorithm is described in Algorithm 1. This
algorithm uses a nondeterministic pattern matching model M and therefore it has
to simulate its deterministic behavior. Future work is to construct a deterministic
pattern matching model and to simplify the backward pattern matching algorithm.

Also notice, that instead of a set of states, the algorithm uses a collection of states.
This is required to allow the processing of one state with different attributes — this
situation can happen when the automaton has two transitions for the same symbol
going from state ¢ to state p and for one transition ¢,,,.ptf = TRUE and for the
second 4, ,.ptf = FALSE.

Algorithm 1: AUTOMATON-BASED BACKWARD PATTERN MATCHING

ALGORITHM
Input: Model M in the form of Backward Pattern Matching,
Automaton M = (NFA, R, v, 75, G), text T.
Output: Set of numbers, each number represents a position in text 7’
where pattern p € P occurs.
Method:
1 position < | P|mnin

87

Proceedings of the Prague Stringology Conference '05

2 offset < 0

3 plemaz < 0

4 Q' + [qo] (see Definition 2.4)

5 while position < |T| do

6 Q” — [(]3 qc 6(qla Tposition—oﬁ‘set)a Q' € QI]
7 if Q" # () then

8 for Vg € Q" do

9 if ge F N q.pf = FALSE then
10 output(position — offset)
11 end if
12 ifge F N ¢gpf =TRUE then
13 Plemae — max{plemaz, q.ple}
14 end if
15 end for
16 Q — Q"

17 increment o ffset

18 else

19 shift < max{1,|P|min — PlCmaz}
20 position < position + shift

21 offset < 0

22 Plemaz < 0

23 Q" < [q]

24 end if

25 end while

The main idea of the algorithm is as follows:

1. The algorithm computes the initial position.

2. The algorithm utilizes the BPMA automaton in order to decide, if there is some
pattern ending at this position, i.e. if

dr e N: T, ... Thosition € P.
This event occurs if
Jg; € F, Jw € A* : §(qo,w™) 2 q; A q.pf = FALSE.
In this case, the value of z is output.

3. Simultaneously with Step 2, the algorithm also has to decide what the longest
proper prefix ending at this position is, i.e. it computes |w|,;q, Where

w e pref(P\{w}) N w= Tpositionf\w| s Tposition-

This |w|maee (named pley,q, in the algorithm) equals the following expression in
BMPA:
|W]maz = maz{q.plc : q € F}.

88

Backward Pattern Matching Automaton

4. When the length plc,,., of the longest proper prefix is known, the algorithm
can attempt to compute the longest safe shift. A safe shift means how much it
can advance the position in the text in order not to skip any occurrence of any
pattern. The trivial safe shift is 1. Tt is easy to see, that the longest safe shift can
never be longer than the shortest pattern p € P which is | P|,. Since we know,
that there is a potential of a pattern occurring at position position — plcyae,
and we know |P| i, the shift of | Pl — plemaee will be safe. So, summarized,
shift can be

shift = max{1l, |P|min — PlCmaz}-

Note at this point of time, why we are using the proper prefixes in contrary
to traditional prefixes. If we have found string w and w € pref(P) but w ¢
pref(P\{w}) then w € P. The value of shift would always be 1, which is
inefficient in most cases, since there is no possibility of finding another pattern
starting at the position position — |w| or position — |w| + 1.

The longest safe shift can be longer than the one mentioned in previous para-
graphs. The idea of a longer safe shift is to select the shortest pattern that can
start with the prefix (or prefixes) ending at the current position (w in step 3).
In most cases this number can be higher than |P|,,;,. Let us compute P’ based
on that finding:

={p pe Pwepref(p)}.
The longest safe shift is then

shift = max{1l, min{|Plmin, |P'lmin — PlCmaz}}-

This optimization is not employed in the current algorithm. It should be in-
cluded in future works.

5. The algorithm advances its position by the shift value:
position <— position + shift

and the algorithm repeats steps 2 through 5 of this explanation until the end
of the text is reached.

- - N
/// P ///———\\\\\
// // -~ — T T~ \\
_ - _ - P N \
\\\\
n_- \\\\

T

————— Transition with ptf= TRUE
47 Transition with ptf= FALSE

Figure 2: Transition diagram of BPMA which is a model of pattern matching problem
© = SFOECO and pattern set Py = {banana}

89

Proceedings of the Prague Stringology Conference '05

7.2 Example

Let us demonstrate Algorithm 1 on a simple example. A more advanced example is
given in Section 8.

Let us have a pattern matching problem © = SFOFECO, pattern set P =
{banana} and text T = banabbababnananbananaba. The model M of this problem
is the nondeterministic pattern matching automaton given by the transition diagram
specified in Figure 2. The algorithm steps are shown in Figure 3.

22 23
|b|a|b|n a|n|a|n|b|a b|a‘

Shift: 6-0=6

State, pf = FALSE @

State, pf = TRUE 13\)

Final state, pf = FALSE Found !

Final state, pf = TRUE

Shift: 6-0=6

Figure 3: Steps taken during the pattern matching of Psropco = {banana} in text
T = banabababnananbananaba

8 BPMA Construction

The construction Phase (i.e. Phase One) is dependent on the Backward Pattern
Matching Problem solved. The output of Phase One is the uniform model of the
problem. This model is in the form of a BPMA. Phase Two then uses this model to
perform the actual pattern matching.

We will demonstrate the construction of such a BPMA on a selected example:
Let us have a problem © = SFORCO (i.e. approximate R-matching of one pattern).
R-matching means approximate matching where the operation “replace” is allowed.
This kind of approximate matching was first explored by Hamming in [HAM50].

Let us have a base pattern set Py = {banana} and k = 1. We can express P as

P=A{w: Dg(p,w) <k, p€ Py, we A"},

where k denotes the maximum distance between two patterns that we consider being
equal (and thus representing a match in the text).

We first construct the base nondeterministic finite automaton which accepts the
language L = P®. We can build this automaton incrementally using the given 6D
classification as an advantage: we can start with the base SFOECO problem first
and then add the complexity dimension by dimension. In our case there will be only
one more step necessary and it is to change the choice of value in the 4" dimension:
SFOECO — SFORCO.

90

Backward Pattern Matching Automaton

We first build the base automaton M; for SFOECO problem: Pspopco = {banana}.
The language accepted by this automaton is L(M;) = {ananab}.We will use Algo-
rithm 2. The result of this algorithm is given in Figure 4.

Algorithm 2: CONSTRUCTION OF SFOECO BASE NFA

Input: Pattern p, [p| = m, p € A*.
Output: Deterministic finite automaton M.
Method:
1 Q%{q{]a(ha"'aqm}
2 5(Q’iapm7i) — {qi+1} for alli:oala"'am_l
3 F{qm}
4 M%(QaAaéaq{]aF)

(O)« (5 et (4)e ()21)0 e

Figure 4: Transition diagram of automaton M;, which is base NFA for © = SFOECO
and Pg = {banana}

The next step is to construct the base automaton M, for our chosen SFORCO
problem. We use the already built automaton M; and modify it to recognize the
language L(M,) = {w : Dy(ananab,w) < 1, w € A*}. This is done employing
Algorithm 3. The result is shown in Figure 5.

Algorithm 3: CONSTRUCTION OF SF?R70O BASE NFA rroM SF7E?O

BASE NFA
Input: Nondeterministic finite automaton Mgprpro = (Q, A, 6, qo, F).
Output: Nondeterministic finite automaton Mgprr20.
Method:
1 Q + 0, F'«< 0
2 for Vi € (0, k) do
3 Q <+ QU{q;:q€Q}
4 6" (quira) < 6" (qui»a) U{q; : qj € 0(gi,a)} foralla € A, ¢; € Q
5 F'« F'U{q,:q € F}
6 end for
7
8 for Vi € (0,k—1) do
9 6’(ql,z~,a) — 6’(ql,i,6) U {ql+1,j 1qj € 6(%, a)} foralla € A, ¢; € Q
10 end for
11

12 Mgprpro < (@', A, 0", qo, F')

After this step we are ready to build the BPMA itself. We can use a general
Algorithm 4. This algorithm constructs the BPMA from the given base NFA, where
the base NFA can represent any of the problems solvable by the BPMA itself. The
resulting automaton M is given in Figure 6.

91

Proceedings of the Prague Stringology Conference '05

Figure 5: Transition diagram of base NFA for © = SFORCO, k = 1 and
Po = {banana}

Algorithm 4: CONSTRUCTION OF BPMA rrOM GIVEN NFA

Input: Nondeterministic finite automaton Myps = (Q, A, 0, qo, F).
Output: Backward pattern matching automaton Mgppsa.
Method:
1 if 3geQ,Ja € A: q € d(q,a) then
2 Q <~ QU {qu}, ¢ + qoo
3 8 (q,a) < 6(q,a) forall g € Q,a € A
4 0'(qoo, @) < 9(qo, a) for all a € A
5 else
6 Ql < QJ q(l) Qo
7 8 (q,a) < 6(q,a) forall g € Q,a € A
8 end if
9 Mypa < (@, A0, g5, F)
10
11 8"(q'ya) < 8'(q',a) forall ¢ € Q',a € A
12 8" (qp, a) < Uq,eQ,\{q(,)} 8'(q',a) for alla € A
13 Mps + (Q, A, 0", ¢, F)
14
15 toqga-Ptf < TRUE for alla € A, ¢' € 6(¢q,a), ¢ € Q
16 tg.q.a-Ptf < TRUE for alla € A, ¢' € 0'(qy, a)
17 tg.qaPtf < FALSE for alla € A, ¢' € Uq’EQ’\{qE,} 8(q',a)
18 Mppura < (Mypa, R, g, 75, G)

- Transition with ptf = TRUE
~— T <«—— Transition with ptf = FALSE

Figure 6: Transition diagram of model M of pattern matching problem
©® = SFORCO and pattern set Py = {banana}

92

Backward Pattern Matching Automaton

We can now feed the resulting automaton M to Phase Two to perform the ac-
tual pattern matching. Let us take text T" =is it banana or ananas? and run the
Algorithm 1. The visualization of this process is presented in Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
T‘i|s| |i|t| b|a|n|a|na |o r| |a|n|a n|a s|?
q: @\

Nl
q.tc: g
lc : \"(\ -
ape: 10 720
'\112 7“4%\
=
0 w@© N
1.1 0 g
Shift: 6-1=5 0,.,0,1 0 NP
OOtw
PN N
0 & (508w (o)
5 4 33 22 1.1 0
Shift: 6-5=1 5 0 03 000,.01 0
(32
)
A
Found ! @f\ég
A (+)(a) 2 0y
0D @ &)@z @)
6 5 44 33 2221,.1 0
Shift6-4=2 0 0 04 00 0020,.0,10
(82
‘\f’j‘
10,
o)y
B 3%
0 w2 e
1.1 0 S
Shift: 6-1=5 0,.,0,1 0 @xx
O
A A
AREAIREAAC)
44 33 2221,..1 0
Shift:6-4=2 0,4 0,0 0,0,20,.,0,1 0
i \
oA
\
(5
Found ! @ 8,
f PR O (O T
0@ ()@ s @)
6 5 44 33 2221,.1 0
shift:6-4=2 0 0 04 00 0020,..,0,10
State, pf = FALSE @ @
— 8
State, pf=TRuE {3} g
~- \ L
f‘lf)z
Final state, pf = FALSE e
Final state, pf= TRUE V\’\\Q:;/\

Figure 7: Pattern matching of P = {banana}srorco in text T = is it banana or
ananas? from the example

93

A
Shift: 6-1=5 0,..,0,1

(0
0
0

Proceedings of the Prague Stringology Conference '05

9 Future Work

The presented algorithm posses some drawbacks, that have to be solved in future
work:

1. The finite automaton used to specify the pattern matching algorithm is nonde-
terministic and an equivalent deterministic automaton cannot be constructed
by any known algorithm, because the automaton is attributed. To resolve this
issue, a new algorithm constructing the equivalent attributed deterministic au-
tomaton has to be invented.

2. The longest safe shift computed by the current algorithm is not optimal. This
shift can be further optimized by the observation mentioned at the end of Sec-
tion 7.1 (Step 4).

3. The pattern matching algorithm presented in this report has the upper bound
of its time complexity set higher than O(n), where n is the length of text. The
upper bound can be theoretically lowered to O(n) but this optimization is yet
to be found.

References

[BM77] R. S. Boyer, J. S. Moore: A fast string searching algorithm. C. ACM, Vol.
20, No. 10, pp. 762-772, October 1977.

[MH97] B. Melichar, J. Holub: 6D Classification of Pattern Matching Problems.
Proceedings of the Prague Stringology Club Workshop 97, July 1997, pp.
24-32.

[MH97a] B. Melichar, J. Holub: Pattern Matching and Finite Automata. In Pro-
ceedings of Summer School of Information Systems and Their Applications
1998, Ruprechtov, Czech Republic, September 1998, pp. 154-183.

[HAMS50] R. W. Hamming: Error-detecting and error-correcting codes. Bell System
Technical Journal 29:2, 1950, pp. 147-160.

[CR94] M. Crochemore, W. Rytter: Text Algorithms. Oxford University Press,
1994.

94

