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Abstra
t. This paper presents a brand new approa
h to the general pattern

mat
hing on regular 
ollage systems. Our approa
h provides O(jjDjj+ jSj+E)

(where E is the prepro
essing 
ost) worst-
ase time 
omplexity. It is based on

fa
t that a deterministi
 �nite automaton is able to distinguish only a limited

number of strings.
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1 Introdu
tion

In the 
on
urrent world, ea
h year more and more data are to be stored and pro
essed.

It also seems that the amount of data to be stored and pro
essed grows faster than

the data storage media and pro
essing applian
es.

The pattern mat
hing in 
ompressed text helps in both dire
tions: the data are


ompressed in order to 
onsume less spa
e, and then an algorithm for the pattern

mat
hing in 
ompressed text is employed to simplify the data pro
essing.

In this paper, we provide a new approa
h for general (regular expression) pattern

mat
hing over 
ollage systems. Collage systems are means of representing several


ompression methods in a unique way, and our approa
h uses �nite automata as

unique approa
h for solving many pattern mat
hing problems.

2 Basi
 notions and notations

Let us denote pref(P ), fa
t(P ) and su�(P ) set of all pre�xes, fa
tors and suÆxes

(respe
tivelly) of string P . Let us denote LSpref(w; P ) and LSfa
t(w; P ) longest

suÆx of w that is 
on
urrently a pre�x (fa
tor) of P .
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2.1 Collage systems

Collage systems [KST

+

99, KMT

+

01℄ are means of representing several 
ompression

methods in a unique way. A 
ollage system is a pair (D;S), where:

D (
alled di
tionary) is a sequen
e of assignments in form X

1

= expr

1

; X

2

= expr

2

;

� � � ; X

l

= expr

l

where the expression for assignment X

k

is 
onstru
ted in one

of these forms:

a for any a 2 (A [ f"g), (primitive assigment)

X

i

X

j

for i; j < k, (
on
atenation)

[j℄

X

i

for i < k and an integer j, (pre�x trun
ation)

X

[j℄

i

for i < k and an integer j, (suÆx trun
ation)

(X

i

)

j

for i < k and an integer j. (j times repetition)

S (
alled sequen
e) is a sequen
e of assignments de�ned in D in form

S = X

i

1

; X

i

2

; : : : ; X

i

n

Let us denote u

i

string representing assigment X

i

and u = u

i

1

u

i

2

: : : u

i

n

string repre-

senting the 
ollage system.

[KST

+

99℄ des
ribes how to express various 
ompression methods using 
ollage

systems.

Several types of 
ollage systems were de�ned in [KST

+

99℄. The two most impor-

tant types in our 
ase are regular and simple 
ollage systems. The di
tionary of a

regular 
ollage system 
an 
ontain assignments only in form of a or X

i

X

j

. The simple


ollage systems are su
h regular 
ollage systems, where for ea
h assigment in form of

X

i

X

j

holds either X

i

= a or X

j

= a for some a 2 A.

For example, let us 
onsider the following 
ollage system: D = fX

1

= a;X

2

=

b;X

3

= X

1

X

2

; X

4

= X

3

X

3

g, S = fX

4

X

4

g. Then the assignments represent the

following strings u

1

= a, u

2

= b, u

3

= ab, u

4

= abab and the whole 
ollage system

represents string u = abababab.

3 Previous work

The 
ollage systems were de�ned in [KST

+

99℄ as generalization of several 
ompression

methods. In this paper, an algorithm for exa
t one pattern mat
hing was provided.

In [KMT

+

01℄, an algorithm for exa
t multiple pattern has been provided. For a

given 
ollage system and pattern(s) of total length m, these algorithms have time


omplexity O(jjDjj+ jSj+m

2

+ r) and spa
e 
omplexity O(jjDjj+m

2

).

4 Main result

In this se
tion we will present algorithm for pattern mat
hing on 
ollage systems. In

order to make the pattern mat
hing algorithm run in time O(jjDjj+ jSj+ �) (where

� represents prepro
essing time) it is ne
essary to use only O(1) time for ea
h item

in the sequen
e S and ea
h expression in di
tionary D. Therefore, in this se
tion we

present a new approa
h to 
ompute \des
riptions" of ea
h X

i

2 D so we are able to
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reate and update des
ription for ea
h X

i

in O(1) time and to pro
ess ea
h item in

sequen
e S in O(1) time.

Our solution is based on the fa
t that there is only a very limited number of strings

that behave \di�erently" in a given pattern mat
hing automaton (see De�nition 1).

So the main idea is to �nd a (shorter) string (so 
alled representant string), from a

limited set of prede�ned strings, for ea
h di
tionary item, that will behave in the same

way in the pattern mat
hing automaton. As will be shown later, the representant

string of 
on
atenation of two representant strings of two di
tionary items 
an then

be 
omputed in O(1).

De�nition 1. Let M = (Q;A; Æ; q

0

; F ) is a pattern mat
hing automaton (determinis-

ti
 �nite automaton) and Æ

�

is a transitive re
exive 
losure of the transition fun
tion

Æ. Then relation �

M

(short
ut � will be used in the future when the automaton M

is 
lear from the 
ontext) is de�ned as follows: for ea
h two strings u; v 2 A

�

holds

that u � v if and only if for ea
h q 2 Q holds:

1. Æ

�

(q; u) = Æ

�

(q; v)

2. exa
tly one of the following is true:

{ there exist strings u

0

2 A

�

, u

0

2 pref(u) and v

0

2 A

�

, v

0

2 pref(v) su
h that

Æ

�

(q; u

0

) 2 F and Æ

�

(q; v

0

) 2 F ,

{ for all strings u

0

2 A

�

, u

0

2 pref(u) and v

0

2 A

�

, v

0

2 pref(v) holds that

Æ

�

(q; u

0

) =2 F and Æ

�

(q; v

0

) =2 F ,

De�nition 2. For a given deterministi
 �nite automaton M , let us suppose that an

ordering is given on the set of states Q, so we 
an enumerate the states in an order.

For ea
h string u 2 A

�

, let us de�ne signature S(u) as a ve
tor of pairs S(u) =

((q

0

1

; f

1

); : : : ; (q

0

jQj

; f

jQj

)) of length jQj, where a pair (q

0

i

; f

0

i

), q

0

i

2 Q and f

i

2 ftrue; falseg.

On position i is 
omputed as q

0

i

= Æ

�

(q

i

; u) and boolean f

i

is true if and only if there

is a pre�x u

0

of u su
h that Æ

�

(q

i

; u

0

) 2 F , false otherwise.

Example 3. Let us 
onsider �nite deterministi
 automaton shown in Figure 1. For

order of states: (A;B;C), the signatures are as follows:

u S(u)

A B C

" (A; f) (B; f) (C; f)

a (B; t) (B; f) (B; f)

ab (C; t) (C; t) (C; t)

aba (B; t) (B; t) (B; t)

ab
 (A; t) (A; t) (A; t)

b (A; t) (C; t) (A; f)

ba (B; t) (B; t) (B; f)

b
 (A; t) (A; t) (A; f)


 (A; f) (A; f) (A; f)

Theorem 4. For a given deterministi
 �nite automaton M and for ea
h two strings

u; v 2 A

�

holds that u � v if and only if S(u) = S(v).
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A CB

a

a

ba

c

b, c

b, c

Figure 1: Example pattern mat
hing automaton

Proof. Leads dire
tly from De�nitions 1 and 2.

Example 5. Let us 
onsider �nite deterministi
 automaton shown in Figure 1 and the

order of states: (A;B;C). Then the signature of strings aba and 


aba is the same:

S(aba) = S(


aba) = ((B; t); (B; t); (B; t)). Therefore it holds that aba � 


aba.

Theorem 6. The relation � is equivalen
e, and moreover, it is right 
ongruen
e.

Proof. To prove that relation� is an equivalen
e, we need to prove that it is re
exive,

symmetri
 and transitive (for ea
h u; v; w 2 A

�

):

re
exivity it is obvious that S(u) = S(u),

symmetry if u � v, then S(u) = S(v), and also S(v) = S(u), and therefore v � u,

transitivity if u � v and v � w, then S(u) = S(v) and S(v) = S(w), then S(u) =

S(w) and therefore u � w.

To prove that relation � is a right 
ongruen
e, it is ne
essary to prove that for

all �; �; 
 2 A

�

, su
h that � � � holds �
 � �
. Let us prove this by 
ontradi
tion:

let us suppose there is an automaton M , and strings �; �; 
 2 A

�

, su
h that � � �,

but not �
 � �
. This means that there exists a state q 2 Q su
h that at least one

of there is true:

1. Æ(q; �) = Æ(q; �), but Æ(q; �
) 6= Æ(q; �
),

2. no �

0

2 pref(�) and �

0

2 pref(�) exists su
h that Æ(q; �

0

) 2 F and Æ(q; �

0

) 2 F

and there exists (�
)

0

2 pref(�
) su
h that Æ(q; (�
)

0

) 2 F and there is no

(�
)

0

2 pref(�
) su
h that Æ(q; (�
)

0

) 2 F (or vi
e versa).

The �rst variant is not possible, be
ause Æ(q; �) = Æ(q; �) = q

0

and Æ(q

0

; 
) = q

00

,

and therefore q

00

= Æ(q; �
) = Æ(q; �
).

The se
ond variant is not possible, be
ause obviously: Æ(q; �) = Æ(q; �) = q

0

,

j(�
)

0

j > j�j and therefore there must be �


0

= (�
)

0

and so if Æ(q; �


0

) 2 F then

Æ(q

0

; 


0

) 2 F and Æ(q; �


0

) 2 F , and so exists �


0

2 pref(�
) whi
h breaks this


ondition.

Therefore, su
h automaton M and string �; �; 
 
annot exist, and therefore the

equivalen
e � is a right 
ongruen
e.
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The equivalen
e de�ned in the De�nition 1 de�nes strings that behave \in the

same way" in the pattern mat
hing automaton (they lead for a given state q 2 Q

into the same state q

0

and they remember whether or not they passed through a �nal

state).

De�nition 7. Let W � A

�

be a set of 
lass representatives for partition A

�

= � of

A

�

, su
h that for ea
h w 2 W holds that there does not exist any w

0

su
h that w � w

0

and jw

0

j < jwj.

Theorem 8. For a given automaton M = (Q;A; Æ; q

0

; F ), the 
orresponding set W

is �nite and moreover has at most (2jQj)

jQj

elements.

Proof. As for ea
h pair of strings u; v 2 A

�

holds that u � v if and only if S(u) = S(v),

it is therefore 
lear that there 
annot be more 
lasses of equivalen
e in partition A

�

= �

than is the number of distin
t ve
tors. The number of di�erent ve
tors is (2jQj)

jQj

for a given automaton (ea
h tuple of the ve
tor 
an 
ontain 2jQj distin
t values, and

jQj tuples are independently 
ombined into a ve
tor).

Although the size of set of representatives W is overwhelming, for most pra
ti
al

purposes the size of this set is mu
h smaller. Se
tion 5 analyses these 
ases.

Algorithm 4 shows how to 
onstru
t the set of representatives W for a given

automaton M .

Algorithm 4 Constru
tion of the set of representatives W

Require: Deterministi
 �nite automaton M

Ensure: Set of representatives W 
orrespoding to the automaton M

1: U = f"g

2: while U is not empty do

3: remove a w from U su
h that there is no w

0

2 U su
h that jwj < jw

0

j.

4: if S(w) is not in S

M

then

5: W =W [ fwg

6: for ea
h a 2 A put wa into U

7: S

M

= S

M

[ fS(w)g

8: end if

9: end while

To solve the pattern mat
hing problem on the (regular) 
ollage system inO(jjDjj+

jSj) time, it is ne
essary to 
ompute w 2 W 
orresponding to ea
h item in O(1) time.

For the simple assignment (like X

i

= a), it is trivial. In order to 
ompute represen-

tant string for X

k

= X

i

X

j

from representant strings of X

i

and X

j

, a 
hara
teristi


automaton M

H

is de�ned.

De�nition 9. For a given deterministi
 �nite automaton M and 
orrespoding set of

representatives W , 
hara
teristi
 automaton M

H

= (Q

H

;W; Æ

H

; q

H0

; ;) is de�ned in

the following way:

Q

H

: Q

H

= W ,

Æ

H

: Q

H

�W ! Q

H

: Æ

H

(q

H

; w) = u, where w; u 2 W su
h that q

H

w � u,

q

H0

: q

H0

= ".
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The automaton M

H

has obviously spa
e 
omplexity O(jW j

2

) for regular 
ollage

systems. For simple 
ollage systems, simpli�ed 
hara
teristi
 automaton 
an be em-

ployed whi
h spa
e 
omplexity is only O(jW jjAj) (only expressions in form X

k

= X

i

a

or X

k

= aX

i

, where a 2 A are allowed).

Another problem to solve is the mat
h dete
tion. This 
an be done using a spe
ial

�nal markers table F .

De�nition 10. For a given deterministi
 �nite automaton M and 
orrespoding set of

representativesW , the �nal markers table F is de�ned for ea
h w 2 W and q 2 Q su
h

that F [w; q℄ = true if and only if there exists a w

0

2 pref(w) su
h that Æ(q; w

0

) 2 F .

Algorithm 5 Pattern Mat
hing on Regular Collage Systems

. Prepro
essing phase

for the given pattern P and pattern mat
hing problem P 
onstru
t pattern mat
h-

ing automaton M , 
hara
teristi
 automaton M

H

and �nal markers table F .


ompute representative for ea
h di
tionary item from the di
tionary D

. Pattern mat
hing phase

q = q

0

j = 0

for all X from S = fX

i

1

; X

i

2

; : : : ; X

i

n

g do

let w 2 W is the representant string 
orresponding to X

if F [w; q℄ is true then

report o

uren
e(s) between positions j and j + jX:uj

end if

q = Æ(q; w)

j = j + jX:uj

end for

5 On the Size Of W

Although the worst-
ase size of the set of representatives W for a given automaton

M is overwhelming (up to (2jQj)

jQj

), for many pra
ti
al 
ases the size of this set is

mu
h smaller. In this se
tion, a proof that for exa
t one pattern mat
hing of an

aperiodi
 pattern of length m, the size of the set W is O(m

2

). Moreover, results of

prati
al experiments for 
ommonly used patterns and pattern mat
hing problem are

dis
ussed.

5.1 Exa
t One Pattern Mat
hing

In this se
tion, we prove that for ea
h deterministi
 �nite automaton 
onstru
ted to

solve exa
t one pattern mat
hing for an aperiodi
 pattern of length m (see De�ni-

tion 14), the size of set W is O(m

2

).

Moreover, our experiments have shown, that the aperiodi
 pattern is the worst-


ase with regard to the size of set W . We have 
reated automata and sets W for all

patterns of length 6, and none of these patterns performed worse than the aperiodi


pattern.
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De�nition 11. Let automaton M = (Q;A; Æ; q

0

; F ) be a pattern mat
hing automaton

for exa
t one pattern mat
hing of pattern P .

Then for ea
h state q 2 Q exists exa
tly one string u 2 A

�

su
h that u 2 pref(P ),

Æ(q

o

; u) = q and there is no shorter pre�x with the same property. Let us de�ne

fun
tion 
orr, whi
h for ea
h state q has value of the appropriate string u.

Lemma 12. For a given automaton M , let us de�ne set W

0

whi
h ful�lls these

properties:

1. " 2 W

0

2. for ea
h a 2 A and w

0

2 W

0

exists u

0

2 W

0

su
h that u

0

� w

0

a

Then for ea
h w 2 A

�

exists a w

0

2 W

0

su
h that w � w

0

.

Proof. (by indu
tion by the length of w)

1. For w = ", w 2 A

�

, there 
learly exists w

0

= " (the �rst 
ondition on set W

0

),

su
h that w � w

0

.

2. Let us suppose that the 
laim holds for all w 2 A

�

, jwj � k. Than for ea
h

a 2 A and w 2 W , jwj � k holds: there exists w

0

2 W

0

su
h that w � w

0

.

There also exists u

0

2 W

0

su
h that u

0

� w

0

a. As the equivalen
e � is a right


ongruen
e, it also holds that wa � u

0

. The 
laim therefore also holds for all

jwaj � k + 1.

Corollary 13. For set W

0

de�ned in Lemma 12 holds that jW j � jW

0

j.

Proof. (by 
ontradi
tion)Let us suppose there exists su
h automatonM , 
orrespoding

set of 
lass representativesW and a setW

0

su
h that jW j > jW

0

j. But then there must

be two w

1

; w

2

2 W , w

1

6= w

2

su
h that there exists w

0

2 W

0

, w

1

� w

0

, w

2

� w

0

. As �

is equivalen
e, it is 
lear that w

1

� w

2

, and that means that strings w

1

and w

2

are in

the same 
lass of equivalen
e, and therefore set W is not set of 
lass representatives,

whi
h is the 
ontrandi
tion with the assumptions. Therefore su
h automaton M and

sets W and W

0


annot exist.

De�nition 14. Let us 
all pattern P = a

1

a

2

: : : a

m

of length m su
h that for ea
h

two i; j 2< 1; m >, i 6= j holds a

i

6= a

j

aperiodi
.

Lemma 15. For an aperiodi
 pattern P = a

1

a

2

� � �a

m

of length m, alphabet A =

a

1

; : : : ; a

m

; x, and 
orresponding automaton M , 
onstru
t set W

0

= fw

0

: w

0

2

fa
t(P ) or w

0

= sxp; s 2 su�(P ); p 2 pref(P )g. The set W

0

ful�lls requirements

de�ned in Lemma 12.

Proof. As " 2 fa
t(P ), it is 
lear that " 2 W

0

.

Let as for ea
h fa
tor f 2 fa
t(P ) denote a

n

the symbol in A for whi
h fa 2

fa
t(P ). Note that there is no a

n

for all f 2 su�(P ).

For ea
h w

0

2 W

0

and a 2 A, let us analyse all possibilities (for ea
h 
ombination

of w

0

and a, only the topmost step is valid):
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{ w

0

= ": it 
learly holds a 2 fa
t(P ) or a = x, and so a 2 W

0

{ w

0

2 fa
t(P ), a = a

n

: it 
learly holds fa 2 fa
t(P ) and so fa 2 W

0

{ w

0

2 fa
t(P ), w

0

=2 su�(P ), a = a

1

: as for ea
h state q 2 Q holds that Æ(q; a

1

) =

q

1

, and that there is no su
h q 2 Q and w

00

2 pref(w

0

) su
h that Æ(q; w

00

) 2 F ,

it holds that w

0

a � a

1

.

{ w

0

2 fa
t(P ), w

0

=2 su�(P ), a 6= a

1

, a 6= a

n

: as the pattern is not periodi
, the

longest suÆx of w

0

a that is pre�x of P is ", and that there is no su
h q 2 Q and

w

00

2 pref(w

0

) su
h that Æ(q; w

00

) 2 F , it holds that w

0

a � ".

{ w

0

= P , a = a

1

: as for ea
h state q 2 Q holds that Æ(q; P ) = q

m

2 F ,

Æ(q

m

; a

1

) = q

1

, it holds that Pa � Pxa.

{ w

0

= P , a 6= a

1

: as for ea
h state q 2 Q holds that Æ(q; P ) = q

m

2 F ,

Æ(q

m

; a) = q

0

, it holds that Pa � Px.

{ w

0

2 su�(P ), a = a

1

: as for one state q

s

2 Q holds that Æ(q

s

; w

0

) = q

m

, and for

all other q 2 Q holds that Æ(q; w

0

) = q

0

, it holds that w

0

a � w

0

xa

1

.

{ w

0

2 su�(P ), a 6= a

1

: as for one state q

s

2 Q holds that Æ(q

s

; w

0

) = q

m

, and for

all other q 2 Q holds that Æ(q; w

0

) = q

0

, it holds that w

0

a � w

0

x.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

n

(a

n

regarding pre�x p),

pa

n

6= P : it 
learly holds that: w

0

a 2 W

0

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

n

(a

n

regarding pre�x p),

pa

n

= P : it 
learly holds that: w

0

a � P .

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

1

, p 6= P : as Æ

�

(q; pa

1

) = q

1

for all q 2 Q, and there is no p

00

2 pref(p) su
h that Æ(q; p

00

) 2 F , it holds that

w

0

a � sxa

1

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

1

, p = P : as Æ

�

(q; Pa

1

) = q

1

for all q 2 Q, and Æ(q; P ) 2 F , it holds that w

0

a � Pxa

1

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), p 6= P : as Æ

�

(q; pa) = q

0

for

all q 2 Q, and there is no p

00

2 pref(p) su
h that Æ(q; p

00

) 2 F , it holds that

w

0

a � sx.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), p = P : as Æ

�

(q; Pa) = q

0

for all

q 2 Q, and Æ(q; P ) 2 F , it holds that w

0

a � Px.

Lemma 16. For an aperiodi
 pattern P = a

1

a

2

� � �a

m

of length m, alphabet A =

a

1

; : : : ; a

m

; x, and 
orresponding automaton M for exa
t one pattern mat
hing, the

set W has at most O(m

2

) items.

Proof. As the set de�ned in the Lemma 15 has at most O(jQj

2

) elements, and a
-


ording to Corollary 13, the set W has at most O(jQj

2

) elements.

As proven in [Hol00℄, the automaton for exa
t one pattern mat
hing of pattern of

length m has m + 1 states (jQj = m + 1) and therefore jW j = O(m

2

).
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Figure 2: Size of set of representants W for a random regular expression of given

length

5.2 Regular Expressions

We have 
onstru
ted 100 random regular expressions for lengths 1 to 100 (therefore

we tested 10000 regular expressions). We de�ne the length of the regular expression

as the number of symbols from the alphabet in the regular expression, so operators

and bra
kets are not 
ounted into the length of the regular expression. The regular

expressions were prepended with \.*" to simulate pattern mat
hing algorithms. The

results from these experiments are summarised in Figure 2.

As 
an be seen from the graph, the size of the set W for our regular expressions

grows mu
h less than jQj

jQj

(note that Q = O(2

m

) where m is the length of the

regular expression). Therefore, it seems that the proposed algorithm may be usefull

for a wide range of pra
ti
al appli
ations.

6 Con
lusion

In this paper, a new method for general pattern mat
hing on 
ollage systems is pre-

sented. This method allows general pattern mat
hing on the regular 
ollage systems

in linear time with respe
t to the size of the 
ollage system.

Although the prepro
essing time and spa
e requirements of this method may be

very high, in Se
tion 5 is shown that for some pra
ti
al appli
ations the requirements

are more a

eptable. Moreover, it is possible to used here-presented approa
h as long

as the prepro
essing requirements are a

eptable (gaining very fast pro
essing time)

and resort to another algorithm (de
ompress&sear
h in the worst-
ase) otherwise.
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