
Condensation prin
iple

1

Miroslav Bal��k

Department of Computer S
ien
e & Engineering

Fa
ulty of Ele
tri
al Engineering

Cze
h Te
hni
al University

Karlovo n�am. 13

121 35 Praha 2

Cze
h Republi

e-mail: balikm�fel.
vut.
z

Abstra
t. The most important
ontribution of this paper is the dis
overy and

des
ription of an e�e
tive implementation of a �nite automaton that a

epts

all substrings of a given text. The ratio of the size of this automaton with

respe
t to the size of the input text is in standard implementations 10 or more,

see [AndNil95℄, in [Bal98℄ is des
ribed implementation with ratio less than 4.

This implementation does not in
rease the time to sear
h for a pattern, whi
h

is proportional to the length of the pattern.

The major approa
h introdu
ed in this paper uses transformation of a text

into a new alphabet that
ontains more symbols than the original alphabet and

de
reases text size. It operates over alphabets that
ontain small number of

symbols. Su
h an automaton is suitable for example for pro
essing of DNA

sequen
es.

A new automaton and new sear
h algorithms are presented for su
h a trans-

formed text (patterns are still input in the original alphabet). Spa
e require-

ments of su
h
ondensed automata are as low as the size of the input text.

This paper further introdu
es a new type of an automaton, a so-
alled Identifier

DAWG, whi
h uses spe
ial properties of the DAWG automata and further de-

reases spa
e requirements by introdu
ing asso
iations between states of an

automaton and positions in a text. It is designed better sear
hing algorithm

using this asso
iation.

Key words: DAWG, SuÆx DAWG, SDAWG, automata implementation, Suf-

�x tree, �nite automata.

1 Introdu
tion

Let T be a text over a �xed alphabet �. Then an automaton
an be
reated in a linear

time (see [Cro94℄) that a

epts all substrings that o

ur in text T . This automaton is

alled DAWG (Dire
ted A
y
li
 Word Graph) and its variant a

epting only suÆxes

is
alled SuÆx DAWG (SDAWG).

1

This work was supported by grant GACR No. 201/98/1155.

13

Prog
eedings of the Prague Stringology Club Workshop '2000

Although some sear
h automata have a linear size with respe
t to the length of

the text, this size is high enough to disable pra
ti
al implementation and usage. This

size depends on implementation details, on the stru
ture of the text and on the type

of the automaton used. For SuÆx tree the size is rarely smaler than 10n bytes, where

n is the length of the text. Other types of automata are usually smaller, suÆx arrays

[GoBaSn91℄ (size 5n bytes), level
ompressed tries [AndNil95℄ (size about 11n bytes),

suÆx
a
tuses - a
ross between suÆx tree and suÆx array [Kark95℄ (size 9n bytes),

and suÆx binary sear
h trees[Irv95℄ (size about 10n bytes). Paper [Bal98℄ des
ribes

the method of implementation, whi
h de
reases the ratio to 4:1 .

This paper shows the new method, how to de
rease this ratio using spe
ial trans-

formation of the text. This transformation
alled
ondensation desreases text size.

DAWG automaton
onstru
ted over transformed text saves good properties of DAWG,

i.e. linear time and spa
e
omlexity for
onstru
tion with respe
t to the size of text

and linear time
omlexity for mat
hing a pattern with respe
t to its length.

2 DAWG, SDAWG

DAWG(T) is a minimal automaton that a

epts all substrings of a text T . An

automaton that a

epts all suÆxes of a text T is denoted as SDAWG(T). An

algorithm of an in
remental
reation SDAWG automaton is des
ribed in [Cro94℄.

It holds that the number of states of the automaton SDAWG(T) is greater or

equal to the number of states of DAWG(T). If we move all states of the automaton

SDAWG(T) to the set of �nal states, we
ould obtain a
ouples of equivalent states.

For example, DAWG(aabab) has six states, while SDAWG(aabab) has seven states

and two of them are �nal, see �gure 1.

a a ab b

b

b

a a ab

b ab

b

21 3 50 4

21 3 50 4

6

Figure 1: DAWG(aabab) versus SDAWG(aabab).

Automaton DAWG(T)
an be simulated by automaton SDAWG(T), the reverse

is not possible without an additional information.

3 Identi�er Trie, Identi�er DAWG

An identi�er trie is modi�
ation of an automaton that a

epts a set of patterns

Suff(T). A pointer to the text is added to some states. There are states where there

14

Condensation prin
iple

is only one sequen
e of transitions leading to some �nal state. Labelling of su
h a

sequen
e is a suÆx of a text T and it
an be represented by a pointer to the text,

whi
h marks the beginning of this suÆx. This pointer will repla
e all transitions to

the �rst state of su
h a sequen
e.

An example of an identifier trie(a
aga
#) using new type of states is shown in

Figure 2. New type of states are drawn as squares. The number in this square denotes

starting position of
orresponding suÆx in the text. For example states denoted as

3' and 3 point to the suÆx ga
#.

c

a c

#

a

g

#

#

g
a210

2’

3

4

7
3’

4’

7’

7"

Figure 2: An identifier trie(a
aga
#) using new type of states.

Another approa
h does not
reate a spe
ial
ategory for transitions, but it
reates

a new type of states. Be
ause ea
h state of a suÆx trie
orresponds to some suÆx of

a text T , we
an link this suÆx and its
orresponding state with the position of its

beginning in the text T , thus we
reate a new type of states that represent a referen
e

to the text and that will a
t in pla
es where we have used spe
ial transitions in the

�rst
ase.

An example of an identifier trie(a
aga
#) using new type of transitions is shown

in Figure 3. New type of transitions are without labeling and point to sguares repre-

senting positions in text. Ea
h of these numbers denotes the starting position of the

orresponding suÆx in the text. For example, positions denoted as 3' and 3 point to

the suÆx ga
#.

c

a c
210

2’

3’

2’

2

3

6"

6

6’

Figure 3: An identifier trie(a
aga
#) using new type of transitionss.

15

Prog
eedings of the Prague Stringology Club Workshop '2000

We
an minimize su
h an automaton. We denote it as an identifier DAWG

denoted as IDAWG. An example of an IDAWG(a
aga
#) is shown in Figure 4.

g

c

a

g

c a

#

#

210 43 7

Figure 4: IDAWG for the text T = a
aga
#

The new type of an automaton presented in this se
tion requires a modi�
ation of

a standard mat
hing algorithm. When it en
ounters a referen
e pointing to the text,

it must
he
k whether the rest of the pattern is the same as the suÆx of the text being

pointed to. The moment when it transfers to the text
orresponds to a pre�x having

been mat
hed with some sistring. If string mat
hing terminates sooner, the string is a

pre�x of several sistrings, so it is a substring of a text T , the number of its o

uren
es

in the text is greater than one and it
orresponds to the number of sistrings it is

a pre�x of. For a
lear de�nition of sistrings it is ne
essary to
on
atenate the text

with the symbol # that denotes the end. A more detailed des
ription of the mat
hing

algorithm is shown in the following example.

Let T = a
aga
 be a text. IDAWG(T#) is shown in Figure 4. We will show the

pro
ess of mat
hing a input string (pattern) on two examples:

1. P

1

=
aga. We start at the initial state q

0

denoted as 0. We mat
h symbol
 and

we move to state 2. Then we mat
h symbol a and we move to state 3 and the

ontinuation of mat
hing is in the text at position 3. Sin
e now we are mat
hing

the suÆx of the text ga
 with the suÆx of the pattern ga. As ga is the pre�x of

ga
; pattern P

1

is the substring of a text T . Be
ause we have been mat
hing the

text and it has been done su

essfully, the number of o

uren
es of P

1

is equal

to one. If the rest of the text (here ga) is the same as the suÆx of the text (here

it is not, suÆx is ga
), the pattern P would be the suÆx of the text T . The

position of the pattern in the text
orresponds to the position of the symbol in

the text that was mat
hed with the last symbol of the pattern de
reased by the

length of the pattern - 1, i.e., Pos(P

1

; T) = Pos(
aga; a
aga
) = f5� 4g = f1g

.

2. P

2

= a
. We start in the initial state q

0

. We mat
h symbols a and
 and we

move to state 2. As we have mat
hed the whole pattern and in the same time we

have not en
ountered a referen
e to the text, the number of o

uren
es of this

pattern is greater than one. This number
orresponds to the number of sistrings

whose pre�x is formed by the pattern, i.e., to the number of paths leading from

the last visited state (here 2) to the text (here the transition a and the se
ond

path is a transition #). If there is a transition leading from the last visited state

(here 2) labeled by the symbol # (here it is), then the given pattern is a suÆx

16

Condensation prin
iple

of text T . The position of the pattern
orresponds to the beginning of sistrings

that they are a pre�x of, in this
ase Pos(P

2

; T) = Pos(a
; a
aga
) = f0; 4g.

We see that the automaton IDAWG(T#) is suitable to �nd out whether a pattern P

is a substring of a text T as well as it is its suÆx. It is not ne
essary to
reate another

type of automaton representing suÆxes of the text. It is suitable to determine the

number of repetitions of the pattern in the text together with the positions of all its

o

uren
es.

As it is not important if the information about the referen
e to the text will be

represented as a spe
ial transition or as a new type of state, we will further
onsider

the
ase with states that have an additional information - a referen
e to the text.

IDAWG(T#) does not
ontain �nal states, thus we
ould de
lare that �nal states

orrespond to a

epting some sistring.

The simplest way of
onstru
ting an identi�er trie is deletion of redundant states

and transitions from a suÆx trie. This
onstru
tion is following: Ea
h state whose

right language
ontains just one word (there is only one labelling on the path to a �nal

state)
an be ex
luded. All transitions from ex
luded states are redundant (these are

transitions between non-existing states), thus they
an be ex
luded. Transitions to

ex
luded states from non-ex
luded states are repla
ed by referen
es to the text (using

new type of transitions or states). If we apply this way of ex
lusion and repla
ement

of redundant states to a minimized suffix trie(T), i.e., SDAWG(T), we
reate a

minimized type of an identi�er trie, IDAWG. This automaton has signi�
antly better

properties than an identi�er tree, the number of its states is linearly proportional

to the length of the input text, in
ontrast to a quadrati

omplexity of the non-

minimized version.

4 Text transformation

Let T be a text of length n over some alphabet �. A transformed text with a

oeÆ
ient of
ondensation k, T

k

is
onstru
ted so that we group the input text by k

symbols and we repla
e ea
h su
h a group by one symbol of a new alphabet �

4

. An

example of su
h a transformation for k = 4 is shown in Figure 5.

text in new alphabet

a c g t a c a c a c g t g t a c a c g t a c a c

acgt acac acgt gtac acgt acac

text in original alphabet Σ
Σ

4

Figure 5: Transformation of a text T = a
 g t a
 a
 a
 g t g t a
 a
 g t a
 a
 to

T

4

= a
gt a
a
 a
gt gta
 a
gt a
a
.

This example shows a transformation of a text T of length 24, to a text T

4

and

whi
h uses a new alphabet. The original alphabet � = fa;
; g; tg
ontains four

symbols, the new alphabet �

4

= faaaa; aaa
; aaag; : : : ; ttttg
ontains j�j

4

= 256

symbols. These relations
an be generalized, it holds for a text T; alphabet � and a

degree of
ondensation k:

� A text T of length n
an be transformed to a text T

k

of length

n

k

.

� If the original alphabet is �, then the new alphabet is �

k

of size j�j

k

.

17

Prog
eedings of the Prague Stringology Club Workshop '2000

If we use the transformed alphabet, the degree to whi
h a text
an be redu
ed depends

on the fa
tor of
ondensation. In the example above a suitable usage of a
ondensation

fa
tor k = 4 for a text over an alphabet of DNA sequen
es, the transformed text

uses 256 symbols, whi
h
an be en
oded by 8 bits, i.e., using a standard ASCII

ode. Problems
onne
ted with
ondensation of a text whose length is not a natural

multipli
ation of the
ondensation fa
tor are re
e
ted in the ne
essary modi�
ation

of a pattern mat
hing algorithm. These problems as well as the algorithm are dealt

with in se
tion 5.

To demonstrate the redu
tion of memory requirements we show an example of a

SDAWG for the text in Figure 5.

9 10
c

2 4 5 6 7 8 19

13

14 16 17 18

20 21 22 23

11 12

15

0 1 3
a c g t

t

a c

a c

a c

a c a c g t

g
t

a

catgcaca a c
24 25 26 27 28 29 30 31 32 33 34

t

t

g

ga

c

g

g

g

g

a
a

Figure 6: SDAWG for text T = a
 g t a
 a
 a
 g t g t a
 a
 g t a
 a
.

Figure 6 shows an example of a SDAWG(T) automaton. This automaton
ontains

35 states and 43 transitions.

gt
1221 30 134 1110 14 15

5 6

gt

gt

ac gt
ac

7 8 9
gt

acac gt

acac

ac
ac

ac

gt

ac gt

ac

16 17

ac

gt ac gt ac

Figure 7: SDAWG for text T

2

= a
 gt a
 a
 a
 gt gt a
 a
 gt a
 a
.

Figure 7 shows an SDAWG automaton for
ondensed text

T

2

= a
gta
a
a
gtgta
a
gta
a
, with
ondensation fa
tor k = 2. This automaton

ontains 18 states and 24 transitions. Using a
ondensation fa
tor of k = 4 we will

get an automaton shown in Figure 8. This automaton, whi
h is
onstru
ted for text

T

4

= a
gt a
a
 a
gt gta
 a
gt a
a
, has 7 states and 9 transitions and a

epts all

suÆxes of the text T

4

. These suÆxes are written in the new alphabet and
orrespond

to the suÆxes of the original text that have four times the length of the suÆxes in

the new alphabet.

We
an
onstru
t all automata mentioned in se
tion 2 for
ondensed texts. The

method is very simple. It is enough to state that an elementary unit of an alphabet

is not one symbol, but a k-tuple of symbols. Then a standard
onstru
tion algorithm

is used. The
onstru
ted automaton a

epts fa
tors, or suÆxes of the transformed

text.

18

Condensation prin
iple

acgt acac acgt

acac
gtac

gtac

gtac acgt acac
21 30 4 5 6

Figure 8: SDAWG for text T

4

= a
gt a
a
 a
gt gta
 a
gt a
a
.

5 String mat
hing algorithm

The string mat
hing algorithm is similar to the methods used in [KaUk96℄. Thus

we will use the same terminology to denote an o

uren
e of a pattern in a text, i.e.,

the position in the original text where a k-tuple starts that forms a symbol of the

transformed alphabet. That is why we will use the same terminology for referen
ing

o

uren
es of patterns in the original text where a k-tuple starts that is used for

ondensation - suÆx points.

If a pattern starts at a position in the original text that is the same as a position

of some suÆx point, the o

uren
e of its
ondensed representation in a
ondensed

text is found dire
tly. If it starts at a position that does not mat
h any suÆx point,

let us
all a pattern pre�x that
orresponds to a substring of a text and that starts

at the position of the pattern and ends at the nearest suÆx point as the head. The

following part of the pattern that ends at the last suÆx point of the o

uren
e of the

pattern we will
all the body and the last part of the pattern as the tail. An example

for a pattern P = a
a
gtgta
a
 is shown in Figure 9.

... acgt acac acgt gtac acgt acac

suffix points

occurrence

hea
d

gap
body

ta
il

gap

Figure 9: An o

uren
e of a pattern a
a
gtgta
a
 in a text.

The �gure shows an o

uren
e of a pattern P with head a
, body a
gtgta
 and tail

a
. The length of the body is a multiple of the
ondensation
oeÆ
ient and starts at a

19

Prog
eedings of the Prague Stringology Club Workshop '2000

position of some suÆx point. The
ondensation dire
tly maps the body to a substring

in a
ondensed text. The length of the head and the tail of the pattern is less than the

value of the
ondensation fa
tor. Thus it is ne
essary to mat
h all posible extensions

of the head (or tail) up to the magnitude of the
ondensation
oeÆ
ient so that a

ondensation of this extensions is possible. The head must end at some suÆx point,

that is why it is extended with a pre�x, similarly the tail is extended with some suÆx.

Pattern mat
hing that uses a
ondensed automaton is done on many levels. On

ea
h level we try to mat
h a pattern shifted by one symbol with respe
t to the suÆx

points. On level zero we try to lo
ate o

uren
es from some suÆx point, on level one

we try to �nd possible o

uren
es that start at some su

essor of a suÆx point et
.,

on the last level we inspe
t positions that are shifted by k-1 symbols with respe
t to

a pre
eding suÆx point. On ea
h level a pattern
an be divided into a head, a body

and a tail. The length of the head on level zero is zero, on level 1 its length is k-1,

...., on level k-1 its length is equal to one. To exe
ute ea
h level we
an use either of

these two methods:

� Metod 1 : Find a state that mat
hes the body of the pattern. For ea
h transition

that starts at this state �nd out whether the non-
ondensed form of its labeling

has not a pre�x identi
al with the tail of the pattern. For ea
h su
h a pattern

�nd positions in the text. For these positions it holds that they
onne
t the

body of the pattern to its tail, so we have to
he
k only whether it is pre
eded

by a symbol whose suÆx (after a de
omposition) is the head of the pattern.

� Metod 2: For a non-zero length of the head generate all symbols of the new

alphabet whose head after the de
ondensation is the same as its suÆx. We will

on
atenate ea
h su
h a symbol with the body of the pattern. Next �nd su
h

a state in the automaton that
orresponds to the
on
atenation. Determine

whether every transition that starts from this state has not a pre�x that is the

same as the tail of the pattern.

We
an use any of these methods for any level of mat
hing, the mat
hing
an be

modi�ed a

ording to the expe
ted speed of the �nishing phase. For a long body

with a small (expe
ted) number of o

uren
es Method 1 is more suitable, for a short

body and a relatively long head it is better to use Method 2.

While Method 2 is more universal, Method 1 uses an asso
iation between a state of

the automaton and the position(s) in the text. Thus it is meaningful only for automata

that keep this asso
iation, a typi
al example is a suÆx tree and an identi�er trie.

To make the algorithm working eÆ
iently it is ne
essary to introdu
e a suitable

mapping of k symbols (k-tuples) of the original alphabet to the symbols of the new

alphabet. This mapping,
ondensation, together with an inverse mapping, de
onden-

sation must be
hosen with respe
t to the number of symbols of the original alphabet.

For example ea
h symbol of the DNA alphabet
an be en
oded using two bits, then

ea
h k-tuples of a DNA sequen
e
an be en
oded by a sequen
e of bits where ea
h

pair is a
ode of some (DNA) symbol.

The mat
hing algorithm
an be modi�ed so that it takes into a

ount spe
i�

properties of a parti
ular mat
hing task, for example in the
ase when we want to

dis
over whether a pattern is present in a text we
an terminate the sear
h after the

�rst su

essful mat
h.

20

Condensation prin
iple

Find a pattern a
a
gtgta
a
 (symbol ? denotes any symbol of fa;
; g; tg) Let us

suppose we
hose Method 2.

Let us
onsider the text and the pattern from Figure 9. Sin
e the task is pattern

mat
hing in a
ondensed text with the
ondensation
oeÆ
ient k = 4, the sear
h

will be exe
uted on four levels. Level zero is to mat
h o

uren
es that start at suÆx

points, i.e., we inspe
t one
ondensed pattern. Level one inspe
ts four patterns, the

original pattern is extended with all possible pre�xes of length 1, i.e., all symbols

of the original alphabet. Four extensions will be
ondenseded and will be mat
hed

using automaton. It is ne
essary after mat
hing ea
h pattern to
he
k if any transition

that starts at the
urrent state mat
hes the symbol that
orresponds to the tail of

the pattern
omplemented with any suÆx. Other levels are exe
uted similarly. The

di�erent approa
h to mat
hing heads and tails is due to the number of transitions

from the
urrent state. While transitions from the initial state are mat
hed during

mat
hing extensions of a head, these transitions exist for ea
h symbol of the input

alphabet that is used in the text. For DNA sequen
es and the degree of
ondensation

k = 4 the
ondensed alphabet
ontains 256 symbols. To mat
h a tail we
ompare

transitions starting at some non-initial state, there are usually less than three of them.

This is an average number, an exa
t number is proportional to the number of di�erent

symbols that follow some o

uren
e of a mat
hed part of the pattern in the text.

The following table shows the number of mat
hed patterns on ea
h mat
hing level.

The total number of patterns is the sum of given patterns, i.e., 85 in this
ase. While

the length of the original pattern was m, patterns that are input to the algorithm (in

ondensed form) have a length

m

k

.

level length of head patterns #of patterns

0 0 a
a
 gtgt a
a
 1

1 1 ?a
a
gtg ta
a
??? 4

2 2 ??a
 a
gt gta
 a
?? 16

3 3 ???a
a
g tgta
a
? 64

So far we have assumed that the length of the text is a natural multiple of the

ondensation fa
tor k. In many
ases this
ondition is not true. These
ases are dealt

with in a di�erent way. The simplest way is to pla
e this remainder at the beginning

of the text and to
ondens the text without this remainder. Mat
hing all o

uren
es

in the text using the algorithm des
ribed above, ex
ept the o

uren
es that start at

some position in the remainder of the text, i.e., that pre
ede the �rst suÆx point.

These positions (k � 1 positions at most)
an be
he
ked later. Method 1 pro
esses

these positions more e�e
tively, be
ause the referen
e to the text where a head of a

pattern should be
he
ked is negative, it points in front of the
ondensed text. It

points to the pla
es where there is the rest of the text that was not
ondensed. It is

suÆ
ient to mat
h the head of the patern with this remainder to solve all possibilities.

Similarly we
an leave the non-
ondensed remainder at the end of the text.

The prin
iple of
ondensation is proposed to de
rease the amount of memory

required to store data stru
tures that are used to simulate the automaton. The

sear
h time is proportional to the length of the pattern. If the automaton is too big

(for a long text) and the simulator works a lot with a slow memory during parsing,

then it is possible that a sear
h that is
omplex on one hand, but that uses some

sophisti
ated data stru
tures in main memory on the other hand may lead to a
hieve

21

Prog
eedings of the Prague Stringology Club Workshop '2000

a desired result in a shorter time, this is still an open question.

6 Experimental results

The main task solved in this report is the proposal and design of a new type of

an automaton over
ondensed text. The implementation of the resulting automata

reated using a
ondensed text with di�erent degree of
ondensation is more eÆ
ient

than the original automata. The size of the implementations is shown in Table 1.

Degree of
ondensation Size SDAWG IDAWG

SDAWG

origSIZE

IDAWG

orig:SIZE

Original 230195 946973 898728 4.11 3.90

2 115097 484681 411332 2.10 1.79

3 76731 307393 241535 1.34 1.05

4 57548 250639 191168 1.09 0.83

Table 1: Condensed automata

We
an see that using the degree of
ondensation equal to 4 (i.e., four-tuples

of symbols are used to label transitions) leads to an implementation whose size is

omparable with the size of the original text.

7 Future work and open questions

Open questions:

� The implementation of
ondensed automata de
reases memory requirements

when
ompared to other types of sear
h automata. The
hange of sear
h algo-

rithms and the de
rease of pro
essing speed thus
reated
ould
ountera
t this

improvement.

� The aim of this work is to �nd an e�e
tive implementation of a sear
h au-

tomaton. Spa
e requirements to store the resulting data stru
tures are not so

important, but a very high pro
essing speed of these automata is. Large data

stru
tures and a bad implementation
an result in ex
essive memory a

esses,

whi
h de
reases the qualities of the implementation. Thus the most important

question is to
hoose the
orre
t automaton and to implement it
orre
tly so as

not to de
rease the resulting pro
essing speed.

Referen
es

[Bal98℄ Bal

�

ik, M. Diploma Thesis, CTU Prague 1998.

[Cro94℄ Cro
hemore, M. and Rytter, W. Text algorithms, Oxford University

Press, New York 1994.

[GoBa91℄ Gonnet G.H., Baeza-Yates R., Handbook of Algorithms and Data Stru
-

tures - In Pas
al and C. Addison - Wesley, Wokingham, UK, 1991.

22

Condensation prin
iple

[KaUk96℄ Juha K�arkk�ainen and Esko Ukkonen: Sparse SuÆx Trees. Pro
. Se
ond

Annual International Computing and Combinatori
s Conferen
e (CO-

COON '96), Springer 1996.

[AndNil95℄ A. Anderson and S. Nilson, EÆ
ient implementation of suÆx trees,

Software-Pra
ti
e and Expirien
e, 25(1995), pp129-141

[GoBaSn91℄ G.H.Gonnet, R.A. Baeza-Yates, and T. Snider, Lexikographi
al indi
es

for text: Inverted �les vs. PAT trees, Te
hni
al report OED-91-01, Cen-

tre for the new OED, University of Waterloo, 1991.

[Irv95℄ R.W.Irving, SuÆx binary sear
h trees, Te
hni
al report TR-1995-7,

Computing s
ien
e Department, University of Glasgow, Apr.95

[Kark95℄ K�arkk�ainen, J. SuÆx
a
tus: A
ross between suÆx tree and suÆx array,

in Pro
. 6th Symposium on
ombinatorial Pattern Mat
hing, CPM95,

1995, pp191-204. U. Manber and G. Myers SuÆx arrays: a new method

for on-line string sear
hes Pro
eedings of the 1st ACM-SIAM Annual

Symposium on Dis
rete Algorithms, pp. 319-327, 1990.

23

