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Abstract. The most important contribution of this paper is the discovery and
description of an effective implementation of a finite automaton that accepts
all substrings of a given text. The ratio of the size of this automaton with
respect to the size of the input text is in standard implementations 10 or more,
see [AndNil95], in [Bal98] is described implementation with ratio less than 4.
This implementation does not increase the time to search for a pattern, which
is proportional to the length of the pattern.

The major approach introduced in this paper uses transformation of a text
into a new alphabet that contains more symbols than the original alphabet and
decreases text size. It operates over alphabets that contain small number of
symbols. Such an automaton is suitable for example for processing of DNA
sequences.

A new automaton and new search algorithms are presented for such a trans-
formed text (patterns are still input in the original alphabet). Space require-
ments of such condensed automata are as low as the size of the input text.

This paper further introduces a new type of an automaton, a so-called Identi fier
DAW G, which uses special properties of the DAW G automata and further de-
creases space requirements by introducing associations between states of an
automaton and positions in a text. It is designed better searching algorithm
using this association.

Key words: DAWG, Suffix DAWG, SDAWG, automata implementation, Suf-
fix tree, finite automata.

1 Introduction

Let T be a text over a fixed alphabet ¥. Then an automaton can be created in a linear
time (see [Cro94]) that accepts all substrings that occur in text 7. This automaton is
called DAWG (Directed Acyclic Word Graph) and its variant accepting only suffixes
is called Suffix DAWG (SDAWG).

!This work was supported by grant GACR No. 201/98/1155.
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Although some search automata have a linear size with respect to the length of
the text, this size is high enough to disable practical implementation and usage. This
size depends on implementation details, on the structure of the text and on the type
of the automaton used. For Suffiz tree the size is rarely smaler than 10n bytes, where
n is the length of the text. Other types of automata are usually smaller, suffix arrays
[GoBaSn91] (size 5n bytes), level compressed tries [AndNil95] (size about 11n bytes),
suffiz cactuses - a cross between suffix tree and suffix array [Kark95] (size 9n bytes),
and suffiz binary search trees[Irv95] (size about 10n bytes). Paper [Bal98] describes
the method of implementation, which decreases the ratio to 4:1 .

This paper shows the new method, how to decrease this ratio using special trans-
formation of the text. This transformation called condensation desreases text size.
DAWG automaton constructed over transformed text saves good properties of DAWG,
i.e. linear time and space comlexity for construction with respect to the size of text
and linear time comlexity for matching a pattern with respect to its length.

2 DAWG, SDAWG

DAWG(T) is a minimal automaton that accepts all substrings of a text 7. An
automaton that accepts all suffixes of a text T is denoted as SDAWG(T). An
algorithm of an incremental creation SDAWG automaton is described in [Cro94].

It holds that the number of states of the automaton SDAWG(T) is greater or
equal to the number of states of DAWG(T). If we move all states of the automaton
SDAWG(T) to the set of final states, we could obtain a couples of equivalent states.
For example, DAW G (aabab) has six states, while SDAW G(aabab) has seven states
and two of them are final, see figure 1.
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Figure 1: DAWG(aabab) versus SDAW G (aabab).

Automaton DAWG(T') can be simulated by automaton SDAW G(T), the reverse
is not possible without an additional information.

3 Identifier Trie, Identifier DAWG

An identifier trie is modification of an automaton that accepts a set of patterns
Suff(T). A pointer to the text is added to some states. There are states where there
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is only one sequence of transitions leading to some final state. Labelling of such a
sequence is a suffix of a text T" and it can be represented by a pointer to the text,
which marks the beginning of this suffix. This pointer will replace all transitions to
the first state of such a sequence.

An example of an identifier trie(acagac#) using new type of states is shown in
Figure 2. New type of states are drawn as squares. The number in this square denotes
starting position of corresponding suffix in the text. For example states denoted as
3" and 3 point to the suffix gac#.

g ~[7]
#

[ 7]

C G2 #
3, (¢ a ~7]
# ..

Figure 2: An identifier trie(acagac##) using new type of states.

Another approach does not create a special category for transitions, but it creates
a new type of states. Because each state of a suffix trie corresponds to some suffix of
a text 7T, we can link this suffix and its corresponding state with the position of its
beginning in the text T, thus we create a new type of states that represent a reference
to the text and that will act in places where we have used special transitions in the
first case.

An example of an identifier trie(acagac#t) using new type of transitions is shown
in Figure 3. New type of transitions are without labeling and point to sguares repre-
senting positions in text. Each of these numbers denotes the starting position of the
corresponding suffix in the text. For example, positions denoted as 3’ and 3 point to
the suffix gac#.

~[3]

Figure 3: An identifier trie(acagac#) using new type of transitionss.
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We can minimize such an automaton. We denote it as an identifier DAWG
denoted as IDAWG. An example of an IDAW G (acagac#t) is shown in Figure 4.
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Figure 4: IDAWG for the text T = acagac#

The new type of an automaton presented in this section requires a modification of
a standard matching algorithm. When it encounters a reference pointing to the text,
it must check whether the rest of the pattern is the same as the suffix of the text being
pointed to. The moment when it transfers to the text corresponds to a prefix having
been matched with some sistring. If string matching terminates sooner, the string is a
prefix of several sistrings, so it is a substring of a text 7', the number of its occurences
in the text is greater than one and it corresponds to the number of sistrings it is
a prefix of. For a clear definition of sistrings it is necessary to concatenate the text
with the symbol # that denotes the end. A more detailed description of the matching
algorithm is shown in the following example.

Let T' = acagac be a text. IDAWG(T+#) is shown in Figure 4. We will show the
process of matching a input string (pattern) on two examples:

1. P, = caga. We start at the initial state ¢y denoted as 0. We match symbol ¢ and
we move to state 2. Then we match symbol a and we move to state 3 and the
continuation of matching is in the text at position 3. Since now we are matching
the suffix of the text gac with the suffix of the pattern ga. As ga is the prefix of
gac, pattern P is the substring of a text 7. Because we have been matching the
text and it has been done successfully, the number of occurences of P; is equal
to one. If the rest of the text (here ga) is the same as the suffix of the text (here
it is not, suffix is gac), the pattern P would be the suffix of the text T. The
position of the pattern in the text corresponds to the position of the symbol in
the text that was matched with the last symbol of the pattern decreased by the
length of the pattern - 1, i.e., Pos(P;,T) = Pos(caga, acagac) = {5 —4} = {1}

2. P, = ac. We start in the initial state ¢o. We match symbols a and ¢ and we
move to state 2. As we have matched the whole pattern and in the same time we
have not encountered a reference to the text, the number of occurences of this
pattern is greater than one. This number corresponds to the number of sistrings
whose prefix is formed by the pattern, i.e., to the number of paths leading from
the last visited state (here 2) to the text (here the transition a and the second
path is a transition #). If there is a transition leading from the last visited state
(here 2) labeled by the symbol # (here it is), then the given pattern is a suffix

16



Condensation principle

of text T'. The position of the pattern corresponds to the beginning of sistrings
that they are a prefix of, in this case Pos(Py,T) = Pos(ac, acagac) = {0,4}.

We see that the automaton IDAW G(T#) is suitable to find out whether a pattern P
is a substring of a text 7" as well as it is its suffix. It is not necessary to create another
type of automaton representing suffixes of the text. It is suitable to determine the
number of repetitions of the pattern in the text together with the positions of all its
occurences.

As it is not important if the information about the reference to the text will be
represented as a special transition or as a new type of state, we will further consider
the case with states that have an additional information - a reference to the text.
IDAWG(T#) does not contain final states, thus we could declare that final states
correspond to accepting some sistring.

The simplest way of constructing an identifier trie is deletion of redundant states
and transitions from a suffiz trie. This construction is following: Each state whose
right language contains just one word (there is only one labelling on the path to a final
state) can be excluded. All transitions from excluded states are redundant (these are
transitions between non-existing states), thus they can be excluded. Transitions to
excluded states from non-excluded states are replaced by references to the text (using
new type of transitions or states). If we apply this way of exclusion and replacement
of redundant states to a minimized suffiz trie(T), i.e., SDAWG(T), we create a
minimized type of an identifier trie, I D AW (. This automaton has significantly better
properties than an identifier tree, the number of its states is linearly proportional
to the length of the input text, in contrast to a quadratic complexity of the non-
minimized version.

4 Text transformation

Let T be a text of length n over some alphabet ¥. A transformed text with a
coefficient of condensation k, T* is constructed so that we group the input text by &
symbols and we replace each such a group by one symbol of a new alphabet ¥4. An
example of such a transformation for £ = 4 is shown in Figure 5.

acgtacacacgtgtacacgtacac text in original alphabet >
2 ) [ A S . 4
acgt acac acgt gtac acgt acac text in new alphabet >

Figure 5: Transformation of a text ' =acgtacacacgtgtacacgtacacto
T* = acgt acac acgt gtac acgt acac.

This example shows a transformation of a text T of length 24, to a text 7" and
which uses a new alphabet. The original alphabet ¥ = {a,c,g,t} contains four
symbols, the new alphabet $* = {aaaa,aaac,aaag, ..., tttt} contains |S|* = 256
symbols. These relations can be generalized, it holds for a text T, alphabet ¥ and a
degree of condensation k:

e A text T of length n can be transformed to a text T of length e

e If the original alphabet is ¥, then the new alphabet is ¥* of size |$|*.
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If we use the transformed alphabet, the degree to which a text can be reduced depends
on the factor of condensation. In the example above a suitable usage of a condensation
factor k = 4 for a text over an alphabet of DNA sequences, the transformed text
uses 256 symbols, which can be encoded by 8 bits, i.e., using a standard ASCII
code. Problems connected with condensation of a text whose length is not a natural
multiplication of the condensation factor are reflected in the necessary modification
of a pattern matching algorithm. These problems as well as the algorithm are dealt
with in section 5.

To demonstrate the reduction of memory requirements we show an example of a
SDAWG for the text in Figure 5.
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Figure 6: SDAWG for text T =acgtacacacgtgtacacgtacac.

Figure 6 shows an example of a SDAWG(T) automaton. This automaton contains
35 states and 43 transitions.
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Figure 7: SDAWG for text T? = ac gt ac ac ac gt gt ac ac gt ac ac.

Figure 7 shows an SDAW G automaton for condensed text

T? = acgtacacacgtgtacacgtacac, with condensation factor & = 2. This automaton
contains 18 states and 24 transitions. Using a condensation factor of £ = 4 we will
get an automaton shown in Figure 8. This automaton, which is constructed for text

T* = acgt acac acgt gtac acgt acac, has 7 states and 9 transitions and accepts all
suffixes of the text T*. These suffixes are written in the new alphabet and correspond
to the suffixes of the original text that have four times the length of the suffixes in
the new alphabet.

We can construct all automata mentioned in section 2 for condensed texts. The
method is very simple. It is enough to state that an elementary unit of an alphabet
is not one symbol, but a k-tuple of symbols. Then a standard construction algorithm
is used. The constructed automaton accepts factors, or suffixes of the transformed
text.
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Figure 8: SDAWG for text T* = acgt acac acgt gtac acgt acac.

5 String matching algorithm

The string matching algorithm is similar to the methods used in [KaUk96]. Thus
we will use the same terminology to denote an occurence of a pattern in a text, i.e.,
the position in the original text where a k-tuple starts that forms a symbol of the
transformed alphabet. That is why we will use the same terminology for referencing
occurences of patterns in the original text where a k-tuple starts that is used for
condensation - suffix points.

If a pattern starts at a position in the original text that is the same as a position
of some suffix point, the occurence of its condensed representation in a condensed
text is found directly. If it starts at a position that does not match any suffix point,
let us call a pattern prefix that corresponds to a substring of a text and that starts
at the position of the pattern and ends at the nearest suffix point as the head. The
following part of the pattern that ends at the last suffix point of the occurence of the
pattern we will call the body and the last part of the pattern as the tail. An example
for a pattern P = acacgtgtacac is shown in Figure 9.

occurrence
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..acgt acac acgt gtac acgt acac
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suffix points

Figure 9: An occurence of a pattern acacgtgtacac in a text.

The figure shows an occurence of a pattern P with head ac, body acgtgtac and tail
ac. The length of the body is a multiple of the condensation coefficient and starts at a
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position of some suffix point. The condensation directly maps the body to a substring
in a condensed text. The length of the head and the tail of the pattern is less than the
value of the condensation factor. Thus it is necessary to match all posible extensions
of the head (or tail) up to the magnitude of the condensation coefficient so that a
condensation of this extensions is possible. The head must end at some suffix point,
that is why it is extended with a prefix, similarly the tail is extended with some suffix.

Pattern matching that uses a condensed automaton is done on many levels. On
each level we try to match a pattern shifted by one symbol with respect to the suffix
points. On level zero we try to locate occurences from some suffix point, on level one
we try to find possible occurences that start at some successor of a suffix point etc.,
on the last level we inspect positions that are shifted by k-1 symbols with respect to
a preceding suffix point. On each level a pattern can be divided into a head, a body
and a tail. The length of the head on level zero is zero, on level 1 its length is k-1,
...., on level k-1 its length is equal to one. To execute each level we can use either of
these two methods:

e Metod 1: Find a state that matches the body of the pattern. For each transition
that starts at this state find out whether the non-condensed form of its labeling
has not a prefix identical with the tail of the pattern. For each such a pattern
find positions in the text. For these positions it holds that they connect the
body of the pattern to its tail, so we have to check only whether it is preceded
by a symbol whose suffix (after a decomposition) is the head of the pattern.

e Metod 2: For a non-zero length of the head generate all symbols of the new
alphabet whose head after the decondensation is the same as its suffix. We will
concatenate each such a symbol with the body of the pattern. Next find such
a state in the automaton that corresponds to the concatenation. Determine
whether every transition that starts from this state has not a prefix that is the
same as the tail of the pattern.

We can use any of these methods for any level of matching, the matching can be
modified according to the expected speed of the finishing phase. For a long body
with a small (expected) number of occurences Method 1 is more suitable, for a short
body and a relatively long head it is better to use Method 2.

While Method 2 is more universal, Method 1 uses an association between a state of
the automaton and the position(s) in the text. Thus it is meaningful only for automata
that keep this association, a typical example is a suffiz tree and an identifier trie.

To make the algorithm working efficiently it is necessary to introduce a suitable
mapping of k symbols (k-tuples) of the original alphabet to the symbols of the new
alphabet. This mapping, condensation, together with an inverse mapping, deconden-
sation must be chosen with respect to the number of symbols of the original alphabet.
For example each symbol of the DNA alphabet can be encoded using two bits, then
each k-tuples of a DNA sequence can be encoded by a sequence of bits where each
pair is a code of some (DNA) symbol.

The matching algorithm can be modified so that it takes into account specific
properties of a particular matching task, for example in the case when we want to
discover whether a pattern is present in a text we can terminate the search after the
first successful match.
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Find a pattern acacgtgtacac (symbol ? denotes any symbol of {a,c, g,t}) Let us
suppose we chose Method 2.

Let us consider the text and the pattern from Figure 9. Since the task is pattern
matching in a condensed text with the condensation coefficient £ = 4, the search
will be executed on four levels. Level zero is to match occurences that start at suffix
points, i.e., we inspect one condensed pattern. Level one inspects four patterns, the
original pattern is extended with all possible prefixes of length 1, i.e., all symbols
of the original alphabet. Four extensions will be condenseded and will be matched
using automaton. It is necessary after matching each pattern to check if any transition
that starts at the current state matches the symbol that corresponds to the tail of
the pattern complemented with any suffix. Other levels are executed similarly. The
different approach to matching heads and tails is due to the number of transitions
from the current state. While transitions from the initial state are matched during
matching extensions of a head, these transitions exist for each symbol of the input
alphabet that is used in the text. For DNA sequences and the degree of condensation
k = 4 the condensed alphabet contains 256 symbols. To match a tail we compare
transitions starting at some non-initial state, there are usually less than three of them.
This is an average number, an exact number is proportional to the number of different
symbols that follow some occurence of a matched part of the pattern in the text.

The following table shows the number of matched patterns on each matching level.
The total number of patterns is the sum of given patterns, i.e., 85 in this case. While
the length of the original pattern was m, patterns that are input to the algorithm (in
condensed form) have a length 7.

‘ level ‘ length of head ‘ patterns ‘ #of patterns ‘
0 0 acac gtgt acac 1
1 1 ?aca cgtg taca ¢?7? 4
2 2 ?7?ac acgt gtac ac?? 16
3 3 ?777a cacg tgta cac? 64

So far we have assumed that the length of the text is a natural multiple of the
condensation factor k. In many cases this condition is not true. These cases are dealt
with in a different way. The simplest way is to place this remainder at the beginning
of the text and to condens the text without this remainder. Matching all occurences
in the text using the algorithm described above, except the occurences that start at
some position in the remainder of the text, i.e., that precede the first suffix point.
These positions (k — 1 positions at most) can be checked later. Method 1 processes
these positions more effectively, because the reference to the text where a head of a
pattern should be checked is negative, it points in front of the condensed text. It
points to the places where there is the rest of the text that was not condensed. It is
sufficient to match the head of the patern with this remainder to solve all possibilities.
Similarly we can leave the non-condensed remainder at the end of the text.

The principle of condensation is proposed to decrease the amount of memory
required to store data structures that are used to simulate the automaton. The
search time is proportional to the length of the pattern. If the automaton is too big
(for a long text) and the simulator works a lot with a slow memory during parsing,
then it is possible that a search that is complex on one hand, but that uses some
sophisticated data structures in main memory on the other hand may lead to achieve
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a desired result in a shorter time, this is still an open question.

6 Experimental results

The main task solved in this report is the proposal and design of a new type of
an automaton over condensed text. The implementation of the resulting automata
created using a condensed text with different degree of condensation is more efficient
than the original automata. The size of the implementations is shown in Table 1.

Degree of condensation ‘ Size ‘ SDAWG | IDAWG igg%% o{,g%‘}VZGE

Original 230195 946973 898728 4.11 3.90
2 115097 484681 411332 2.10 1.79
3 76731 307393 241535 1.34 1.05
4 57548 250639 191168 1.09 0.83

Table 1: Condensed automata

We can see that using the degree of condensation equal to 4 (i.e., four-tuples
of symbols are used to label transitions) leads to an implementation whose size is
comparable with the size of the original text.

7 Future work and open questions
Open questions:

e The implementation of condensed automata decreases memory requirements
when compared to other types of search automata. The change of search algo-
rithms and the decrease of processing speed thus created could counteract this
improvement.

e The aim of this work is to find an effective implementation of a search au-
tomaton. Space requirements to store the resulting data structures are not so
important, but a very high processing speed of these automata is. Large data
structures and a bad implementation can result in excessive memory accesses,
which decreases the qualities of the implementation. Thus the most important
question is to choose the correct automaton and to implement it correctly so as
not to decrease the resulting processing speed.
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