General Pattern Matching on Regular Collage
System

Jan Lahoda and Botivoj Melichar

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo ndmeésti 13
121 35 Prague 2
Czech Republic

e-mail: {lahodaj,melichar}@fel.cvut.cz

Abstract. This paper presents a brand new approach to the general pattern
matching on regular collage systems. Our approach provides O(||D|| + |S|+ E)
(where E is the preprocessing cost) worst-case time complexity. It is based on
fact that a deterministic finite automaton is able to distinguish only a limited
number of strings.
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1 Introduction

In the concurrent world, each year more and more data are to be stored and processed.
It also seems that the amount of data to be stored and processed grows faster than
the data storage media and processing appliances.

The pattern matching in compressed text helps in both directions: the data are
compressed in order to consume less space, and then an algorithm for the pattern
matching in compressed text is employed to simplify the data processing.

In this paper, we provide a new approach for general (regular expression) pattern
matching over collage systems. Collage systems are means of representing several
compression methods in a unique way, and our approach uses finite automata as
unique approach for solving many pattern matching problems.

2 Basic notions and notations

Let us denote pref(P), fact(P) and suff(P) set of all prefixes, factors and suffixes
(respectivelly) of string P. Let us denote LSpref(w, P) and LSfact(w, P) longest
suffix of w that is concurrently a prefix (factor) of P.
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2.1 Collage systems

Collage systems [KST+99, KMT*01] are means of representing several compression
methods in a unique way. A collage system is a pair (D, S), where:

D (called dictionary) is a sequence of assignments in form X; = expry; Xy = expry;
---; X, = expr; where the expression for assignment X} is constructed in one
of these forms:

a for any a € (AU {e}), (primitive assigment)
X, X, fori,j<k, (concatenation)
U1X; for i < k and an integer j, (prefix truncation)
Xim for ¢ < k and an integer j, (suffix truncation)
(X;)? for i < k and an integer j. (j times repetition)

S (called sequence) is a sequence of assignments defined in D in form

S = Xil,Xiz, .. .,Xin
Let us denote u; string representing assigment X; and v = w;, u,, ... u;, string repre-
senting the collage system.

[KST*99] describes how to express various compression methods using collage
systems.

Several types of collage systems were defined in [KST*99]. The two most impor-
tant types in our case are regular and simple collage systems. The dictionary of a
regular collage system can contain assignments only in form of a or X;X;. The simple
collage systems are such regular collage systems, where for each assigment in form of
X;X; holds either X; = a or X; = a for some a € A.

For example, let us consider the following collage system: D = {X; = a, Xy =
b, X3 = X1Xo, Xy = X3X3}, S = {X4X,}. Then the assignments represent the
following strings u; = a, us = b, uz3 = ab, uy = abab and the whole collage system
represents string u = abababab.

3 Previous work

The collage systems were defined in [KSTT99] as generalization of several compression
methods. In this paper, an algorithm for exact one pattern matching was provided.
In [KMT*01], an algorithm for exact multiple pattern has been provided. For a
given collage system and pattern(s) of total length m, these algorithms have time
complexity O(||D|| + |S| + m? + r) and space complexity O(||D|| + m?).

4 Main result

In this section we will present algorithm for pattern matching on collage systems. In
order to make the pattern matching algorithm run in time O(||D|| + |S| + 7) (where
T represents preprocessing time) it is necessary to use only O(1) time for each item
in the sequence S and each expression in dictionary D. Therefore, in this section we
present a new approach to compute “descriptions” of each X; € D so we are able to
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create and update description for each X; in O(1) time and to process each item in
sequence S in O(1) time.

Our solution is based on the fact that there is only a very limited number of strings
that behave “differently” in a given pattern matching automaton (see Definition 1).
So the main idea is to find a (shorter) string (so called representant string), from a
limited set of predefined strings, for each dictionary item, that will behave in the same
way in the pattern matching automaton. As will be shown later, the representant
string of concatenation of two representant strings of two dictionary items can then
be computed in O(1).

Definition 1. Let M = (Q, A, d, qo, F') is a pattern matching automaton (determinis-
tic finite automaton) and 0* is a transitive reflexive closure of the transition function
§. Then relation ~y; (shortcut ~ will be used in the future when the automaton M
is clear from the context) is defined as follows: for each two strings u,v € A* holds
that u ~ v if and only if for each q € Q) holds:

1. 6*(q,u) = §*(q,v)
2. exactly one of the following is true:

— there exist strings u' € A*, u' € pref(u) and v' € A*, v' € pref(v) such that
0*(q,u’) € F and §*(q,v") € F,

— for all strings ' € A*, u' € pref(u) and v' € A*, v' € pref(v) holds that
0*(q,u') ¢ F and §*(q,v") ¢ F,

Definition 2. For a given deterministic finite automaton M, let us suppose that an
ordering is given on the set of states QQ, so we can enumerate the states in an order.

For each string u € A*, let us define signature S(u) as a vector of pairs S(u) =
((qy, f1)s- - - (q"Q‘, fiay)) of length |Q|, where a pair (¢, f{), ¢; € Q and f; € {true, false}.
On position i is computed as q, = 6*(g;,u) and boolean f; is true if and only if there
is a prefiz u' of u such that §*(q;,u') € F, false otherwise.

Example 3. Let us consider finite deterministic automaton shown in Figure 1. For
order of states: (A, B,C'), the signatures are as follows:

u S(u)

A | B | C
e | (A ) | (B f) | (Cf)

(B,t) | (B, f) | (B, f)
ab || (C,t) | (C,t) | (C,t)
aba || (B,t) | (B,t) | (B,t)
abe || (A,t) | (A,t) | (A1)
bl (A1) | (CF) | (A )
ba | (B,t) | (B,t) | (B, [)
be || (A,t) | (Af) | (A, f)
AN A7) ()

Theorem 4. For a given deterministic finite automaton M and for each two strings
u,v € A* holds that u ~ v if and only if S(u) = S(v).
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b,c a

Figure 1: Example pattern matching automaton

Proof. Leads directly from Definitions 1 and 2. O

Example 5. Let us consider finite deterministic automaton shown in Figure 1 and the
order of states: (A, B,C). Then the signature of strings aba and cccaba is the same:

S(aba) = S(cccaba) = ((B,t),(B,t),(B,t)). Therefore it holds that aba ~ cccaba.
Theorem 6. The relation ~ is equivalence, and moreover, it is right congruence.

Proof. To prove that relation ~ is an equivalence, we need to prove that it is reflexive,
symmetric and transitive (for each u, v, w € A*):

reflexivity it is obvious that S(u) = S(u),
symmetry if u ~ v, then S(u) = S(v), and also S(v) = S(u), and therefore v ~ u,

transitivity if u ~ v and v ~ w, then S(u) = §(v) and S(v) = S(w), then S(u) =
S(w) and therefore u ~ w.

To prove that relation ~ is a right congruence, it is necessary to prove that for
all a, 8,7 € A*, such that a ~ [ holds ay ~ v. Let us prove this by contradiction:
let us suppose there is an automaton M, and strings a, 3,y € A*, such that a ~ 3,
but not ay ~ [v. This means that there exists a state ¢ € () such that at least one
of there is true:

1. 0(q,) = d(q, ), but d(q, ay) # d(q, 57),

2. no o/ € pref(a) and 3’ € pref(5) exists such that 6(¢q, ') € F and §(q, ') € F
and there exists (ay)" € pref(ary) such that d(q, (ay)') € F and there is no

(B)" € pref(8v) such that (g, (87)") € F (or vice versa).

The first variant is not possible, because (¢, o) = §(¢, 8) = ¢’ and 6(¢',~) = ¢",
and therefore ¢" = §(q, ay) = d(q, 57)-

The second variant is not possible, because obviously: d(q,«) = (¢, ) = ¢,
|(ay)'| > |a| and therefore there must be ay’ = (a7y)" and so if §(q,ay') € F then
3(¢,y") € F and 0(q,87") € F, and so exists 5y € pref(5y) which breaks this
condition.

Therefore, such automaton M and string «, 3,y cannot exist, and therefore the
equivalence ~ is a right congruence. O
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The equivalence defined in the Definition 1 defines strings that behave “in the
same way” in the pattern matching automaton (they lead for a given state ¢ € @
into the same state ¢’ and they remember whether or not they passed through a final
state).

Definition 7. Let W C A* be a set of class representatives for partition A*/ ~ of
A*, such that for each w € W holds that there does not exist any w' such that w ~ w'
and |w'| < |w].

Theorem 8. For a given automaton M = (Q, A, 0, qo, F'), the corresponding set W
is finite and moreover has at most (2|Q])I9! elements.

Proof. As for each pair of strings u, v € A* holds that u ~ v if and only if S(u) = S(v),
it is therefore clear that there cannot be more classes of equivalence in partition A*/ ~
than is the number of distinct vectors. The number of different vectors is (2|Q|)!¢!
for a given automaton (each tuple of the vector can contain 2|@Q| distinct values, and
|@| tuples are independently combined into a vector). O

Although the size of set of representatives W is overwhelming, for most practical
purposes the size of this set is much smaller. Section 5 analyses these cases.

Algorithm 4 shows how to construct the set of representatives W for a given
automaton M.

Algorithm 4 Construction of the set of representatives W
Require: Deterministic finite automaton M
Ensure: Set of representatives W correspoding to the automaton M
1. U= {8}
2: while U is not empty do

3 remove a w from U such that there is no w’ € U such that |w| < |w'|.
4 if S(w) is not in Sy, then

5 W =Wwu{w}

6: for each a € A put wa into U

8 end if

9: end while

To solve the pattern matching problem on the (regular) collage system in O(||D||+
|S]) time, it is necessary to compute w € W corresponding to each item in O(1) time.
For the simple assignment (like X; = a), it is trivial. In order to compute represen-
tant string for X = X;X; from representant strings of X; and X, a characteristic
automaton My is defined.

Definition 9. For a given deterministic finite automaton M and correspoding set of
representatives W, characteristic automaton Mg = (Qw, W, 0w, qmo, D) is defined in
the following way:

Qu: Qu =W,
O :Qy xW = Qp: dg(qu,w) = u, where w,u € W such that ggw ~ u,

qHO0: qHO = £-
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The automaton My has obviously space complexity O(|W|?) for regular collage
systems. For simple collage systems, simplified characteristic automaton can be em-
ployed which space complexity is only O(|W||A]) (only expressions in form X} = X;a
or Xy = aX;, where a € A are allowed).

Another problem to solve is the match detection. This can be done using a special
final markers table F.

Definition 10. For a given deterministic finite automaton M and correspoding set of
representatives W, the final markers table F is defined for eachw € W and q € @ such
that Flw, q] = true if and only if there exists a w' € pref(w) such that 6(q,w’) € F.

Algorithm 5 Pattern Matching on Regular Collage Systems

> Preprocessing phase
for the given pattern P and pattern matching problem P construct pattern match-
ing automaton M, characteristic automaton My and final markers table F.
compute representative for each dictionary item from the dictionary D
> Pattern matching phase
q = qo
j=20
for all X from S ={X;,X,,,...,X;, } do
let w € W is the representant string corresponding to X
if Flw,q| is true then
report occurence(s) between positions j and j + | X.u|
end if
q=46(q,w)
j=j+ Xl
end for

5 On the Size Of W

Although the worst-case size of the set of representatives W for a given automaton
M is overwhelming (up to (2|Q|)!¢!), for many practical cases the size of this set is
much smaller. In this section, a proof that for exact one pattern matching of an
aperiodic pattern of length m, the size of the set W is O(m?). Moreover, results of
pratical experiments for commonly used patterns and pattern matching problem are
discussed.

5.1 Exact One Pattern Matching

In this section, we prove that for each deterministic finite automaton constructed to
solve exact one pattern matching for an aperiodic pattern of length m (see Defini-
tion 14), the size of set W is O(m?).

Moreover, our experiments have shown, that the aperiodic pattern is the worst-
case with regard to the size of set W. We have created automata and sets W for all
patterns of length 6, and none of these patterns performed worse than the aperiodic
pattern.
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Definition 11. Let automaton M = (Q, A, §, qo, F') be a pattern matching automaton
for exact one pattern matching of pattern P.

Then for each state q € Q) exists exactly one string u € A* such that u € pref(P),
3(go,u) = q and there is no shorter prefic with the same property. Let us define
function corr, which for each state q has value of the appropriate string w.

Lemma 12. For a given automaton M, let us define set W' which fulfills these
properties:

1.eeW

2. for each a € A and w' € W' exists u' € W' such that v’ ~ w'a
Then for each w € A* exists a w' € W' such that w ~ w'.
Proof. (by induction by the length of w)

1. For w = ¢, w € A*, there clearly exists w’ = ¢ (the first condition on set W'),
such that w ~ w'.

2. Let us suppose that the claim holds for all w € A*) |w| < k. Than for each
a € Aand w € W, |w| < k holds: there exists w’ € W' such that w ~ w'.
There also exists v’ € W' such that v’ ~ w'a. As the equivalence ~ is a right
congruence, it also holds that wa ~ u'. The claim therefore also holds for all
|lwa| < k+ 1.

0
Corollary 13. For set W' defined in Lemma 12 holds that |W| < |[W'].

Proof. (by contradiction)Let us suppose there exists such automaton M, correspoding
set of class representatives W and a set W’ such that [WW| > [W’|. But then there must
be two wy,ws € W, wy # wy such that there exists w’ € W', wy ~ w', wy ~ w'. As ~
is equivalence, it is clear that w; ~ w,, and that means that strings w; and wy are in
the same class of equivalence, and therefore set W is not set of class representatives,
which is the contrandiction with the assumptions. Therefore such automaton M and
sets W and W' cannot exist. O

Definition 14. Let us call pattern P = aqas .. .a,, of length m such that for each
two 1,7 €< 1,m >, i # j holds a; # a; aperiodic.

Lemma 15. For an aperiodic pattern P = ajas---ay,, of length m, alphabet A =
A1,y Uy, T, and corresponding automaton M, construct set W' = {w' : w' €
fact(P) or w' = sxp,s € suff(P),p € pref(P)}. The set W' fulfills requirements
defined in Lemma 12.

Proof. As e € fact(P), it is clear that e € W'.

Let as for each factor f € fact(P) denote a, the symbol in A for which fa €
fact(P). Note that there is no a, for all f € suff(P).

For each w' € W' and a € A, let us analyse all possibilities (for each combination
of w’ and a, only the topmost step is valid):
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— w' =& it clearly holds a € fact(P) or a = z, and so a € W'
— w' € fact(P), a = ay: it clearly holds fa € fact(P) and so fa € W’

— w' € fact(P), w' ¢ suff(P), a = ay: as for each state ¢ € @ holds that 6(q,a;) =
¢1, and that there is no such ¢ € @ and w" € pref(w’) such that §(¢q,w") € F,
it holds that w'a ~ a;.

— w' € fact(P), w' ¢ suff(P), a # a1, a # a,: as the pattern is not periodic, the
longest suffix of w'a that is prefix of P is e, and that there is no such ¢ € @ and
w" € pref(w') such that §(q, w") € F, it holds that w'a ~ «.

"= P, a = a;: as for each state ¢ € @ holds that (¢, P) = ¢ € F,
(Gm,a1) = ¢, it holds that Pa ~ Pza.

I
g

o

—w' = P, a # a;: as for each state ¢ € @ holds that 6(¢,P) = ¢ € F,
8(qm, a) = qo, it holds that Pa ~ Px.

— w' € suff(P), a = a;: as for one state ¢; € @ holds that §(gs, w') = ¢, and for
all other ¢ € @ holds that 6(q, w') = qq, it holds that w'a ~ w'za;.

— w' € suff(P), a # a;: as for one state ¢; € @ holds that (g, w') = ¢, and for
all other ¢ € @ holds that 6(¢q,w’) = qo, it holds that w'a ~ w'z.

— w' = sxp for some s € suff(P), p € pref(P), a = a, (a, regarding prefix p),
pa, # P: it clearly holds that: w'a € W".

— w' = sxp for some s € suff(P), p € pref(P), a = a, (a, regarding prefix p),
pa, = P: it clearly holds that: w'a ~ P.

— w' = sxp for some s € suff(P), p € pref(P), a = a1, p # P: as §*(q,par) = ¢
for all ¢ € @, and there is no p” € pref(p) such that 6(q,p"”) € F, it holds that
w'a ~ sxa;.

— w' = sxp for some s € suff(P), p € pref(P), a = a1, p = P: as §*(¢, Pay) = ¢
for all ¢ € @, and d(q, P) € F, it holds that w'a ~ Pza;.

— w' = sxp for some s € suff(P), p € pref(P), p # P: as §*(¢,pa) = qo for
all ¢ € @, and there is no p"” € pref(p) such that 6(¢q,p") € F, it holds that
w'a ~ sx.

— w' = sxp for some s € suff(P), p € pref(P), p = P: as 0*(q, Pa) = ¢ for all
q € Q, and 6(q, P) € F, it holds that w'a ~ Px.

O

Lemma 16. For an aperiodic pattern P = ajas---a,, of length m, alphabet A =
A1y .y, T, and corresponding automaton M for exact one pattern matching, the
set W has at most O(m?) items.

Proof. As the set defined in the Lemma 15 has at most O(|Q|?) elements, and ac-
cording to Corollary 13, the set W has at most O(|Q[*) elements.

As proven in [Hol00], the automaton for exact one pattern matching of pattern of
length m has m + 1 states (|Q| = m + 1) and therefore |IW| = O(m?). O

160



General Pattern Matching on Regular Collage System

12000 : . : : . , : :
Median
Maximum -------
Average --------
|
10000 5 |
8000 |- u‘_
g i}
2 i
: I
5 6000 |- 4
N X
N
(%)
|
4000 ;
2000 | { |
‘/l
A
0 I SN o Ty S
0 10 20 30 40 50 60 70 80 90 100

Regular Expression Length

Figure 2: Size of set of representants W for a random regular expression of given
length

5.2 Regular Expressions

We have constructed 100 random regular expressions for lengths 1 to 100 (therefore
we tested 10000 regular expressions). We define the length of the regular expression
as the number of symbols from the alphabet in the regular expression, so operators
and brackets are not counted into the length of the regular expression. The regular
expressions were prepended with “.*” to simulate pattern matching algorithms. The
results from these experiments are summarised in Figure 2.

As can be seen from the graph, the size of the set W for our regular expressions
grows much less than |Q|?l (note that @ = O(2™) where m is the length of the
regular expression). Therefore, it seems that the proposed algorithm may be usefull
for a wide range of practical applications.

6 Conclusion

In this paper, a new method for general pattern matching on collage systems is pre-
sented. This method allows general pattern matching on the regular collage systems
in linear time with respect to the size of the collage system.

Although the preprocessing time and space requirements of this method may be
very high, in Section 5 is shown that for some practical applications the requirements
are more acceptable. Moreover, it is possible to used here-presented approach as long
as the preprocessing requirements are acceptable (gaining very fast processing time)
and resort to another algorithm (decompress&search in the worst-case) otherwise.
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