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Abstra
t. The fa
tor automaton is used for time-optimal sear
hing for sub-

strings in text. In general, if the text is 
hanged the new fa
tor automaton has

to be 
onstru
ted. When the text 
hange is simple enough we 
an 
hange the

original fa
tor automaton to re�e
t the 
hanges of the text and save the time of

the new fa
tor automaton 
onstru
tion.

This paper deals with operation L-INSERT and des
ribes the algorithm modi-

fying the fa
tor automaton when a new symbol is prepended to the text. This

algorithm 
an be also used for on-line ba
kward 
onstru
tion of fa
tor automa-

ton.
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1 Introdu
tion

The fa
tor automaton is a �nite automaton a

epting the set of all fa
tors (substrings)

of the given text (string) T . The fa
tor automaton 
an be 
onstru
ted for arbitrary

text by one of the 
ommon 
onstru
tion algorithms. The time 
omplexity of the


onstru
tion is linear to the size of the text T , while pattern mat
hing for pattern P

is linear to the size of the pattern P and is independent of the size of text T . So, in

the most 
ommon 
ase the fa
tor automaton is on
e 
onstru
ted and many time used

for pattern mat
hing. However, when we 
hange the text T the fa
tor automaton

must be dropped and new fa
tor automaton has to be 
onstru
ted.

If the 
hanges in the text are simple enough then we 
an �nd an algorithm mod-

ifying the original fa
tor automaton a

ording text T . The time 
omplexity of this

algorithm is often better then the 
omplete 
onstru
tion of the new fa
tor automaton

for the 
hanged text.

A ni
e example of su
h algorithm is the APPEND algorithm des
ribed in [1, Chap-

ter 6.3℄, whi
h 
an modify given fa
tor automaton when a new symbol is appended to

the text T . The authors use this algorithm as a part of their on-line fa
tor automa-

ton 
onstru
tion algorithm for text T = t

1

t

2

� � � t

n

: they start with one-node fa
tor

�
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automaton for empty text " and 
ompute su

essively fa
tor automata for texts t

1

,

t

1

t

2

, t

1

t

2

t

3

, � � �, t

1

t

2

� � � t

n

.

Another known fa
tor automaton modifying algorithm is the L-DELETE algo-

rithm [2℄. It 
an make desired 
hanges to the fa
tor automaton when the text T is

redu
ed by deleting the leftmost symbol. The L-DELETE algorithm 
an be used in


onjun
tion with the APPEND algorithm to implement fast substring mat
hing in

sliding window data 
ompression method.

This paper des
ribes an L-INSERT algorithm modifying the fa
tor automaton

when the text T is prepended by a new symbol. Like the APPEND algorithm,

this algorithm 
an also be used for the 
onstru
tion of the fa
tor automaton. The

well-known 
onstru
tion using operation APPEND 
reates the fa
tor automaton by

appending symbols of the text T from left to right. On the 
ontrary, the 
onstru
tion

based on L-INSERT 
reates the fa
tor automaton starting with the rightmost symbol

to the left.

2 Basi
 De�nitions

The fa
tor automaton for text T is de�ned as a �nite automaton M a

epting the

language L(M) = Fa
(T ) of all fa
tors of T . There is an in�nite number of su
h

automata, hen
e we sele
t one with very regular stru
ture of its transition diagram

(Figure 1). All its states are both initial and �nal.

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

Figure 1: Canoni
al nondeterministi
 fa
tor automaton (CNFA)

De�nition 2.1 � Canoni
al nondeterministi
 fa
tor automaton (CNFA)

Canoni
al nondeterministi
 fa
tor automaton CNFA for text T = t

1

t

2

t

3

� � � t

n

is a

nondeterministi
 �nite automaton M = (Q;A; Æ; I; F ) whi
h satis�es:

1. Q = fq

0

; q

1

; q

2

; � � � q

n

g

2. 8q

i

2 Q; a 2 A : Æ(q

i

; a) =

(

fq

i+1

g 8i < n; a = t

i+1

; in other 
ases

3. I = Q

4. F = Q

We 
annot dire
tly use CNFA be
ause of a nondeterminism. Ea
h nondetermin-

isti
 �nite automaton 
an be transformed to deterministi
 one a

epting the same

language. The transformation 
an be done by subset 
onstru
tion [3℄. We use the

variant of the transformation whi
h does not insert ina

esible states into the resulting

DFA [4, algorithm 3.6℄ and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets 
on-

stru
tion: For ea
h nondeterministi
 �nite automaton M = (Q;A; Æ; I; F ) we 
an
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�nd a deterministi
 �nite automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F ) a

epting the same lan-

guage satisfying the following 
onditions:

�

^

Q � P(Q) su
h that

^

Q = fq̂ : q̂ = Æ

�

(I; w);w 2 A

�

g

�

^

Æ is a mapping

^

Æ :

^

Q�A 7!

^

Q

8q̂ 2 Q; a 2 A :

^

Æ(q̂; a) =

S

q2q̂

Æ(q; a),

� q̂

0

2

^

Q q̂

0

= I,

�

^

F �

^

Q

^

F = fq̂ 2

^

Q : q̂ \ F 6= ;g.

We use the hat a

ent to denote deterministi
 automaton, its states and transition

fun
tion. States of CDFA are sets of CNFA. Note, that that CDFA 
ontains only

rea
hable states.

De�nition 2.2 � Canoni
al deterministi
 fa
tor automaton (CDFA)

Canoni
al deterministi
 fa
tor automaton CDFA for text T is a deterministi
 au-

tomaton given as the result of the standard determinization of the 
anoni
al nonde-

terministi
 fa
tor automaton for the same text T .

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new

state and one transition). We use that algorithm and the standard determinization to

�nd L-INSERT algorithm modifying CDFA. To keep the relationship between states

of CNFA and CDFA automata we use several adja
ent data stru
tures.

3 Adja
ent Data Stru
tures

To enable e�
ient algorithm modifying CDFA we extend CDFA by following addi-

tional information:

� su�x links,

� text pointers,

� in-degree of nodes.

3.1 Su�x Links

Ea
h state q̂ of the CDFA represents a set of a
tive states of the CNFA � after

a

epting any string w the a
tive state q̂

w

=

^

Æ

�

(q̂

0

; w) of CDFA represents a set of

a
tive states Q

w

= Æ

�

(I; w) of CNFA, formally q̂

w

= Q

w

.

Lemma 3.1 If two states q̂

u

; q̂

w

2

^

Q have nonempty interse
tion, q̂

u

\ q̂

w

6= ;, then

one of them is a subset of the other (q̂

w

� q̂

u

).
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Figure 2: If state q̂

w

=

^

Æ

�

(q̂

0

; w) 
ontains a state q

i

then string w ends at position i

Proof:

If both two states q̂

u

and q̂

w


ontain state q

i

then both represent the CNFA

a
tive state q

i

. Be
ause of very regular stru
ture of CNFA the state q

i

be
omes a
tive only if the a

epted string is a fa
tor of the text T ending

at position i (see Figure 2). It means that both strings u and w (leading

to states q̂

u

and q̂

w

) are fa
tors of the text T ending on the same position

i. Therefore one of them must be a su�x of the other (Figure 3). Let

u

w

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 3: Strings u and w end in the same position.

u be a su�x of w. The state q̂

w

represents states q̂

w

= fq

j

1

; q

j

2

; q

j

3

; � � �g

where j

k

are ending positions of all o

urren
es of the string w in the text.

The string u is a su�x of w so that it o

urs at least on the same ending

positions, therefore q̂

w

� q̂

u

(Figure 4).

uuuu

www

T = t

1

t

2

t

3

� � � t

n

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states 
ontaining any 
ommon CNFA

state q

i

are ordered by set in
lusion. Therefore all CDFA states representing any

CNFA state q

i


reate ordered set (
hain of states). The initial state q̂

0

= I = Q =

fq

0

; q

1

; � � � q

n

g 
ontaining all CNFA states is a superset of any set of CNFA states and

it is the biggest set of any 
hain of sets. We 
an say that all states of CDFA are
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ordered in a rooted tree with the root q̂

0

. The 
ommon name for su
h tree is su�x

tree.

CNFA:

4

a

3

b

2

b

1

a

0

CDFA:

a

b

23

4

a

3

b

2

b

14

b

a

01234

Su�x tree:

324

2314

01234

Positions in text T :

0

a

1

b

2

b

3

a

4

state words ending pos.

q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

" 0, 1, 2, 3, 4

q̂

fq

1

;q

4

g

a 1, 4

q̂

fq

2

;q

3

g

b 2, 3

q̂

fq

2

g

ab 2

q̂

fq

3

g

bb 3

abb

q̂

fq

4

g

ba 4

bba

abba

Figure 5: An example of su�x tree for T = abba

This su�x tree (as a data stru
ture) 
an be implemented by pointers from ea
h

state q̂ 2

^

Q to its parent p̂ in the su�x tree. We 
all su
h pointer as su�x link and

denote p̂ = suf [q̂℄. The state suf

k

[q̂℄ means k

th

iteration of su�x link and suf

�

[q̂℄

(transitive 
losure) denotes a set of all iterations of su�x link of the state q̂.

suf

�

[q̂℄ = fq̂; suf [q̂℄; suf

2

[q̂℄; suf

3

[q̂℄; � � �g

Lemma 3.2 If two nonequal states p̂; q̂ 2

^

Q di�er by a one state q 2 Q i.e. p̂ = q̂[fqg

then there exists a dire
t su�x link between them: p̂ = suf [q̂℄.
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Proof:

Any two states p̂; q̂ 2

^

Q where q̂ is a proper subset of p̂ (; � q̂ � p̂) are


onne
ted by a su�x link i� there does not exist another state r su
h that

q̂ � r̂ � p̂. As states p̂ and q̂ di�er only by one state, no su
h state r̂ may

exist.

g

q

i

;

= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

w

p̂

Figure 6: The state p̂ has no in
oming su�x link i� it 
ontain only one state

Lemma 3.3 State p̂ 2

^

Q has no in
oming su�x link if and only if the set q̂ 
ontains

exa
tly one state q 2 Q.

Proof:

We divide the proof of equivalen
e to proofs of the both impli
ations. The

proof of the �rst impli
ation (the state p̂ has no in
oming su�x link =)

the set p̂ 
ontains only one state) follows from this 
ontradi
tion:

g

q

j

;

= fq̂

g

q

j

;

q

i

;

= fp̂

q

j

q

i

T = t

1

t

2

t

3

� � � t

n

waw

q̂p̂

Figure 7: If the state p̂ 
ontains two states then it has in
oming su�x link.

If the set p̂ would 
ontain more than one state (see Figure 7) then there

would exist the longest fa
tor w of the text T , whi
h would end at ending

positions represented by members of p̂. Not all o

urren
es of string w are

pre
eded by the same symbol (be
ause w is the longest string with these

endings) and therefore there would exist a string aw whi
h is a fa
tor of

the text T and would end at positions q̂ where q̂ � p̂. Due to this in
lusion

both states p̂ and q̂ would share the same bran
h of su�x tree whi
h would

lead from q̂ to p̂. The state p̂ would have at least one in
oming su�x link,

whi
h gives the 
ontradi
tion.
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The se
ond part, the proof of ba
kward impli
ation (the set p̂ 
ontains

only one state =) the state p̂ has no in
oming su�x link) is trivial be
ause

a su�x link 
an lead only from a subset to a superset and a set with just

only one state has no regular subsets.

Lemma 3.4 If a state p̂ 2

^

Q has just one in
oming su�x link and w is the longest

string leading to this state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8) then

a) there are at least two o

urren
es of the string w in the text T ,

b) the string w is a pre�x of the text T ,


) all o

urren
es of w in T ex
ept the very �rst one (the pre�x of T ) are pre
eded

by the same symbol.

g

q

k

3

q

k

2

;q

k

1

;

q

i

;

= fq̂

q

i

T = t

1

t

2

t

3

� � � t

n

awawaww

q̂

Figure 8: The only one in
oming su�x link leads to a state p̂.

Proof:

The proof of part a) follows from the Lemma 3.3.

There are no 
ouple of o

urren
es of string w following two di�erent

symbols. If two strings aw and bw (where a 6= b) would o

ur in text

T then both states q̂

aw

and q̂

bw

would be disjun
t subsets of p̂ and their

su�x links would lead to state p̂. At least one o

urren
e of w must not

be pre
eded by the same symbol as others be
ause w is the longest string

leading to state p̂. Therefore w o

urs at the beginning of T and all next

o

urren
es are pre
eded by the same symbol. w is a pre�x of T . This

proves parts b) and 
).

Lemma 3.5 If a su�x link suf [q̂℄ = p̂ is the only su�x link leading to state p̂ then

set p̂ is larger then q̂ by just one state q

i

(i.e. p̂ = fq

i

g [ q̂).

Proof:

Let w be a string leading to the state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8). Due to

Lemma 3.4, string w is a pre�x of the text T and all other o

urren
es of

w in the text T are pre
eded by the same symbol a. The string aw o

urs

at the same ending positions as string w ex
ept the very �rst one (w is a

pre�x of T ). We 
an divide the set p̂ into the �rst o

urren
e (the state

q

i

) and the rest (o

urren
es of aw): p̂ = fq

i

g[

^

Æ

�

(q̂

0

;aw). Due to Lemma

3.2 it holds p̂ = suf [

^

Æ

�

(q̂

0

;aw)℄. There is only one su�x link leading to p̂

so that states

^

Æ

�

(q̂

0

;aw) and q̂ are identi
al and we 
an write p̂ = fq

i

g[ q̂.
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3.2 Text Pointers

Most of algorithms operating on fa
tor automaton need to resolve whi
h states of

CDFA represent given state q of CNFA. Sin
e all relevant CDFA states 
ontain q they


reate a separate bran
h in the su�x tree. We 
an store only the starting state of the

bran
h and 
ontinue over the su�x tree to its root. Text pointers is a data stru
ture

whi
h keeps the information about the starting state. It 
an be implemented as an

array TextPos[i℄ of CDFA states indexed by position i in text. In fa
tor automata it

holds TextPos[i℄ =

^

Æ

�

(q̂

0

; t

1

t

2

� � � t

i

). An example of text pointers array for T = abba

is on Figure 9.

position 4

position 3

324

position 2

2314

position 1

01234

position 0

su�x tree

text pointers

a

b

23

4

a

3

b

2

b

14

b

a

01234

pos.4pos.3pos.2pos.1pos.0

Text positions: T =

0

a

1

b

2

b

3

a

4

text pointers table

position state

0 q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

1 q̂

fq

1

;q

4

g

2 q̂

fq

2

g

3 q̂

fq

3

g

4 q̂

fq

4

g

Figure 9: An example of the su�x tree and the automaton with text pointers for

T = abba.

Note that the number of states is often larger then the number of positions in

the text. Therefore, there exist states whi
h are not the value of any TextPos. An

example of that is on Figure 9. Although the state q̂

fq

2

;q

3

g

represents ending positions

2 and 3 for string b, it is neither a value of TextPos[2℄ nor TextPos[3℄. We 
an get

all states representing the ending position 2 by inspe
ting the whole bran
h of su�x

tree (a sequen
e of su�x links) from the state q̂

fq

2

g

= TextPos[2℄.

118



Operation L-INSERT on Fa
tor Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (in
oming transitions) as a

referen
e 
ounter for dete
ting unrea
hable states. If the automaton has unrea
hable

states then one of them must have in-degree equal to zero be
ause the CDFA has no

loops. After its removing it holds that either another unrea
hable state be
omes zero

in-degree or we are sure there are no unrea
hable states in the automaton.

3.4 Operation L-INSERT

The 
anoni
al nondeterministi
 fa
tor automata (CNFA) for the texts T = t

1

t

2

t

3

� � � t

n

and aT = at

1

t

2

t

3

� � � t

n

are shown on the Figure 10.

M

T

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

M

aT

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

a

X

Figure 10: The 
hange in CNFA when a new symbol is prepended.

The operation L-INSERT 
reates a new state q

X

, whi
h is both initial and �nal

and a new transition from the state q

X

into the state q

0

.

The algorithm modifying CDFA follows from the relationship between nondeter-

ministi
 and deterministi
 fa
tor automaton.

When the new initial state q

X

is 
reated, CDFA's initial state q̂

0

� see Figure 11

(step 1) � is 
hanged to the new state q̂

0

0

= q̂

0

[ fq

X

g. The outgoing transitions from

this state are still the same as from q̂

0

(step 2). Now, we 
reate a new transition

in CNFA leading from q

X

to q

0

for symbol a. In the CDFA, we should redire
t the

transition leading from q̂

0

0

labeled by a symbol a to another state whi
h 
ontains

similar set of states extended by the state q

0

, be
ause q

0

= Æ(q

X

; a) is the new

transition (step 3).

The algorithm is based on the re
ursive fun
tion GetExtendedState(q̂; i), whi
h

takes the set of states q̂ and integer i as arguments, and �nds a state q̂

0

= q̂ [ fq

i

g. If

there is no su
h state in the automaton, it is 
reated by the fun
tion. The value of

the fun
tion is the state q̂

0

(Figure 12).

Using this fun
tion the whole algorithm 
an be written in �ve steps:

1. 
reate a new state q̂

0

0

with the same outgoing transitions as q̂

0

,

2. get the old target of the �rst transition: q̂ =

^

Æ(q̂

0

0

; a),

3. 
ompute new state for that transition: q̂

0

= GetExtendedState(q̂; 0),

4. redire
t the transition:

^

Æ(q̂

0

0

; a) = q̂

0

,

5. 
hange the initial state to q̂

0

0

.
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t

2

t

1

q̂

0

(step 1)

t

2

t

1

q̂

0

t

1

q̂

0

0

(step 2)

t

2

t

1

q̂

0

a

a

t

1

q̂

0

0

(step 3)

Figure 11: The 
hange in CDFA when symbol a is inserted.

q̂

0

q

i

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

Figure 12: The state q̂

0


ontains state q

i

and all states from q̂
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We assume any unrea
hable state is removed as soon as it looses the last in
oming

transition (or the last referen
e).

Let us 
on
ern the fun
tion GetExtendedState(q̂; i). It assumes that the string

w = at

1

t

2

t

3

� � � t

i

leads to the state q̂ (i.e. q̂ =

^

Æ

�

(q̂

0

; w)). It is the shortest string

leading to this state be
ause the text shorter by the �rst symbol a would be a pre�x

of T an would o

ur in advan
e at ending position i.

Note that the string w = at

1

t

2

t

3

� � � t

i

may not be a fa
tor of the text T . In this


ase the state q̂ may be q̂ = fg = ;. In su
h 
ase, the solution is a state q̂

0

= fq

i

g.

Of 
ourse, this state may or may not be present in the 
urrent automaton. We 
an

�nd it by inspe
ting the text pointer at position i. The value of TextPos[i℄ may be

the required state q̂

0

= fq

i

g or its superset. A

ording to Lemma 3.3: if there is no

su�x link leading to this state then it 
ontains only one CNFA state fq

i

g and it is

the result value of the fun
tion GetExtendedState (Figure 13). If there exists a

� � �

su�x links

t

i+1

t

i

� � �

TextPos[i℄

Figure 13: The fo
used state has no in
oming su�x links therefore it 
ontains only

one state q

i

su�x link leading to this state then we must 
reate a new state q̂

0

= fq

i

g and set its

outgoing transitions. In this 
ase the state q̂

0

will have only one outgoing transition

for the symbol t

i

leading to state fq

i+1

g (whi
h 
an be obtained by re
ursive 
alling

the fun
tion GetExtendedState(nil; i + 1)). In addition, we should set up the su�x

link of this state to lead to TextPos[i℄ and update TextPos[i℄ to new value � state

q̂

0

. (See Figure 14).

Now, we 
on
ern the 
ase when q̂ is an already existing state of CDFA. The

fun
tion GetExtendedState should lo
ate the state representing the set q̂ [ fq

i

g. If

there is no su
h state, it should be 
reated. Due to the Lemma 3.2 if there exists

su
h state it must be the target of the su�x link from state q̂. But the su�x parent

p̂ = suf(q̂) of the state q̂ may not be the required state in any 
ase, of 
ourse. We 
an

test it by inspe
ting the number of su�x links leading to it. There are two disjun
t


ases:

� only one su�x link leads to state p̂,

� the state p̂ is a target of more su�x links.

At �rst we assume the su�x link from the state q̂ to the state p̂ is the only link

leading to p̂ (Figure 15). As the string w = at

1

t

2

t

3

� � � t

i

is the shortest string leading

to q̂ then the �rst su�x � string u = t

1

t

2

t

3

� � � t

i

leads to state suf(q̂) = p̂. We are

sure that string t

1

t

2

t

3

� � � t

i

o

urs at position i and therefore p̂ 
ontain the required

121



Pro
eedings of the Prague Stringology Conferen
e '03

su�x links

� � �

t

i+1

t

i

� � �

?

t

i+1

q̂

0

TextPos[i℄

Figure 14: If any su�x link leads to the state found by TextP tr[i℄ then we have

to 
reate a new state q̂

0

, 
onne
t its su�x link, outgoing transition and redire
t

TextP tr[i℄

g

q

k

3

q

k

2

q

k

1

q

i

= fp̂

g

q

k

3

q

k

2

q

k

1

= fq̂

q

i

0

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

q̂

p̂

su�x tree

Figure 15: q̂ 7! p̂ is the only su�x link leading to p̂ therefore p̂ = q̂ [ fq

i

g = p̂

0
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state q̂

i

. On the other side, the state p̂ does not 
ontain any other state then fq

i

g or

q̂ (see Lemma 3.5) therefore state p̂ is the value of the fun
tion GetExtendedState .

Now, assume there exist at least two su�x links leading to the state p̂. One of

them is the link from q̂ and let another one lead from a state q̂

q

(Figure 16). The

g

q

k

3

q

k

1

q

i

= f

q̂

0

g

q

k

2

= f

q̂

q

g

q

k

3

q

k

1

= fq̂

g

q

k

3

q

k

2

q

k

1

q

i
= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

aubuauua

ww

(w)

q̂

q̂

q

q̂

q̂

0

p̂

su�x tree

Figure 16: If the state p̂ re
eives more su�x links then it is unusable. A new state q̂

0

has to be 
reated.

sets q̂ and q̂

q

are disjun
t be
ause they are in the di�erent bran
hes of the su�x tree.

The state p̂ is the superset of both sets. Therefore, the set p̂ 
ontains more states

then q̂ [ fq

i

g and will be unusable for us. The resulting state is still not in the set of

states of the automaton and we have to 
reate it.

We 
reate a new state q̂

0

whi
h should represent the set q̂ [ fq

i

g and therefore

it inherits the same outgoing transition as q̂. However the transition for the symbol

t

i+1

should be redire
ted to the state (the set of CNFA states) extended by the state

q

i+1

. We 
an lookup this state using the fun
tion GetExtendedState in re
ursion.

The redire
tion is made by assigning

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; i); i + 1).

Finally, we should update su�x links. The new state q̂

0

is a subset of p̂ and a superset

of q̂ therefore we in
lude it between states p̂ and q̂: suf [q̂

0

℄ = p̂ and suf [q̂℄ = q̂

0

.

Algorithm 3.1 � Operation L-INSERT using fun
tion GetExtendedState

Input: CDFA automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F ) with su�x links, text T and

text pointers

symbol a

Output: CDFA automaton

^

M with su�x links, text T and text pointers

Lo
al: integer n

state p̂

state q̂

0

state q̂

0

0

state

^

t

Require:

^

M a

epts fa
tors of T = t

1

t

2

t

3

� � � t

n

Ensure:

^

M will a

ept fa
tors of T = at

1

t

2

t

3

� � � t

n

1: fun
tion GetExtendedState(state q̂; integer i)

2: if (q̂ == nil) then
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3:

^

t = TextP tr[i℄

4: n = jsuf

�1

(

^

t)j { the number of su�x links in
omming to

^

t }

5: if (n == 0) then

6: q̂

0

=

^

t

7: return q̂

0

8: else

9: q̂

0

=new state

10:

^

Æ(q̂

0

; a) = GetExtendedState(nil; i + 1)

11: suf [q̂

0

℄ =

^

t

12: return q̂

0

13: end if

14: else

15: p̂ = suf [q̂℄

16: n = jsuf

�1

(p̂)j

17: if (n == 1) then

18: q̂

0

= p̂

19: return q̂

0

20: else

21: q̂

0

= dupli
ate(q̂)

22:

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; t

i+1

); i+ 1)

23: suf [q̂

0

℄ = p̂

24: suf [q̂℄ = q̂

0

25: return q̂

0

26: end if

27: end if

28: endfun
tion

29: q̂

0

0

= dupli
ate(q̂

0

)

30:

^

Æ(q̂

0

0

; a) = GetExtendedState(

^

Æ(q̂

0

; a); 0)

31: SetInitialState(q̂

0

0

)

4 E�
ien
y of the Algorithm

4.1 Time Complexity

The best 
ase from the time 
omplexity point of view appears when the new inserted

symbol a is equal to ea
h symbol in the text: T = a

n

. In su
h 
ase, the re
ursive

fun
tion GetExtendedState is 
alled only on
e. Neither this fun
tion nor the main

algorithm 
ontain loop, therefore the time 
omplexity is 
onstant O(1) � independent

on the size of the text T .

The worst 
ase o

urs if all symbols in text T are the same but di�erent from the

new inserted symbol a: T = b

n

. In su
h 
ase, the original automaton has n+1 states

and the new automaton will have 2n� 1 states, and so the algorithm have to 
reate

n � 2 states and it has asymptoti
ally time 
omplexity linear O(n) with respe
t to

the size of the text T .
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b
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b
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01234

old CDFA:

4

b

3

b

2

b

1

b

0

a

X
CNFA:

Figure 17: The worst 
ase

4.2 Spa
e Complexity

The algorithm requires extra spa
e for following data stru
tures:

� text pointers,

� su�x links,

� states,

� transitions,

� sta
k for re
ursion.

Text pointers is an array indexed by the position in text T . The size of the array is

linear to the size of text T . Text pointers are more useful for other operations with fa
-

tor automata. In the 
ase of L-INSERT algorithm, text pointers 
an be substituted by

text T, be
ause we need su

essively the values TextPos[0℄; T extPos[1℄; T extPos[2℄; :::

and TextPos[i℄ =

^

Æ(TextPos[i�1℄; t

i

) while TextPos[0℄ = q̂

0

. So that we 
ould 
om-

pute the values of TextPos during re
ursion of the fun
tion GetExtendedState.

Both su�x links and states take the same spa
e 
omplexity be
ause there is just

one outgoing su�x link per a state. The number of states is at most 2n (proved in

[1℄).

The number of transitions in the fa
tor automaton is less than 3n (proved in [1℄).

The size of the sta
k required for the re
ursion is limited by the number of re
ursive


alls. As a new states is 
reated before any re
ursive 
all, the total number of re
ursive


alls is limited by the number of inserted states. Moreover, the re
ursion fun
tion

GetExtendedState 
an be transformed into an iteration loop without a need of an

extra data spa
e.

As the all data stru
tures require spa
e at most linear to the size of the automaton,

we 
an say the L-INSERT algorithm is spa
e-linear.
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5 Con
lusion

This paper deals with the fa
tor automaton and its modi�
ations when the text often


hanges. We dis
uss several operations on the text and 
ite algorithms re�e
ting

these operations into the fa
tor automaton. Moreover we des
ribe some adja
ent

data stru
tures (su�x links and text pointers) used in algorithms modifying the fa
tor

automaton. We present a new algorithm of operation L-INSERT. The algorithm 
an

e�
iently modify a fa
tor automaton when a new symbol is inserted before the �rst

symbol of the text. This algorithm 
an be also used for on-line ba
kward 
onstru
tion

of the fa
tor automata. This means that the text grows from right to left while


onstru
ting the automaton. Finally, the time and spa
e 
omplexity of the L-INSERT

algorithm is also dis
ussed.
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