Operation L-INSERT on Factor Automaton*®

Bortivoj Melichar and Milan Simanek

Department of Computer Science & Engineering
Faculty of Electrical Engineering
Czech Technical University Prague

e-mail: melichar@fel.cvut.cz, simanek@fel.cvut.cz

Abstract. The factor automaton is used for time-optimal searching for sub-
strings in text. In general, if the text is changed the new factor automaton has
to be constructed. When the text change is simple enough we can change the
original factor automaton to reflect the changes of the text and save the time of
the new factor automaton construction.

This paper deals with operation L-INSERT and describes the algorithm modi-
fying the factor automaton when a new symbol is prepended to the text. This
algorithm can be also used for on-line backward construction of factor automa-
ton.

Keywords: factor automaton, DAWG, operation on factor automaton, con-
struction of factor automaton, finite automaton.

1 Introduction

The factor automaton is a finite automaton accepting the set of all factors (substrings)
of the given text (string) 7. The factor automaton can be constructed for arbitrary
text by one of the common construction algorithms. The time complexity of the
construction is linear to the size of the text 7', while pattern matching for pattern P
is linear to the size of the pattern P and is independent of the size of text T". So, in
the most common case the factor automaton is once constructed and many time used
for pattern matching. However, when we change the text 7T the factor automaton
must be dropped and new factor automaton has to be constructed.

If the changes in the text are simple enough then we can find an algorithm mod-
ifying the original factor automaton according text 7. The time complexity of this
algorithm is often better then the complete construction of the new factor automaton
for the changed text.

A nice example of such algorithm is the APPEND algorithm described in [1, Chap-
ter 6.3], which can modify given factor automaton when a new symbol is appended to
the text 7. The authors use this algorithm as a part of their on-line factor automa-
ton construction algorithm for text T" = ¢ty - - -t,: they start with one-node factor

*This research has been partialy supported by the Ministry of Education, Youth, and Sports
of the Czech Republic under research program No. J04/98:212300014 (Research in the area of
information technologies and cummunications) and by Grant Agency of Czech Republic grant No.
201/01/1433.

111

Proceedings of the Prague Stringology Conference 03

automaton for empty text ¢ and compute successively factor automata for texts ¢,
tity, titots, « -+, tite - ty.

Another known factor automaton modifying algorithm is the L-DELETE algo-
rithm [2]. It can make desired changes to the factor automaton when the text 7 is
reduced by deleting the leftmost symbol. The L-DELETE algorithm can be used in
conjunction with the APPEND algorithm to implement fast substring matching in
sliding window data compression method.

This paper describes an L-INSERT algorithm modifying the factor automaton
when the text T is prepended by a new symbol. Like the APPEND algorithm,
this algorithm can also be used for the construction of the factor automaton. The
well-known construction using operation APPEND creates the factor automaton by
appending symbols of the text T from left to right. On the contrary, the construction
based on L-INSERT creates the factor automaton starting with the rightmost symbol
to the left.

2 Basic Definitions

The factor automaton for text 7' is defined as a finite automaton M accepting the
language L(M) = Fac(T) of all factors of T. There is an infinite number of such
automata, hence we select one with very regular structure of its transition diagram
(Figure 1). All its states are both initial and final.

Figure 1: Canonical nondeterministic factor automaton (CNFA)

Definition 2.1 — Canonical nondeterministic factor automaton (CNFA)
Canonical nondeterministic factor automaton CNFA for text T = tytals---1, is a
nondeterministic finite automaton M = (Q, A, d, I, F) which satisfies:

1. Q - {%:‘ha‘ha o qn}

q; Vi<n,a=t
2.V € Q,ac A §(g;,a) = { é) = in other caseSJrl

3.1=Q
4. F=Q

We cannot directly use CNFA because of a nondeterminism. Each nondetermin-
istic finite automaton can be transformed to deterministic one accepting the same
language. The transformation can be done by subset construction [3]. We use the
variant of the transformation which does not insert inaccesible states into the resulting
DFA [4, algorithm 3.6] and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets con-
struction: For each nondeterministic finite automaton M = (@, A,d,I,F) we can

112

Operation L-INSERT on Factor Automaton

~ A

find a deterministic finite automaton M = (Q,A, d,qo, F') accepting the same lan-
guage satisfying the following conditions:

e Q CP(Q) such that Q = {¢: § = 6*(I,w);w € A*}

° 5isamapping5:§2
Ve Q,aeA: 6

X A — Q
((ja (Z) - qutj 5((]7 Cl),

e GHeEQ Go=1,
e FCQ F={GeQ:GNnF#0}.

We use the hat accent to denote deterministic automaton, its states and transition
function. States of CDFA are sets of CNFA. Note, that that CDFA contains only
reachable states.

Definition 2.2 — Canonical deterministic factor automaton (CDFA)
Canonical deterministic factor automaton CDFA for text T is a deterministic au-
tomaton given as the result of the standard determinization of the canonical nonde-
terministic factor automaton for the same text 7'.

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new
state and one transition). We use that algorithm and the standard determinization to
find L-INSERT algorithm modifying CDFA. To keep the relationship between states
of CNFA and CDFA automata we use several adjacent data structures.

3 Adjacent Data Structures

To enable efficient algorithm modifying CDFA we extend CDFA by following addi-
tional information:

e suffix links,
e text pointers,

e in-degree of nodes.

3.1 Suffix Links

Each state ¢ of the CDFA represents a set of active states of the CNFA — after
accepting any string w the active state ¢, = 0*(go, w) of CDFA represents a set of
active states @, = 0*(I, w) of CNFA, formally G, = Q.-

Lemma 3.1 If two states ¢,, ¢, € Q have nonempty intersection, ¢, N ¢, # 0, then
one of them is a subset of the other (G, C ¢,).

113

Proceedings of the Prague Stringology Conference 03

“. “ﬁb . R N o N L &)

T = t1t2t3 . tn

N
7
w

N
7z
Figure 2: If state ¢, = 5*(@0, w) contains a state ¢; then string w ends at position i

Proof:

If both two states ¢, and ¢, contain state ¢; then both represent the CNFA
active state ¢;. Because of very regular structure of CNFA the state g;
becomes active only if the accepted string is a factor of the text 7" ending
at position i (see Figure 2). It means that both strings v and w (leading
to states ¢, and ¢,) are factors of the text 7" ending on the same position
i. Therefore one of them must be a suffix of the other (Figure 3). Let

“. “ﬁb . R N o N L &)

N
7

N
7z
Figure 3: Strings u and w end in the same position.

u be a suffix of w. The state §,, represents states G, = {q;,, ¢j»> @5, -}
where j; are ending positions of all occurrences of the string w in the text.
The string u is a suffix of w so that it occurs at least on the same ending
positions, therefore ¢, C ¢, (Figure 4). o

T - tltgtg v tn

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states containing any common CNFA
state ¢; are ordered by set inclusion. Therefore all CDFA states representing any
CNFA state ¢; create ordered set (chain of states). The initial state §o = I = Q =
{qo, q1," - - ¢, } containing all CNFA states is a superset of any set of CNFA states and
it is the biggest set of any chain of sets. We can say that all states of CDFA are

114

Operation L-INSERT on Factor Automaton

ordered in a rooted tree with the root ¢;. The common name for such tree is suffix
tree.

Positions in text 1" gaibabsay

state ‘ words ‘ ending pos. ‘
Q{QO,Q1,Q2,Q3,Q4} € 0,1,2, 3,4
(j{lh,tm} a 1,4
q{‘lz,qg} b 2,3
G{g2) ab 2
Q{45 bb 3
abb
U{gs} ba 4
bba
abba

Figure 5: An example of suffix tree for "= abba

This suffix tree (as a data structure) can be implemented by pointers from each
state ¢ € Q to its parent p in the suffix tree. We call such pointer as suffix link and
denote p = suf[g]. The state suf¥[G] means ki iteration of suffix link and suf*[q]
(transitive closure) denotes a set of all iterations of suffix link of the state ¢.

suf*ld] = {q, sufldl, suf*[d], suf’ldl, -}

Lemma 3.2 If two nonequal states p, § € Q differ by a one state ¢ € Q i.e. p = GU{q}
then there exists a direct suffix link between them: p = suf[q].

115

Proceedings of the Prague Stringology Conference 03

Proof:

Any two states p,§ € Q where § is a proper subset of p (0 c ¢ C p) are
connected by a suffix link iff there does not exist another state r such that
g C 7 C p. As states p and ¢ differ only by one state, no such state 7 may
exist. o

p

e

—>
T - t1t2t3 - tn

N
7

q;

Figure 6: The state p has no incoming suffix link iff it contain only one state

Lemma 3.3 State p € Q has no incoming suffix link if and only if the set ¢ contains
exactly one state ¢ €).

Proof:

We divide the proof of equivalence to proofs of the both implications. The
proof of the first implication (the state p has no incoming suffix link =
the set p contains only one state) follows from this contradiction:

p q
‘ U W o

> >.
H
H
H
H
H
H

N
7

q; ij
D :{ qi, QJa }
q={ U }

Figure 7: If the state p contains two states then it has incoming suffix link.

If the set p would contain more than one state (see Figure 7) then there
would exist the longest factor w of the text T', which would end at ending
positions represented by members of p. Not all occurrences of string w are
preceded by the same symbol (because w is the longest string with these
endings) and therefore there would exist a string aw which is a factor of
the text T" and would end at positions ¢ where ¢ C p. Due to this inclusion
both states p and ¢ would share the same branch of suffix tree which would
lead from ¢ to p. The state p would have at least one incoming suffix link,
which gives the contradiction.

116

Operation L-INSERT on Factor Automaton

The second part, the proof of backward implication (the set p contains
only one state = the state p has no incoming suffix link) is trivial because
a suffix link can lead only from a subset to a superset and a set with just
only one state has no regular subsets. o

Lemma 3.4 If a state p € Q has just one incoming suffix link and w is the longest
string leading to this state p = 0*(do, w) (see Figure 8) then

a) there are at least two occurrences of the string w in the text T
b) the string w is a prefix of the text T,

¢) all occurrences of w in T except the very first one (the prefix of T') are preceded
by the same symbol.

4/4/(1\\)

— Wy AWy — AW — AW
T - t1t2t3 t tn

N
7

4i
Cj = {qU Ak s ks Qs }

Figure 8: The only one incoming suffix link leads to a state p.

Proof:
The proof of part a) follows from the Lemma 3.3.

There are no couple of occurrences of string w following two different
symbols. If two strings aw and bw (where a # b) would occur in text
T then both states ¢, and ¢y, would be disjunct subsets of p and their
suffix links would lead to state p. At least one occurrence of w must not
be preceded by the same symbol as others because w is the longest string
leading to state p. Therefore w occurs at the beginning of 7" and all next
occurrences are preceded by the same symbol. w is a prefix of T. This
proves parts b) and c). o

Lemma 3.5 If a suffix link suf[¢] = p is the only suffix link leading to state p then
set p is larger then ¢ by just one state ¢; (i.e. p = {g;} U q).

Proof:

Let w be a string leading to the state p = 6*(go, w) (see Figure 8). Due to
Lemma 3.4, string w is a prefix of the text T" and all other occurrences of
w in the text T" are preceded by the same symbol a. The string aw occurs
at the same ending positions as string w except the very first one (w is a
prefix of T'). We can divide the set p into the first occurrence (the state
¢;) and the rest (occurrences of aw): p = {g;} Ud*(Go,aw). Due to Lemma
3.2 it holds p = suf[g*(dg,aw)]. There is only one suffix link leading to p
so that states §* (Go,aw) and ¢ are identical and we can write p = {¢;} U q.

o

117

Proceedings of the Prague Stringology Conference 03

3.2 Text Pointers

Most of algorithms operating on factor automaton need to resolve which states of
CDFA represent given state ¢ of CNFA. Since all relevant CDFA states contain ¢ they
create a separate branch in the suffix tree. We can store only the starting state of the
branch and continue over the suffix tree to its root. Text pointers is a data structure
which keeps the information about the starting state. It can be implemented as an
array TextPos[i] of CDFA states indexed by position 7 in text. In factor automata it
holds TextPos[i] = 5*(@0, tity - -+ t;). An example of text pointers array for T' = abba
is on Figure 9.

text pointers suffix tree

{ position 0) 01234
~~~~~~~~~~~~~ ()

.....

""""

(pos.0) (pos.l) (pos.2> (pos.3> (pos.4>

Text positions: T' = gaibybsay
text pointers table

position | state
0 ‘j{qo,ql,qz,qs,m}
1 U{q1,04}
2 U{g2}
3 Ugs}
4 Uqa}

Figure 9: An example of the suffix tree and the automaton with text pointers for
T = abba.

Note that the number of states is often larger then the number of positions in
the text. Therefore, there exist states which are not the value of any TextPos. An
example of that is on Figure 9. Although the state ¢4, ,) represents ending positions
2 and 3 for string b, it is neither a value of TextPos|2| nor TextPos[3]. We can get
all states representing the ending position 2 by inspecting the whole branch of suffix
tree (a sequence of suffix links) from the state §rq,y = TextPos[2].

118



Operation L-INSERT on Factor Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (incoming transitions) as a
reference counter for detecting unreachable states. If the automaton has unreachable
states then one of them must have in-degree equal to zero because the CDFA has no
loops. After its removing it holds that either another unreachable state becomes zero
in-degree or we are sure there are no unreachable states in the automaton.

3.4 Operation L-INSERT

The canonical nondeterministic factor automata (CNFA) for the texts T' = t1tots - - -y,
and aT = attyts - - - t,, are shown on the Figure 10.

Figure 10: The change in CNFA when a new symbol is prepended.

The operation L-INSERT creates a new state ¢x, which is both initial and final
and a new transition from the state ¢y into the state ¢.

The algorithm modifying CDFA follows from the relationship between nondeter-
ministic and deterministic factor automaton.

When the new initial state ¢y is created, CDFA’s initial state ¢, — see Figure 11
(step 1) — is changed to the new state ¢, = ¢o U {¢x}. The outgoing transitions from
this state are still the same as from Gy (step 2). Now, we create a new transition
in CNFA leading from ¢x to ¢o for symbol a. In the CDFA, we should redirect the
transition leading from ¢ labeled by a symbol a to another state which contains
similar set of states extended by the state ¢y, because ¢y = 0(qx,a) is the new
transition (step 3).

The algorithm is based on the recursive function GetExtendedState(q, i), which
takes the set of states ¢ and integer i as arguments, and finds a state ¢ = U {¢;}. If
there is no such state in the automaton, it is created by the function. The value of
the function is the state ¢’ (Figure 12).

Using this function the whole algorithm can be written in five steps:

1. create a new state ¢, with the same outgoing transitions as gy,
2. get the old target of the first transition: § = 3((}6, a),
3. compute new state for that transition: ¢’ = GetExtendedState(q,0),

4. redirect the transition: 5((}6, a) = ¢,

ot

change the initial state to .

119



Proceedings of the Prague Stringology Conference 03

(step 1)

(step 2)

(step 3)

Figure 11: The change in CDFA when symbol « is inserted.

(L T =titots - -t i

Qi\\ ; 7’/)

Figure 12: The state ¢’ contains state ¢; and all states from ¢

120



Operation L-INSERT on Factor Automaton

We assume any unreachable state is removed as soon as it looses the last incoming
transition (or the last reference).

Let us concern the function GetExtendedState(q,7). It assumes that the string
w = atytats---t; leads to the state ¢ (i.e. ¢ = 5*((}0,11))). It is the shortest string
leading to this state because the text shorter by the first symbol a would be a prefix
of T an would occur in advance at ending position .

Note that the string w = atitot3 -+ -t; may not be a factor of the text T". In this
case the state ¢ may be ¢ = {} = (). In such case, the solution is a state ¢’ = {¢;}.
Of course, this state may or may not be present in the current automaton. We can
find it by inspecting the text pointer at position i. The value of TextPos[i] may be
the required state ¢’ = {¢;} or its superset. According to Lemma 3.3: if there is no
suffix link leading to this state then it contains only one CNFA state {¢;} and it is
the result value of the function GetExtendedState (Figure 13). If there exists a

TextPos]i

|
|
OO0~
‘,’ A:

ry 'y
ad A

A
<« aa 4 qaant .
AR suffix links

Figure 13: The focused state has no incoming suffix links therefore it contains only
one state g;

suffix link leading to this state then we must create a new state ¢ = {¢;} and set its
outgoing transitions. In this case the state ¢’ will have only one outgoing transition
for the symbol ¢; leading to state {g;11} (which can be obtained by recursive calling
the function GetExtendedState(nil,i + 1)). In addition, we should set up the suffix
link of this state to lead to TextPos[i] and update TextPos[i] to new value — state
¢'. (See Figure 14).

Now, we concern the case when ¢ is an already existing state of CDFA. The
function GetExtendedState should locate the state representing the set ¢ U {¢;}. If
there is no such state, it should be created. Due to the Lemma 3.2 if there exists
such state it must be the target of the suffix link from state ¢. But the suffix parent
p = suf(q) of the state ¢ may not be the required state in any case, of course. We can
test it by inspecting the number of suffix links leading to it. There are two disjunct
cases:

e only one suffix link leads to state p,
e the state p is a target of more suffix links.

At first we assume the suffix link from the state ¢ to the state p is the only link
leading to p (Figure 15). As the string w = atitals - - - t; is the shortest string leading
to ¢ then the first suffix — string u = ttot3 - - - ¢; leads to state suf(q) = p. We are
sure that string ttst3---t; occurs at position 7 and therefore p contain the required

121



Proceedings of the Prague Stringology Conference 03

TextPos|i

____x_____

4 Y94q4q4e
d4q 444“ . v

Figure 14: If any suffix link leads to the state found by TextPtr[i] then we have
to create a new state ¢, connect its suffix link, outgoing transition and redirect
TextPtrli|

. suffix tree

;
/
©

PR > 2T = tityty :
(j = { Ak, ks Qi }
p={4a Tk, ks Ty}

Figure 15: § +— p is the only suffix link leading to p therefore p = U {¢;} = p’

122



Operation L-INSERT on Factor Automaton

state ¢;. On the other side, the state p does not contain any other state then {¢;} or
¢ (see Lemma 3.5) therefore state p is the value of the function GetExtendedState .

Now, assume there exist at least two suffix links leading to the state p. One of
them is the link from ¢ and let another one lead from a state ¢, (Figure 16). The

o — suffx tree
(w) w w
o o ; o (7)
a u au bu au
1 1 ] o 4 4 »
T—tltgtg"'tn a4 e
> & S
‘ & Y »
q; D) q
R ‘4 ,,’r ,,,,,, o b’
p = { qi Gk, Gk, ks } :"“ ’,’
ol SO
4 =A{ 2 }
ad={a Ty Qs }

Figure 16: If the state p receives more suffix links then it is unusable. A new state ¢’
has to be created.

sets ¢ and ¢, are disjunct because they are in the different branches of the suffix tree.
The state p is the superset of both sets. Therefore, the set p contains more states
then ¢ U {¢;} and will be unusable for us. The resulting state is still not in the set of
states of the automaton and we have to create it.

We create a new state ¢’ which should represent the set ¢ U {¢;} and therefore
it inherits the same outgoing transition as ¢. However the transition for the symbol
ti+1 should be redirected to the state (the set of CNFA states) extended by the state
gi+1- We can lookup this state using the function GetExtendedState in recursion.
The redirection is made by assigning (¢, ;1) = GetExtendedState(0(¢,i),i + 1).
Finally, we should update suffix links. The new state ¢’ is a subset of p and a superset
of ¢ therefore we include it between states p and ¢: suf[§’] = p and suf[j] = ¢

Algorithm 3.1 — Operation L-INSERT using function GetExtendedState
INPUT: CDFA automaton M = (Q, A, d, Gy, F) with suffix links, text 7" and
text pointers
symbol a
OuTpPUT: CDFA automaton M with suffix links, text T" and text pointers
LocCAL: integer n
state p
state ¢
state ¢

state ¢
REQUIRE: M accepts factors of T' = tytqotz---t,

ENSURE: M will accept factors of T = atytqats---t,

1. function GetExtendedState(state G, integer i)
2: if (§ == nil) then

123



Proceedings of the Prague Stringology Conference 03

3: 1= TextPtr[i]

4: n= |Suf71(tA)| { the number of suffix links incomming to t }
5. if (n==0) then

6: q = t

7: return ¢

8: else

9: ¢’ =new state

10: 6(§', a) = GetExtendedState (nil,i 4 1)
11: sufld] =1

12: return ¢

13:  end if

14: else

15: p=suflq]
16: n=|suf~'(p)|
17: if (n==1) then

18: q=p

19: return ¢’

20: else

21: ¢ = duplicate(q)

22: 6(q',t;11) = GetExtendedState (0(¢, tiy1),i + 1)
23: suflq'] =p

2 suflg = d

25: return ¢’

26: end if

27: end if

28: endfunction

29: Gy = duplicate(do)

30: 0(G}, a) = GetExtendedState (o, a),0)
31: SetInitial State(qp)

4 FEfficiency of the Algorithm

4.1 Time Complexity

The best case from the time complexity point of view appears when the new inserted
symbol a is equal to each symbol in the text: 7" = a". In such case, the recursive
function GetExtendedState is called only once. Neither this function nor the main
algorithm contain loop, therefore the time complexity is constant O(1) — independent
on the size of the text T

The worst case occurs if all symbols in text 7" are the same but different from the
new inserted symbol a: T' = 0". In such case, the original automaton has n+ 1 states
and the new automaton will have 2n — 1 states, and so the algorithm have to create
n — 2 states and it has asymptotically time complexity linear O(n) with respect to
the size of the text T

124



Operation L-INSERT on Factor Automaton

CNFA:

old CDFA:

new CDFA:

Figure 17: The worst case

4.2 Space Complexity

The algorithm requires extra space for following data structures:
e text pointers,
e suffix links,
e states,
e transitions,
e stack for recursion.

Text pointers is an array indexed by the position in text 7. The size of the array is
linear to the size of text 1. Text pointers are more useful for other operations with fac-
tor automata. In the case of L-INSERT algorithm, text pointers can be substituted by
text T, because we need successively the values TextPos|0], TextPos[1], TextPos[2], ...
and TextPosi] = 0(TextPos|i—1], ;) while TextPos[0] = go. So that we could com-
pute the values of T'ext Pos during recursion of the function GetExtendedState.

Both suffix links and states take the same space complexity because there is just
one outgoing suffix link per a state. The number of states is at most 2n (proved in
).

The number of transitions in the factor automaton is less than 3n (proved in [1]).

The size of the stack required for the recursion is limited by the number of recursive
calls. As a new states is created before any recursive call, the total number of recursive
calls is limited by the number of inserted states. Moreover, the recursion function
GetExtendedState can be transformed into an iteration loop without a need of an
extra data space.

As the all data structures require space at most linear to the size of the automaton,
we can say the L-INSERT algorithm is space-linear.

125



Proceedings of the Prague Stringology Conference 03

5 Conclusion

This paper deals with the factor automaton and its modifications when the text often
changes. We discuss several operations on the text and cite algorithms reflecting
these operations into the factor automaton. Moreover we describe some adjacent
data structures (suffix links and text pointers) used in algorithms modifying the factor
automaton. We present a new algorithm of operation L-INSERT. The algorithm can
efficiently modify a factor automaton when a new symbol is inserted before the first
symbol of the text. This algorithm can be also used for on-line backward construction
of the factor automata. This means that the text grows from right to left while
constructing the automaton. Finally, the time and space complexity of the L-INSERT
algorithm is also discussed.

References

[1] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[2] M. Simének. The factor automaton. In J. Holub and M. Simanek, editors, Pro-
ceedings of the Prague Stringologic Club Workshop ’98, pages 102-106, Czech
Technical University, Prague, Czech Republic, 1998. Collaborative Report DC—
98-06.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to automata, languages and com-
putations. Addison-Wesley, Reading, MA, 1979.

[4] J. Holub. Simulation of nondeterministic finite automata in approximate string
and sequence matching. Technical Report DC-98-04, Department of Computer
Science and Engineering, Czech Technical University, Prague, Czech Republic,
1998.

126



